
  

The origins of business cycles 
 
 

Mohamed Saleh 
Department of Information Science  

University of Bergen 
Email: mohameds@ifi.uib.no  

 
Pål Davidsen 

Department of Information Science 
University of Bergen 

Email: davidsen@ifi.uib.no  
 
 

Abstract 
In this paper, we apply eigenvalue analysis to a classical inventory-workforce 
interaction model in order to identify the sources of oscillations (i.e. business cycle) in 
the model. The inventory-workforce interaction constitutes the core of the short-term 
business cycle. The inventory-workforce model used in this paper is explained in detail 
in John Sterman’s book “Business Dynamics” (Sterman 2000, chapter 19).   As John 
Sterman puts it: “However, explaining the behavior by saying that production oscillates 
because the system contains negative loops with delays is not sufficient. Good modelers 
must strive for a deep understanding of the causes for the behavior observed in their 
models…Understanding model behavior goes beyond the invocation of simple 
archetypes such as ‘the oscillation is caused by negative loops with delays’…While 
true, these statements don’t provide the deep insight into model structure and behavior 
required to develop your intuition about dynamics or your ability to identify high 
leverage policies”. 
      
Keywords: Model analysis, business cycle, oscillation, inventory management, human 
resource management. 
 
 
1.  Managing the behavior of complex, dynamic systems 
 
In this paper, we investigate the relationship between the behavior and the underlying 
structure of complex, dynamic models. The purpose of this investigation is to develop    
a method whereby managers can find ways to effectively influence the behavior of 
complex, dynamic systems. The method is based on a system dynamics approach, and 
thus relies heavily on the utilization of modeling and analysis. The method is based on a  
recognition of the fact that systems behavior is composed of a number of modes of 
behavior, each one characterized by its relative significance with respect to the total 
behavior. Moreover, it is recognized that, in nonlinear systems, the relative significance 
of each such mode of behavior changes over time. Finally, it is recognized that the 



  

structural origin of each such mode of behavior can be identified so that the impact of 
the various structural components of a system can be identified.  
When a person is confronted with the task of managing a complex dynamic system, we 
propose that a system dynamics model of that system be built and that an analysis of 
that model be conducted by way of the method presented in this paper. In general, 
managers exercise their roles by influencing the gains associated with the causal rela-
tionships that altogether constitute the structure of a system. For that purpose, the 
manager should rely on the identification of the modes of behavior -- eigenvalues, λk, -- 
and their associated elasticities, εkj, that, at any point in time, characterize the impact of 
fractional changes in gains, gj, on the modes of behavior.  
 
In figure 1(a), we describe the relationship between the gains characterizing the 
structure, and the convergence/divergence characterizing the behavior of a monotonic 
mode of behavior. Note that associated with monotonic modes of behavior are real 
eigenvalues and real elasticities.  
 

 
 
 
 
 
 
 
 

 
 
 

Fig. 1(a): The relationship between the gains and the convergence/divergence 
attribute of a monotonic mode of behavior 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1(b): The relationship between the gains and the frequencies and the envelope 

contraction/expansion attributes of an oscillatory mode of behavior 
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In figure 1(b), we describe the relationship between the gains characterizing the 
structure, and the frequencies and the envelope contraction/expansion characterizing the 
behavior of an oscillatory mode of behavior. Note that associated with oscillatory 
modes of behavior are complex eigenvalues and complex elasticities. As indicated by 
figure 1(b), the imaginary component of the elasticity, Im{εkj}, impacts the damping (or 
amplification); and the real component of the elasticity, Re{εkj}, impacts the natural 
frequency.  
 
Figure 1 constitutes the framework for this paper linking structure to behavior through 
eigenvalues and their elasticities. 
 
In the first part of the paper (sections 2 and 3), we will outline the method of analysis of 
such models. This method centers around an eigenvalue characterization of a mode of 
model behavior and a characterization of an eigenvalue based on the link gains 
characterizing the underlying structure of the model. In the second part of the paper 
(sections 4 and 5), we illustrate the use of the method applied to a well-recognized 
model of business cycles. 
 
