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Abstract 
 
A system dynamics approach is attempted to determine the significant processes and appropriate 
level of detail required to capture dynamic behavior important in managing biodegradation in 
landfills.  The approach used in analyzing complex natural (biochemical) processes in such 
systems is inherently different from that used in analysis of many management systems where 
influences and feedback may be more easily envisioned and represented at a higher level of 
aggregation.  Successful aggregation of natural physical-chemical processes in search of a 
simpler (and useful) model structure is elusive and problematic.  Yet, the simplest model 
structure achievable, without sacrificing relevant behavioral patterns and the accurate influence 
of potential engineering controls, must be pursued to enable broad implementation of a practical 
modeling tool in the field.  This paper presents this struggle for an engineered system using 
complex naturally occurring biochemical processes (municipal solid waste landfill), with 
implications for confidence building in the model.  
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Introduction 
 
System dynamics modeling has gradually developed into a well defined analysis discipline since 
its introduction as “industrial dynamics” by Jay Forrester in the 1960’s.  Applications of the 
method have expanded beyond the management sciences to include the global environment, 
regional ecological dynamics, and applications of ecological engineering.  However, the more 
definitive works which establish the foundational principles of the system dynamics approach 
generally arise from within the context of organizational or logistical process management.  



These principles define the character of system dynamics and should (with reasonable, limited 
exceptions) universally apply to all contexts which claim to benefit from the system dynamics 
approach.  The question that must be posed is to what extent some contexts (such as analysis of 
engineered or natural physical systems) necessarily exclude classical system dynamics principles 
and how does this impact the ultimate benefit of a rich system dynamics approach (intuitive 
understanding of system structure and behavior). 
 
Foundational principles of the system dynamics approach include:  1) establishing a simple 
reference behavioral pattern of the system, either observed in the real system, intuitively 
hypothesized, or desired;  2) conceptualizing a simple system structure of influences which is 
consistent with reference behavior and which maximally aggregates system detail to represent 
only the primary system components that drive reference behavior;  3) formulating such structure 
to observe simulated behavior and explore required structural detail necessary to address the 
purpose of the analysis; and  4) performing a set of prescribed validation tests to gain confidence 
in the model structure as an implementation tool for system management or deeper system 
understanding (Legasto et al, 1980). 
 
These classical iterative steps are well suited to the analysis of organizational behavior, for 
example, where ideal or observed undesirable behavior is easily expressed in simple patterns and 
system structure can be initially represented in terms of high level aggregate influences, such as a 
more stringent policy lowering morale which lowers performance which, in turn, induces an 
even more stringent policy.  The highly complex details of psychological and social mechanisms 
which cause a policy to ultimately lower performance are ignored.  The system can then be 
explored, through iterative simulation, to determine which influences dominate the behavior of 
interest and where more detail should be added to the model.  Engineered systems, on the other 
hand, are generally less complex in underlying detail, and system structure is well understood, 
being designed and constructed beforehand.  Furthermore, the optimized, cost effective design of 
such systems, to achieve desired behavior, promotes an initial assumption that the detailed 
system description is the simplest and most appropriate structure with which to explore 
conditions of optimum behavior.  Therefore, with engineered systems, system behavior does not 
guide the modeler to system structure, but, rather, well defined system structure explores 
possible emergent behaviors through changing system parameter values.  Analysis is thus 
reduced to a methodology for determining the specific combination of parameter values to be 
tested in answering the relevant questions about optimizing the system.  This kind of analysis is 
much more simple and straightforward, falling short of the overall character of system dynamics. 
 