 
2 A characterization of model behavior 
 
2.1 Model behavior 
 
In system dynamics, the pattern of behavior of a model is typically characterized by the 
trajectory of the net rates (slope vector) of the state variables of the model. Using eigen-
value analysis, we can consider the dynamics of each slope trajectory of a model made 
up of a number of behavior modes, each associated with a particular eigenvalue. The 
relative significance of each of these modes of behavior is determined by the state of the 
model -- determining the current slope vector -- and the directions of the right 
eigenvectors associated with the eigenvalues (as explained below).  
 
In our analysis, we will focus on the following:  
 
In linear models, exhibiting steady state behavior, we are able – using an analytical 
method - to identify which modes of behavior that significantly influence the model 
behavior; i.e. to identify the dominant modes of behavior. In linear models exhibiting 
transient behavior, and in nonlinear models in general, we are also able – this time using 
an empirical method - to determine which modes of behavior that significantly influence 
the model behavior (Saleh & Davidsen, 2000); i.e. to identify the dominant modes of 
behavior. Each mode of behavior is characterized by a particular eigenvalue. Moreover, 
in general (i.e. in all cases), we can - using an analytical method –determine which link 
gains that most significantly influence such an eigenvalue (Forrester, 1983). Thus we 
are able to identify the structural components that most significantly influence the most 
significant modes of behavior.  By governing these structural components, we can 
influence the modes of behavior that govern the model behavior and thus manage the 
model. 
 



  

This paper concerns how to identify the behavior modes that are of significance and to 
how to govern the model. Aside from the mode of behavior itself, it remains to find out 
why a particular mode of behavior takes on such significance. As indicated above, this 
is related to the state of the system and to the direction of the right eigenvectors. We 
will briefly comment on the implications of the state of the model (leading to a 
distinction between linear models in steady state and such models in a transient phase) 
and leave the discussion of the right eigenvectors for further elaboration in a subsequent 
paper. 
 
In linear systems, the eigenvalues are constant and so are the modes of behavior that 
altogether make up the total model behavior. In a non-linear model the eigenvalues vary 
and so do the modes of behavior. Consequently, we need to distinguish between linear 
and non-linear models. 
 
The transient behavior of a linear model depends on the current state of the model, - 
more specifically on the direction of the slope vector (determined by the current state) 
relative to the directions of the right eigenvectors (constant and determined by the 
model structure). Consequently, we need, also, to distinguish between linear models in 
steady state, and such models in a transient phase. In general, the steady state and 
transient behavior of a nonlinear model depends on the current state of the model. In 
section 2.2, therefore, we discuss the steady state behavior of linear models, while as in 
section 2.3, we discuss the transient behavior of linear models and the behavior of 
nonlinear models in general. 
 
 
2.2 The steady state behavior of linear models  
 
In steady state, the behavior of a linear model is characterized by a monotonic mode of 
behavior (associated with a single, real eigenvalue) or an oscillatory mode (associated 
with a pair of complex conjugate eigenvalues). I.e. in steady state, all other modes of 
behavior have faded out compared to the dominant one. Associated with such a 
dominant mode of behavior, there is a dominant eigenvalue, and, associated with that, 
right and left eigenvectors 
 
Moreover, in general, the steady state behavior of a linear model is independent of its 
initial state, except under a particular condition: If we set the model in an initial state so 
that the slope vector (the direction of the model behavior) is orthogonal to the left 
eigenvector associated with the eigenvalue that, in general, is considered dominant, then 
this (generally considered dominant) eigenvalue will have no significance throughout 
the entire life of the model, and there will be no trace of the associated mode of 
behavior in the model behavior itself.   
 
To illustrate this exceptional case, we use a simple second order model where the 
structure consists of a single positive feedback loop, portrayed in figure 2. The 
equations of the model are listed in table 1.  
 
Note that in this particular model, the left and right eigenvectors, associated with each 
eigenvalue, have the same direction. 