The analysis of complex natural systems involving attempted engineering control falls between 
the two extremes above and presents unique challenges.  Ecological systems, for example, are 
extremely complex, and the delicate yet stable balance largely depends on this complexity.  The 
detailed sub-components of the system are often well understood in isolation (biochemical 
transformations, physical transport processes, etc), but aggregation of these processes into a 
meaningful higher order system structure is difficult.  Such higher order structure is envisioned 
only at the highest levels (generalized nutrient pool fluxes and biomass production and decay 
rates).  These generalizations appear useful for insight into disturbance thresholds causing 
significant decline in metrics of overall system health; but exploring means of adjusting subtle 
aspects of system performance (like improving a single species survival or reproduction rate 



without degrading another) requires much more structural detail.  It is difficult to find a starting 
point for simple, aggregate system structure which provides reasonable behavior.  Part of the 
problem is a general lack of knowledge of how detailed system sub-components might be 
aggregated into higher level components which act as an entity to influence other components.  
In other words, we have a general understanding of the system at the highest level, good 
understanding of many micro-processes at the lowest level structure, but little insight how the 
structure hierarchically structures in between.  This forces the systems modeler to start with a 
much more detailed structure than desired (that which can be mechanistically described at a low 
hierarchical level), use some criteria to place bounds on the breadth of detail to include, and then 
seek opportunities to aggregate into a simpler structure (a process opposite that advocated by 
most system dynamics modelers).  As such, it becomes difficult to reach a level of confidence in 
the model structure, not knowing if the correct strategy of aggregation or initial boundaries on 
detail were sufficient to capture all relevant emergent behaviors of interest. 
 
Here, we demonstrate the example of a municipal solid waste landfill, a system of natural 
degradation processes, both simultaneous and sequential, which ultimately bring organic solid 
wastes to stable forms such as carbon dioxide and methane.  The objective is to develop a model 
that describes this degradation sufficient to explore engineering manipulations of the system to 
decrease stabilization time, limit environmental impact, or control the production of useful or 
harmful gases during the process. 
 
 
General System Description 
 
To comprehensively assess landfill performance, the microbiological, chemical, and physical 
degradation processes should be fully understood.  However, the most significant process 
controlling decomposition is microbiological degradation (Murphy and Brennan, 1992).  
Understanding the causes and interactions among complex degradation processes and identifying 
the important variables are the initial steps in manipulation of the system to control or enhance 
the process. 
 
Realistic limits to the complexity of experimental biodegradation studies, as well as temporal and 
spatial limitations, limit the usefulness of such studies in ascertaining long-term microbial 
decomposition behavior (Moorhead et al, 1996).  Various models simulate the underlying 
processes of degradation, most using analytical or numerical approaches (El Fadel et al, 1996).  
Although the fundamental processes of biodegradation associated with landfills have been 
aggressively studied by countless authors and modeled by a few others, landfill biodegradation 
remains an extremely complex subject. 
 
Landfill models are typically limited either to general descriptions of the overall process or to 
intricate explanations or simulations of a particular reaction or bacterial phenomena associated 
with the process.  Such efforts generally avoid a broad perspective and sometimes fail to 
question whether the entities chosen for modeling are fundamental to the process.  Moreover, 
significant interrelationships within the system and indirect influences on system behavior from 
changing conditions may be ignored or their effects suppressed by focusing on a particular aspect 
of the process.  By concentrating on the pieces of the system, without addressing how all the 



pieces fit together, some modeling approaches fail to capture the essential mechanisms 
responsible for the degradation process and their interactions.  However, biodegradation involves 
countless interactions among numerous individually complex entities and parameters:  consortia 
of  microbial populations, sequential appearance and disappearance of substrates, and continually 
changing environmental conditions.  A comprehensive system structure is unreasonable to model 
and likely not required to capture relevant system behavior, but there is limited basis for 
simplified structural assumptions that still represent mechanistically understood system 
components which not only capture behavior patterns of interest but also respond to engineering 
intervention. 
  