  

 

 
Fig. 2: Stock and flow diagram of the simple second order model 

 
 
 
flow  Level_1 = Rate_1 
flow  Level_2 = Rate_2 
 
Rate_1 = 0.1* Level_2 
Rate_2 = (0.1* Level_1)+Constant_1 
 
Constant_1 = -1.32 
 

Table 1: simple second order model, equations 
 

The mode of behavior generally expected to dominate this model is divergent 
(exponential growth or decline). Yet, by initiating the model in (11.966,1.234) the 
resulting slope vector, (0.1234, -0.1234), is orthogonal to the right eigenvector, 
(

2
1 ,

2
1 ), associated with the “generally considered” dominant eigenvalue (which 

represents a divergent mode of behavior). Consequently, one does not observe any trace 
of this divergent mode (that is generally considered the dominant mode) in the model 
behavior (see figure 3).   
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Fig. 3: model behavior, initial state (11.966,1.234) 
 

Note that the right eigenvectors are solely determined by the structure of the model. The 
direction of each right eigenvector relative to the slope vector (which is determined by 
the current state of the model) collectively determine the contributions of the various 
modes of behavior to the slope vector, i.e. to the dynamics of the model as a whole. In 
this case, the direction of the right eigenvector associated with the “generally 
considered” dominant eigenvalue is orthogonal to the slope vector (see figure 4). 
Consequently, the projection of the slope vector onto that right eigenvector amounts to 
0, and so is the contribution to the total behavior in the direction of that eigenvector. In 
the meanwhile, the other right eigenvector, associated with the “generally considered” 
non-dominating eigenvalue is equal to  (

2
1 ,-

2
1 ), i.e. it is totally aligned with the 

slope vector (see figure 4). Consequently, in this case, the model  (throughout its entire 
life) will be dominated by the “generally considered” non-dominating eigenvalue 
(which represents a convergent behavior in this model).  
 
 
 

 
Fig. 4: Orientation of the slope vector relative to the right eigenvectors 

 
 
If we change the initial state of the model infinitesimally, say to (11.966,1.2341), then 
the projection of the slope vector on the right eigenvector (

2
1 ,

2
1 ) will initially be 

infinitesimally small (yet not 0), and so will the contribution to the model behavior 
along that right eigenvector. However, since the mode of behavior associated with that 
right eigenvalue is divergent, then this infinitesimally small contribution will grow over 
time, and, finally, in the long-term it will dominate the model behavior (as is generally 
the case) (see figure 5). I.e. in steady state, the slope vector will be totally aligned to that 
right eigenvector. Thus, throughout the entire life of the model the slope vector will 
rotate 90o (counter-clock) from its initial position (see figure 6).  Note that, in steady 
state (i.e. after the slope vector has completed its 90o rotation), the direction of the slope 
vector will be fixed; yet its length will increase indefinitely.   
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Fig. 5: Model behavior, initial state (11.966,1.2341) 

 
 
 

 
 

Fig. 6: The rotation of the slope vector  
 
 
2.3 Transient behavior of linear models and the behavior of non-linear 
models  
 
 
2.3.1 Modes of behavior and their significances 
 
The modes of behavior of a model are characterized by the eigenvalues of the model. In 
a linear model the eigenvalues are constant and the model exhibits a permanent set of 
behavior modes. In non-linear models the eigenvalues vary over time and so do the 
modes of behavior that altogether make up the model behavior. This is summarized in 
the first columns in tables 2 and 3. 
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The relative significance of a mode of behavior (that contribute to the model behavior) 
is determined by the alignment of the right eigenvector, associated with that mode, with 
the model behavior (i.e. with the direction of the current slope vector), relative to the 
corresponding alignments of all the other right eigenvectors (each associated with a 
specific mode of behavior). The significance of a particular mode of behavior is, in 
other words, determined by the angle between the associated eigenvector and the 
current slope vector, relative to all the other such angles. In a linear model in a transient 
phase, the relative significances of the various modes of behavior vary due to a change 
in direction of the slope vector alone, - a change caused by a change in the state of the 
model. In that case, the eigenvectors, and thus their directions, are constant. In a 
nonlinear model, the relative significances of the modes of behavior may vary, in part, 
due to a change in the direction of the slope vector (as a consequence of a change in the 
state of the model), and, in part, due to changes in the directions of the eigenvectors (as 
a consequence of changes in the gains characterizing the structure of the model). This is 
summarized in the second and third columns in tables 2 and 3. 
 