Observation of landfill gas production provides an empirical view of landfill system behavior, 
represented in general form by Tchobanoglous et al, 1993 (Figure 1).  This serves as an excellent 
smooth, generalized reference behavioral pattern to begin the modeling process.  However, this 
pattern, although each gas displays simple behavior, is not simple when all three of the generated 
gases (CH4, CO2, and H2) are taken together.  These gases are simultaneously produced by many 
microbial populations, but the gases have different behavioral patterns.  All gases are also 
produced by reactions that degrade the products of other reactions, and there are no cause and 
effect relationships immediately apparent between the gases except that one of the many 
methane producing reactions depends on the availability of carbon dioxide and hydrogen.  
Therefore, it is difficult (not practically within reach) to propose a simple, high level model 
structure that produces the reference behavior pattern (relative amplitudes and phasing of gas 
curves over time) and that also represents biochemically understood real-world components.  
The modeler must therefore retreat to modeling the mechanistic detail of the various reactions 
known to exist while asserting some bounding criteria which limits the breadth of detail for 
practical modeling purposes.  In general, solid waste is hydrolyzed at its surface, producing 
soluble monosaccharides which further degrade into lower carbon chains of organic acids and 
alcohols and, ultimately, to carbon dioxide and methane, with concurrent production of carbon 
dioxide and hydrogen throughout the sequence of reactions.  The various reactions and reaction 
sequences produce different ratios of these gases.  Hundreds or, perhaps, thousands of microbial 
populations are involved. 
 
 



Figure 1.  Conceptual representation of landfill gas formation over time derived from 
empirical data (after Tchobanoglous et al, 1993) 

 
 
 
 
Model Description 
 
The approach used here is to describe the breakdown of a specific volume of solid waste and to 
mechanistically follow the conversion of the solid material into soluble organic forms by 
sequential microbial processes.  Solid material is assumed to initially exist as uniform spheres 
which are degraded from the outside by cleavage of a glucose molecule by hydrolysis.  Glucose 
is the only monosaccharide modeled as a hydrolysis product and serves as a surrogate for all 
carbon chain molecules initially cleaved from the solid waste.  This is a bounding assumption, 
considered reasonable because glucose is a dominant hydrolysis product, and most lower carbon 
organic molecules found within the system can be derived from glucose.  Using the specific 
glucose molecule allows development of stoichiometrically balanced equations for the series of 
sequential breakdown reactions, eventually yielding methane and carbon dioxide (Conrad, 1999).  
The rate of hydrolysis is given as rate of glucose formed per surface area of solid organic waste.  
This abiotic reaction rate controls the disappearance of organic solid waste material in the 
landfill.  Consumption (and subsequent production) of water is according to the stoichiometry in 
Table 1.  All subsequent reactions, starting with the aerobic and anaerobic breakdown of glucose 
and ending with methane formation from carbon dioxide and hydrogen, are listed in Table 1.  
The reactions are derived by noting the predominant forms of organic carbon typically found in a 
landfill and employing all documented reactions known involving pathways from glucose, 
through these intermediate organic compounds, and, finally, to carbon dioxide and methane 
(Gottschalk, 1986).  The nitrate pathway is provided to represent reactions yielding 
predominantly carbon dioxide in response to the presence of non-oxygen electron acceptors such 



as nitrates, sulfates, and iron oxides.  Again, these are all bounding assumptions intended to limit 
the amount of detail in the model.  Together, these equations represent alternative pathways of 
degradation at the detailed reaction level, bounded in breadth of detail, and simple enough for 
practical simulation while, hopefully, providing enough detail to realize empirical behavioral 
patterns in the simulation results.  Figure 2 is a schematic providing a visual flow diagram for the 
breakdown of solid waste, including all possible pathways considered in Table 1. 
 
Table 1.  Representative, simulated sequential and parallel reactions leading from organic 
solid waste material to methane and carbon dioxide stabilization within a landfill 
(Gottschalk, 1986). 

Hydrolysis of Solid Organics: 1 mole of glucose cleaved consumes 1 mole of water (one 
molecule of water cleaves one polysaccharide bond) 

  
Aerobic Degradation of Glucose:   C6H12O6  +  6O2  ⇒  6CO2  +  6H2O 
  
Nitrate Anaerobic Pathway:a C6H12O6  + 3NO3

-  + 6H+  ⇒  3NH4
+  + 6CO2  + 3H2O 

  
Other Anaerobic Degradation 
Pathways of Glucose: 

 

direct to acetateb 

 
  C6H12O6  ⇒  3C2H4O2 

butyrate formingb   C6H12O6  ⇒  C4H8O2  +  2CO2  +  2H2 
 

propionate & acetateb 3C6H12O6  ⇒  4C3H6O2  +  2C2H4O2  + 2CO2  +  2H2O 
 

Lactate   C6H12O6  ⇒  2C3H6O3   
 

Lactate & ethanol   C6H12O6  ⇒  C3H6O3  +  C2H6O  +  CO2 
 

Lactate & acetate (bifidum) 2C6H12O6  ⇒  2C3H6O3  +  3 C2H4O2 
 

Ethanol   C6H12O6  ⇒  2C2H6O  +  2CO2 
 

clostridial fermentation   C6H12O6  +  6H2O  ⇒  6CO2  +  12H2   
 

Mixed acid 10C6H12O6  +  7H2O  ⇒  7C3H6O3  +  4C2H4O2  
           + 8C2H6O  +  CH2O2  +  14CO2  +  13H2 

  
Other Acetogenic Reactions:  

from butyrate   C4H8O2  +  2H2O  ⇒  2C2H4O2  +  2H+  +  H2 
 

from lactate 3C3H6O3  ⇒  2C3H6O2  +  C2H4O2  +  CO2  +  H2O 
 

from propionate   C3H6O2  + 3H2O ⇒  C2H4O2  +  HCO3
-  +  H+  +  3H2 

 
from ethanol   C2H6O  +  H2O  ⇒  C2H4O2  +  2H2 

  



 

Methanogenic Reactions:  
from acetate   C2H4O2  ⇒  CH4  +  CO2 

 
from formate 4CH2O2  ⇒  CH4  +  3CO2  +  2H2O 

 
from carbon dioxide 
         & hydrogen 

  CO2  +  4H2  ⇒  CH4  +  2H2O 

aStumm and Morgan, 1996                         bMajor Pathways (Voolapalli and Stuckey, 1999) 
 
 
 
 
Figure2.  Schematic of the alternative breakdown pathways of landfill solid waste to the 
ultimate degradation products of carbon dioxide and methane at complete stabilization. 

 
 
 
The rate of each of the reactions, beyond hydrolysis, is determined by the mass of the microbial 
population responsible for the reaction, the amount of reactant (biological substrate) in the 
system, and the intrinsic growth rate of the population in accordance with the classical Monod 
formulation: 



 

                                 fXX
Ck

C

dt

dX
−

+
= maxµ

 

 
where              X  =  biomass 
                        C  =  substrate concentration 
                    ìmax  =  intrinsic population growth rate constant 
                         k  =  Monod half saturation constant 
and                    f  =  population death rate coefficient. 

 
The equation couples Monod growth with a first-order death term.  In the case of population 
growth depending on two substrates (for example, CO2 and H2 for CO2 methanogens), the 
Monod growth term is given as: 
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A biomass “yield” constant is applied to the Monod growth term to determine the substrate 
degradation rate with the appropriate fraction (determined by the Monod growth term) going to 
new biomass and the complementary fraction yielding the products of respiration according to 
the balanced equations in Table 1. 
 
Anaerobic reactions are inhibited until oxygen is depleted in the system.  The production and 
consumption rate of gases controls the transport rate to and from the atmosphere in accordance 
with prevailing molar gas fractions.  All forms of waste, gases, and biomass are tracked to 
conserve mass throughout model simulations.  A more detailed description of the model can be 
found in a separate work (Shelley et al, 2001). 