 Eigenvalues Direction of the slope 
vector Right eigenvectors 

Originating 
from Structure Behavior  

(The state of the model) Structure 

Characterizing Modes of 
behavior 

Relative significances 
of the modes of 

behavior  

Relative significances 
of the modes of 

behavior  
 
 

Table 2: The origin and roles of the eigenvalues, the slope vector and the right 
eigenvectors. 

 

 Eigenvalues Direction of the 
slope vector Right eigenvectors

Linear model in 
steady state Constant Constant Constant 

Linear model in 
transient phase Constant Variable Constant 

Nonlinear model 
in general Variable Variable Variable 

 
Table 3: The characteristics of the eigenvalues, the slope vector and the right 

eigenvectors in the various kinds of models. 
 
 

2.3.2 Three dimensions of model behavior 
 
2.3.2.1 Introduction 
 
In general, the behavior of a model can be characterized along three different 
dimensions (behavior aspects) (figure 7): 
(1) One may consider the model behavior over a set of individual time intervals. 



  

(2) One may consider individually the behavior of each of the state variables of the 
model. 

(3) One may consider individually each of the modes of behavior that altogether 
constitute the behavior of each state variable. 

 
In this paper, we will make use of these aspects so as to obtain a clear exposition of the 
method we apply. In general, this method allows us to deal with complex, dynamic 
models, whether the model exhibits a transient or a steady state behavior. To underscore 
this issue, we will briefly discuss each of these aspects individually: 
 

 
Fig. 7: Three dimensions of model behavior 

 
 
2.3.2.2 The time dimension 
 
As indicted in section 2.2, the behavior of a linear model in steady state will exhibit the 
same mode of behavior over the entire time interval that behavior unfolds. Conse-
quently, an analysis of its behavior applies to that entire time interval. However, a linear 
model exhibits a transient behavior where shifts in mode dominance can take place. 
When a linear model is in its transient phase, it may exhibit a variety of behavior mode 
combinations over time. Thus we can only instantaneously determine the dominant 
mode(s) of behavior. Consequently, we will need to consider the model and its behavior 
over infinitely small time intervals. In practice, we emulate such a process by iterating 
the procedure described above over a finite number of sufficiently small time intervals. 
Here is the reason why we need to reconsider the behavior of a linear model in a 
transient state within each of the time intervals. The state of the model changes the 
direction of the slope vector relative to the right eigenvectors. Thus the relative signi-
ficance of the various modes of behavior, each characterized by an eigenvalue, changes, 
depending upon the degree of alignment of that eigenvector with the current slope 
vector.  This is true also for nonlinear models in general, whether in a steady state or a 
transient phase. 
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2.3.2.3 The state variable dimension 
 
Moreover, suppose we consider the model behavior within the time interval under 
investigation. Then, generally, in a linear model in steady state, the behavior of all state 
variables can be characterized by a single mode of behavior, and, consequently, the 
behavior of all these variables may be investigated in a single analysis. When a linear 
model is in a transient phase, however, the behavior of each state variable may be 
dominated (and thus characterized) by an individual combination of modes of behavior, 
and thus exhibit a unique behavior over time.  
 