 
The model was formulated and executed with the numerical integration software STELLA 
version 6.0.1 Research (High Performance Systems, Inc.) using the 4th-order Runge-Kutta 
integration algorithm with a time step of 0.01 day. 
 
 
Results 
 
Model output for all simulations reported achieved a mass balance within 1% of initial mass in 
the system by the end of the simulation without exceeding that value at any time during the 
simulation.  Figure 3 shows initial output of the model with all populations characterized by 
identical kinetic parameter values (Table 2).  The model in this initial state allows all populations 
to respond with equal potential, limited only by available substrate.  As such, methanogenesis 
competes well with earlier reactions as the products of these reactions become available as 
energy sources.  Early carbon dioxide formation, along with abundant hydrogen, enables CO2 
methanogens to proliferate, consuming CO2 (limiting its peak).  This early dominance of CO2 
methanogens may also explain the higher methane to carbon dioxide ratio in the final 
stabilization stage compared the reference behavior of Figure 1.  This simulation verifies the 
mechanistic mass balance model by behaving smoothly and providing reasonable results, with all 



organic matter eventually yielding CO2 and CH4.  However, the time appearance of the gases is 
not properly phased nor do the gases reach similar amplitudes when compared to empirical data 
(Figure 1). 
 
 
 
 
 
Figure 3.  Initial simulation output with all populations as described in Table 1 with 
identical kinetic parameter values, limited only by the concentration of substrate upon 
which the population depends. 

 
 
 



Table 2.  Initial baseline model parameter values resulting in the output of Figure 3 (all 
populations use identical kinetic parameter values). 
Parameter Value 
 
Microbial Population Parameters: 
 

 

Monod ìmax (intrinsic growth rate without 
substrate limitation) 
 

0.5 (kg new biomass per kg biomass per day) 

Monod Half Saturation Constant 
 

1 (mg/l) 

Minimum Death Rate Coefficient 
 

0.1 (kg lost biomass per kg biomass per day) 
 

Cell Yield 
 

0.5 (kg new biomass per kg substrate utilized) 
 

Initial Biomass 
 

100,000 (kilograms) 

 
Landfill Physical Parameters: 
 

 

Initial N2 Fraction 
 

0.8 (mole fraction) 

Initial O2 Fraction 
 

0.2 (mole fraction) 

Gas Diffusion Rate Coefficient (Rate of 
gas seepage into or out of landfill in moles 
per day per moles of excess gas) 
 

1.0 (moles per day per mole departure from 
landfill molar capacity at standard temperature 
and pressure) 

Initial Percent Moisture 
 

25 (%) 

Landfill Cell Length 
 

1000 (meters) 

Landfill Cell Width 
 

1000 (meters) 

Landfill Cell Depth 
 

3 (meters) 

Initial Solid Waste Sphere Radius 
 

0.07 (meters) 

Average Solid Waste Densitya 

 
1350 (kg/m3) 

Initial Nitrate Concentration in Landfill 
 

100 (mg/l) 

Hydrolysis Rate (rate of glucose formation 
per surface area of solid organic waste) 

0.5 (kg glucose per day per square meter organic 
solid waste surface) 

aShelley et al, 2001 
 



Refinement of the output is achieved by differentiating the behavior of the populations in a 
manner supported by the literature.  For example, populations adapted to lower energy-yielding 
electron acceptors have a lower intrinsic population growth rate (Schink, 1997).  This is initially 
represented in the model by different ìmax values for the aerobic population, anaerobic 
populations using glucose as substrate, other acetogens, and methanogens (0.6, 0.4, 0.3, and 
0.25, respectively).  Biomass yield per substrate consumed is also expected to be lower 
(Tchobanoglous and Burton, 1991), particularly for anaerobic populations (Thauer et al,1989) 
(cell yields of 0.6, 0.05, 0.04, and 0.03, respectively, as above).  Initial biomass model values for 
later stage populations (acetogens and methanogens) are also lowered from 105 to 104 kilograms 
(assuming that acetogenic and methanogenic conditions are not well developed until the waste is 
landfilled).  This results in the output of Figure 4, which shows a better sequencing of gas 
production over time with delayed CO2 methanogenesis, yielding a better methane to carbon 
dioxide ending ratio but allowing abnormally large hydrogen buildup.  This hydrogen peak 
distorts the amplitude of carbon dioxide as well as the initial development of methane on a graph 
of gas mole fraction, compared to the reference behavior of Figure 1.  Further experimentation 
with the ìmax values of individual populations could not yield improved results, and any such 
specific differentiation of intrinsic growth rates is not well supported in the literature.  It was 
found that ìmax values affect the trajectories or slopes of the associated gas product curves (and, 
thus, the relative phasing of gas peaks) but cannot significantly alter the amplitude proportions. 
 
Figure 4.  Simulation output as in Figure 3 with differentiated ìmax and cell yield values for 
aerobic, anaerobic glucose degraders, acetogens, and methanogens. 

 
 



 
In order to achieve correct gas volume proportions (particularly CO2 vs. H2), a mechanism (or 
mechanisms) must be inserted (or given competitive advantage) in the model which either inhibit 
hydrogen formation or enhance carbon dioxide formation during initial anaerobic phases.  
Arbitrarily experimenting with inhibiting specific populations in varying combinations yielded 
poor results.  Selective inhibition of individual populations which allow production of hydrogen 
at some point in the degradation sequence simply allows other hydrogen producing pathways to 
compete better, resulting in very little change in the relative production of H2 vs. CO2 compared 
to the results of Figure 4.  Only the aerobic pathway, the nitrate pathway, and the direct acetate 
pathway do not form hydrogen, and the direct acetate path does not form CO2 until later in the 
methanogenic phase.  Even inhibiting all hydrogen producing pathways, no combination of 
parameter values within the model produce sufficient CO2 to give over 80% CO2 gas fraction 
within the landfill at any time.  The aerobic pathway appears to have potential but cannot 
significantly affect the CO2 peak due to quick oxygen depletion.  In fact, as shown later, in any 
simulation starting with 20% O2, aerobic activity has almost no effect on the phasing and 
amplitude of percentage gas formation in the landfill.  The nitrate pathway would equally have 
potential to produce a large CO2 peak, but not without providing an unreasonably large pool of 
nitrate within the system.  Repeated experimentation with model simulation reveals that, under 
the assumptions of this model, the reference mode behavior of Figure 1 can be achieved under 
very specific conditions:  1) all populations are initially only substrate limited, 2) a glucose 
depleting reaction exists that produces CO2 as the only gas and continues to be limited only by 
substrate (no other nutrient limitation such as nitrate), and 3) other anaerobic pathways are 
environmentally inhibited during the time when hydrogen production would otherwise be at its 
peak.  Although temperature, pH, and moisture conditions are possible inhibiting environmental 
factors, the coincidence of the required inhibition with the formation of hydrogen suggests an  
end-product inhibition in response to H2 buildup, a concept well supported in the literature (Hoh 
and Cord-Ruwisch, 1996). 
 
Figure 5 is model output, as in Figure 4, with the addition of an unlimited CO2 producing 
pathway, simulated by providing a large initial nitrate pool for the nitrate population.  In order to 
achieve a substantial early CO2 peak, the model is further modified to add a hydrogen growth 
inhibition factor applied to all anaerobic populations except the nitrate population and CO2 
methanogens (Figure 6).  The inhibition factor is a linear function of hydrogen concentration (no 
inhibition at zero hydrogen; 50% inhibition at 1 kg or more of hydrogen per cubic meter of 
landfill volume).  Figure 6 is annotated to identify key events describing the state of the system 
at various times.  These results now match the empirically observed gas production behavioral 
pattern of a landfill as represented by Tchobanoglous et al (1993) in Figure 1. 
 