As we mentioned in section 2.3.1, the relative significance of a mode of behavior is 
determined by the alignment of the right eigenvector, associated with that mode, with 
the model behavior (i.e. with the direction of the current slope vector), relative to the 
corresponding alignments of all the other right eigenvectors (each associated with a 
specific mode of behavior). The theme of section 2.3.1, was the relative significance of 
a mode of behavior to the overall (total) model behavior; i.e. the relative significance of 
a mode of behavior to the behavior of the majority of state variables in the model. It can 
be the case, however, that a dominant mode of behavior significantly affects the 
behavior of the majority of state variables in the model, yet at the same time it has 
absolutely no impact on a particular state variable. This peculiar case occurs, if the right 
eigenvector associated with this dominant mode of behavior, is orthogonal to the 
standard axis -- in the standard space -- associated with that particular state variable. In 
general, the orientation of a right eigenvector relative to the standard axes (in the 
standard space) determines the relative contributions of the mode of behavior 
(associated with that right eigenvector) to the behavior of the state variables in the 
model. I.e. in other words, the relative contributions of a mode of behavior to the states 
variables are determined by the projections of the right eigenvector -- associated with 
this mode -- on the standard axes (each associated with a state variable), respectively. 
(Recall that the elements of a right eigenvector represent the projections of the right 
eigenvector on the standard axes.) Note that the sum of squares of those projections 
always equals unity. I.e. the sum of squares of relative contributions is always unity; 
thus one can conclude that the effects of the dominant –i.e. the most significant—
behavior mode must materialize along some (if not the majority) of state variables in the 
model. In general, for a mode of behavior to greatly influence the behavior a certain 
state variable there are two conditions; first the mode itself must be of high significance 
(which is determined by the relative alignment of the right eigenvector associated with 
this mode with the slope vector); second the relative contribution of the mode to the 
behavior of the state variable (which is determined by the projection of the right 
eigenvector on the standard axis associated with the state variable) must also be high. 
I.e. in short, it is the multiplicative effect of significance and contribution that, finally, 
determines the influence of a mode of behavior on the behavior of a certain state 
variable. 
 
Thus in conclusion, we may need to consider the behavior of each of the state variables 
individually over time. This is true also for nonlinear models in general, whether in a 
steady state or a transient phase. 
 
 



  

2.3.2.4 The behavior mode dimension 
 
Finally, suppose we consider the behavior of a state variable within the time interval 
under investigation. In a linear model in steady state, the behavior of such a state 
variable can be characterized by a monotonic mode of behavior, associated with a 
constant real eigenvalue, or an oscillatory mode of behavior, associated with a pair of 
complex conjugate eigenvalues. Consequently, the investigation of that behavior may 
focus on that particular mode of behavior. When a linear model is in a transient phase, 
however, the state of the model changes and, with it, the relative significances of the 
behavior modes that altogether make up the model behavior. Hence, within a specific 
time interval – depending on the current state of the model - the behavior of a state 
variable may be dominated by a particular subset of behavior modes, each associated 
with an eigenvalue. Consequently, we may need to consider, individually, each of the 
various modes of behavior that altogether make up the composite behavior. This is true 
also for nonlinear models in general, whether in a steady state or a transient phase.  
 
 
3 Eigenvalue analysis 
 
3.1 An eigenvalue characterization of a mode of behavior 
 
Since the dominant eigenvalue characterizes a dominant mode of behavior, our aim is to 
relate a characterization of the structure of the model to that eigenvalue. Note that there 
might, in other models, be several eigenvalues each associated with a mode of behavior 
that, in a steady state (or transient phase), significantly impact the overall model 
behavior. The analysis proposed in this section applies to one such eigenvalue and the 
associated mode of behavior.  
 
The structure of the model is made up of the relationships of the model. These can be 
considered individually, as links, or as sequences of links, forming open or closed loops. 
The links as well as the loops are characterized by the associated gains. Thus we aim 
towards relating the gains, characterizing the model structure, to an eigenvalue that 
characterizes a dominant mode of behavior. For this purpose, we will later, in section 
3.2, introduce eigenvalue elasticities. But first we will offer a brief characterization of 
various modes of model behavior by way of the associated eigenvalues. 
 
In general, we distinguish between the following modes of behavior, each characterized 
by the associated eigenvalue: 
• = Monotonic convergent mode of behavior (exponential decay), associated with a real, 

negative eigenvalue. 
• = Monotonic divergent mode of behavior (exponential growth or decline), associated 

with a real, positive eigenvalue. 
• = Sustained oscillation, a mode of behavior associated with a complex conjugate pair 

of eigenvalues with zero real parts. 
• = Convergent oscillation, a mode of behavior associated with a complex conjugate 

pair of eigenvalues with negative real parts. 
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• = Divergent oscillation, a mode of behavior is associated with a complex conjugate 
pair of eigenvalues with positive real parts. 

 
The interpretation of a real eigenvalue is straightforward: A positive eigenvalue charac-
terizes the growth fraction of an exponentially divergent behavior; the larger the 
eigenvalue, the faster the divergence. The doubling time of this divergent behavior is 
equal to (ln 2 / λ).=A negative eigenvalue characterizes the decay fraction of an 
exponentially convergent behavior; the larger the eigenvalue, the faster the 
convergence. The half-life time of this convergent behavior is equal to (-ln 2 /  λ).= In 
short, a larger absolute value of a real eigenvalue implies a faster exponential growth, 
i.e. a smaller doubling time, if the eigenvalue is positive, and a faster exponential decay, 
i.e. a smaller half-life time, if the eigenvalue is negative. 
 
Complex eigenvalues characterize oscillatory behavior, and for such eigenvalues, we 
offer an empirical and an analytical interpretation:  
 
The empirical interpretation relies on the real and the imaginary components of an 
eigenvalue (Forrester, 1983; Ogata, 1997). The real component corresponds to the 
fractional expansion (growth) or contraction (decay) of the envelopes within which the 
oscillatory behavior is seen to unfold (see figure 8). One can empirically identify the 
doubling time or half-life time associated with these envelopes. The imaginary 
component of an eigenvalue corresponds to the frequency empirically observed in a 
convergent or divergent oscillatory behavior. This frequency is called the damped 
frequency of the model. This is because this damped frequency results from a frequency 
reduction relative to the natural frequency of the model. Thus, in general, we can 
estimate the components (real and imaginary) of the eigenvalues based on empirical 
evidence from the observed behavior. 
 
 

 
 
 
 
 
 

 
 

Fig. 8: Oscillatory behavior associated with complex eigenvalues 
 

 
 
The analytical interpretation of a complex eigenvalue relies on the absolute value and 
the angle, - i. e. on a polar representation of such an eigenvalue (Forrester, 1983; 
Ogata, 1997): 



  

 
The absolute value (length) of a complex eigenvalue constitutes the natural frequency, 
ωn, of the associated behavior.  

“… the distance of the pole [a root of the characteristic equations, i.e. an 
eigenvalue] from the origin is determined by the undamped natural frequency  
ωn ” (Ogata, 1997, p. 413). 

 
The natural frequency is the frequency at which the model would oscillate if the 
attenuation (damping) or amplification (negative damping), i.e. the real component of 
the eigenvalue, had been reduced to 0. A larger absolute value (length) of a complex 
eigenvalue implies a higher natural frequency in the oscillations exhibited by the model. 
Consequently, ceteris paribus (constant angle), the model oscillates with a higher 
frequency, whether these oscillations are amplified, sustained or attenuated. 
 
The angular location of a complex eigenvalue is specified by the angle θ, which is 
measured counter-clockwise from the imaginary axis (see the figure below).  
 
 

 
Fig. 9: The angular location of a complex eigenvalue. 

 
Note that the angular location of the eigenvalue has no effect on the natural frequency, 
ωn, of the model.   
 
If the angle, θ, is 0, then the model behavior does not exhibit any attenuation or 
amplification. The resulting behavior is a sustained oscillation at the natural frequency 
of the model, - solely determined by the absolute value (length) of the eigenvalue, i.e. in 
this case the actual, observed frequency will be the natural frequency. 
 
As the angle changes, from 0, we observe two behavioral effects, associated with the 
real and the imaginary components of the eigenvalue, respectively: 
 
With respect to the real components, we have two alternatives (figure 10): 
A. If the angle increases (from 0, changes counter-clockwise), the real component of 

the eigenvalue  (the projection of the eigenvalue on the real axis) is decreased from 
0 (takes larger negative values), and thus the contraction (decay) of the envelope 
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within which the oscillatory behavior is seen to unfold is increased, resulting in a 
stronger attenuation (i.e. less envelope half-life time).  