Figure 5.  Simulation output as in Figure 4 with unlimited nitrate availability for the 
nitrate population. 

 
 
 



Figure 6.  Simulation output as in Figure 5 with H2 inhibition of the growth rate of all 
anaerobic populations except the nitrate population and CO2 methanogens. 

 
A.  Aerobic peak activity 
B.  Anaerobic, glucose-depleting population dominance 
C.  Hydrogen inhibition of anaerobic populations except nitrate and CO2 methanogens 
D.  Initial glucose wave depleted;  glucose now limited by hydrolysis rate;  all glucose-depleting 

populations declining; acetogen populations and CO2 methanogens rapidly increasing 
E.  CO2 methanogen population hydrogen limited (low activity level);  acetate methanogen population at 

maximum activity 
F.  Long acetate tail;  acetate methanogens producing both methane and carbon dioxide;  CO2 methanogens 

maintain low activity;  all processes hydrolysis limited 
 
 
Although the model produces a desired behavioral pattern, the behavior has not been achieved by 
proposing a simple model structure related to the pattern and matching that structure to known 
elements within the higher order structure of the system.  Instead, a set of specific reactions has 
been selected from the hundreds that are available at a lower order, highly detailed level of the 
system.  A set of reasonable parameter values and an inhibition feedback loop consistent with the 
literature, along with an additional “unknown” but plausible reaction, provide a simulation case 
with desired behavior.  This does not instill confidence that the model structure sufficiently 
characterizes the real system to produce reasonable, expected behavior across a practical range of 
imposed conditions.  Therefore, organizing criteria are sought to aggregate reactions into sets in 
order to simplify the model and search for a possible higher order structure which might be more 
clearly related to reference behavior (thus validating the model to a much greater extent). 



 
A good model simplification would represent the system behavior well, would aggregate model 
components that do not contribute significantly to the behavior individually, and would better 
communicate the important aspects of the system relevant to management concerns.  For 
example, should future exploration reveal that temperature, pH, moisture, etc., have similar 
effects on all anaerobic populations, then a single anaerobic pathway representing total glucose 
degradation (beyond the strong CO2 producing pathway) could be used as a simplification which 
yields similar results.  Figure 7 is model output as in Figure 6 with only the unlimited nitrate and 
mixed acid pathways representing glucose depletion along with subsequent acetogenesis and 
methanogenesis pathways relying on mixed acid products.  This simplification gives a similar 
behavioral pattern with minor qualitative differences.  The single mixed acid pathway more 
clearly distinguishes between initial glucose depleting and later acetogenesis phases with the 
dominant hydrogen peak appearing later, reflecting a shift in overall hydrogen production which 
is now more dominant during acetogenesis.    This is a divergence from the reference mode of 
Figure 1 which could be significant depending on the question being asked and casts doubt on 
this simplification as an appropriate aggregation.  The final ratio of methane to carbon dioxide, 
however, is not discernibly different. 
 
Figure 7.  Simulation output as in Figure 6 with only the nitrate and mixed acid pathways 
representing anaerobic glucose depletion (exploring potential model structure 
simplification). 

 
 



A number of simulations of intermediate simplification were performed to test whether or not the 
simplification of Figure 7 was an extreme departure from the reference behavior, such that 
eliminating less pathways would sequentially draw closer to the behavior of the original model in 
Figure 6.  Results were inconclusive, in that each simulation qualitatively and quantitatively 
departed from the reference mode in different ways depending on the number of pathways 
eliminated and the specific pathways chosen for system representation.  Figures 8 and 9 are 
examples of simplifications employing 5 of the 9 original anaerobic glucose depleting pathways 
beyond the unlimited nitrate pathway as indicated. 
 