B. If the angle decreases (from 0, changes clockwise), the real component of the 
eigenvalue  (the projection of the eigenvalue on the real axis) is increased from 0 
(takes larger positive values), and thus the fractional expansion (growth) of the 
envelope within which the oscillatory behavior is seen to unfold is increased, 
resulting in a stronger amplification (i.e. less envelope doubling time). 

In both cases (A and B), the imaginary component of the eigenvalue (the projection of 
the eigenvalue on the imaginary axis) is being reduced, and thus the damped frequency 
with which the model actually oscillates is reduced relative to its natural, unaffected 
frequency. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10: The effect of a change in the angular location of a complex eigenvalue on 
the damped frequency and envelope expansion/contraction 

 
 
This investigation has, so far, left us with a qualitative characterization of a mode of 
behavior based on; 
(a) the polar representation of an eigenvalue, i.e. the absolute value (length) and the 

angle of the eigenvalue;  
(b) the effect of the angle on the real and the imaginary components of the such an 

eigenvalue; and  
(c) the interpretation of the absolute value (length) as well as the real and the imaginary 

components of the eigenvalue with respect to a mode of behavior of the model. 
 
As we will describe in section 5, we rely on the concept of the damping ratio in the 
analysis and management of complex, dynamics models. The damping ratio, ζ, is 
associated with the angular location of a complex eigenvalue as follows;  

ζ = sin θ  
(where, again, θ is measured counter-clockwise from the imaginary axis): 

 
“The damping ratio determines the angular location of the poles [roots 
of the characteristic equations, i.e. eigenvalues] … ” (Ogata, 1997, p. 
413) 
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The relationship between the damping ratio and the angular location of a complex 
eigenvalue is be portrayed in figure 11: 
 

 
Fig. 11: The relationship between the damping ratio and the angular location of a 

complex eigenvalue 
 
In managing complex, dynamic models, we typically affect the damping ratio 
monotonically, i.e. in a positive or a negative direction. Let us now summarize the effect 
of a monotonic increase in the damping ratio, as portrayed in figure 12:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12: The effect of a change in damping on envelope expansion/contraction and 

the damped frequency  
 

In the quadrant A, the angular location is positive and an increased damping causes the 
angular location to increase (i.e. to diverge from 0). This has two consequences: It 
increases the negative, real component of the eigenvalue and causes the oscillations to 
contract more forcefully, i.e. less half-life time. Moreover, a larger positive angle will 
simultaneously reduce the imaginary component of the eigenvalue and the damped 
frequency of the oscillation will be reduced relative to the natural frequency of the 
model (determined by the length of the eigenvalue). 
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In the quadrant B, the angular location is negative and an increased damping causes the 
angular location to increase (i.e. to approach 0). This has two consequences: It decreases 
the positive, real component of the eigenvalue and causes the oscillations to expand less 
forcefully, i.e. larger doubling time. Moreover, a negative angle approaching 0 will 
simultaneously increase the imaginary component of the eigenvalue and thus the 
damped frequency of the oscillation will be increased towards the natural frequency of 
the model (determined by the length of the eigenvalue).  
 
In table 4, we summarize the findings with respect to the relationship between damping 
and the envelope of an oscillatory mode of behavior: 
 
If the eigenvalue has a negative real part (indicating a contracting envelope within 
which the oscillation takes place), then; 
- increasing damping results in a marginal increase in the envelope contraction, and 

thus in faster decaying amplitude (i.e. a reduction in the envelope half-life time); 
and  

- decreasing damping results in a marginal decrease in the envelope contraction, and 
thus in slower decaying amplitude (i.e. an increase in the envelope half-life time). 

 
If the eigenvalue has a positive real part (indicating an expanding envelope within 
which the oscillation takes place), then; 
- increasing damping results in a marginal decrease in the envelope expansion, and 

thus a slower growing amplitude (i.e. an increase in the envelope doubling time); 
and  

- decreasing damping results in a marginal increase in the envelope expansion, and 
thus a faster growing amplitude (i.e. a reduction in the envelope doubling time). 