Figure 8.  Model structure simplification using an unlimited nitrate pathway and using 
only clostridial, butyrate, lactate, acetate, and mixed acid pathways to represent anaerobic 
glucose depletion. 

 
 
 



Figure 9.  Model structure simplification using an unlimited nitrate pathway and using 
only clostridial, bifidum, lactate & ethanol, acetate, and mixed acid pathways to represent 
anaerobic glucose depletion. 

 
 
 
Although Figure 9 compares very well to the original (unsimplified) model of Figure 6, the 
model appears quite sensitive to the precise combination of pathways used in the structure.  
There is very little confidence that the specific combination of Figure 9 would always behave 
like the original model in any realistic scenario which might be explored.  Therefore, 
simplification of the model by elimination of selected pathways identified in the original model 
is considered inappropriate.  In fact, it has already been demonstrated that expansion of the 
structure to include a strong unlimited CO2 producing pathway is required.  Thus, confidence in 
the model must rest on the fact that the structure is a mechanistic mass conservation model 
employing representative biochemical pathways known to exist in such environments, with key 
parameter values and feedback influences consistent with the literature.  The single exception is 
the suggested existence of a strong unlimited pathway producing CO2 from the initial hydrolysis 
product (glucose in the model).   
 
This model, with its assumptions, now expresses a “dynamic hypothesis” within the system 
dynamics paradigm and might be used to explore questions about landfill management practices.  
However, given the method of development, the question remains open as to how much more the 
model behavior could be improved (more robustly reflect expected behavior) with additional 
structural detail.  Since only a small (but representative) set of reactions were chosen to represent 



the system, it is reasonable to assume that a much larger set of known reactions would refine 
model behavior and cause the model to be less sensitive to changing parameter values.  
However, the model is near the practical limits of size, and it is difficult to establish criteria for 
how much detail is enough.  Moreover, there is no criteria to guide the modeler in a specific 
direction for adding detail.  Therefore, from a system dynamics point of view, the next 
reasonable step would be to enter the implementation phase of the analysis by exploring 
management scenarios with the existing structure and looking for opportunities to test the 
model’s structural boundary when specific additional system detail relevant to the management 
context becomes apparent. 
 
 
Conclusions 
 
Although a landfill is thought of as an engineered structure, its operating components are 
collections of complex natural microbial processes acting within a complex web of interactions 
and influences.  It is therefore typical of complex natural environmental systems.  These systems 
are often reduced to their basic detailed components for in-depth study, but interaction of these 
components within a systems context is poorly understood.  Identifying higher order 
organization of these components into aggregate entities whose broader, more clearly envisioned 
interactions explain system behavior is difficult.  In fact, such higher order organization may not 
exist.  It may be that the breadth of intricate system detail may be the essential characteristic 
which keeps these systems in balance and resilient to normal fluctuations in environmental 
conditions. 
 
This presents problems for the modeler in developing a simplified representation of the system 
relevant to specific objectives.  The multitude of non-linear feedback loops which characterize 
natural systems lends itself to a system dynamics modeling view; but these systems do not 
appear well suited to the central features of the system dynamics approach.  Smoothed, 
generalized observed behavioral patterns are often too complex to relate to simple model 
influence structure.  Even if a structure could be derived, it likely cannot be related to the real 
system to identify the components of the structure.  Therefore, the modeler must resort to a 
bottom-up approach rather than top-down, starting with what is known about detailed 
subcomponents.  Rationale must be derived for selecting a practical set of detailed components 
which is sufficient to capture system behavior important to the modeler’s purpose.  The higher 
order (simpler, more elegant) system structure can then be sought by trying to identify aggregate 
groups of components which exert system influence in an aggregate way, but such attempts are 
rarely successful. 
 
Modelers attempting to model natural environmental systems should be aware of these 
limitations and recognize the implications for building confidence in their model structure.  Such 
models must be continually tested for validation in each application to ensure the model structure 
used is appropriate in the context of the model objective and initial conditions. 
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