 

 Negative real part of the 
eigenvalue 

Positive real part of the 
eigenvalue 

Increased damping 

↑in the envelope contraction 
(↓in the envelope  

half-life time),  
i.e. faster decaying 

amplitude 

↓in the envelope expansion. 
(↑in the envelope  
doubling time), 

i.e. slower growing 
amplitude 

Decreased damping 

↓in the envelope contraction 
(↑in the envelope  

half-life time), 
i.e. slower decaying 

amplitude 

↑in the envelope expansion. 
(↓in the envelope  
doubling time), 

i.e. faster growing 
amplitude 

 
Table 4: The amplification (↑)/attenuation (↓) of the envelope associated with a 

complex eigenvalue resulting from of a change in damping 
 
 
In table 5, we summarize the findings with respect to the relationship between damping 
and the empirically observed damped frequency; ceteris paribus, i.e. assuming fixed 
natural frequency: 



  

 
If the eigenvalue has a negative real part (indicating a contracting envelope within 
which the oscillation takes place), then; 
- increasing damping results in a marginal decrease in the damped frequency relative 

to the natural frequency. 
- decreasing damping results in a marginal increase in the damped frequency relative 

to the natural frequency. 
 
If the eigenvalue has a positive real part (indicating an expanding envelope within 
which the oscillation takes place), then; 
- increasing damping results in a marginal increase in the damped frequency relative 

to the natural frequency. 
- decreasing damping results in a marginal decrease in the damped frequency relative 

to the natural frequency. 
 

 Negative real part of the 
eigenvalue 

Positive real part of the 
eigenvalue 

Increased damping ↓ ↑  

Decreased damping ↑  ↓  

 
Table 5: The change in the empirical (damped) frequency relative to the natural 

frequency, resulting from of a change in damping 
 
 
3.2 Link elasticities associated with an eigenvalue 
 
We are now ready to relate the gains characterizing the model structure to an eigenvalue 
that characterizes a mode of behavior, by way of the eigenvalue elasticities, - in short 
elasticities. The elasticity of a link is the fractional change in the eigenvalue, λk, 
resulting from an infinitesimal fractional change in the gain, gj, of the link. 
 

εkj  = ( δλk / λk)�/ ( δgj  / gj ) 
 
Where δ gj → 0 (i.e. δ gj limits to zero). 
 
Note that an elasticity associated with a real eigenvalue is a real number, and the one 
associated with a complex eigenvalue is a complex number. 
Nathan Forrester (Forrester, 1982; Forrester, 1983) suggested the magnitudes (absolute 
values) of elasticities as measures of the relative significance (dominance) of links to a 
certain mode of behavior. 
 
In this paper, we extend our investigation beyond the magnitudes of the elasticities, in 
the sense that we consider individually the real and the imaginary components of the 
elasticities associated with a dominant complex eigenvalue and their impact on the 
length (absolute value) and the angle of that eigenvalue. We will first consider real 
eigenvalues and the associated real elasticities:  



  

Since a positive, real eigenvalue characterizes the fractional growth of an exponential 
mode of behavior, a link elasticity associated with that eigenvalue characterizes the 
marginal impact of a fractional change in the gain of that link on such a growth.  I.e. the 
higher the absolute value taken by the elasticity, the more significantly will a fractional 
change in the gain impact that growth. If the elasticity is positive, then a fractional gain 
increase will cause an increase in growth, i.e. a decrease in the doubling time. If the 
elasticity is negative, it will cause a decrease in growth, i.e. an increase in the doubling 
time (see table 6). 
 
Since a negative, real eigenvalue characterizes the fractional decay in an exponential 
mode of behavior, a link elasticity associated with that eigenvalue characterizes the 
marginal impact of a fractional change in the gain of that link on such a decay.  I.e. the 
higher the absolute value taken by the elasticity, the more significantly will a fractional 
change in the gain impact that decay. If the elasticity is positive, then a fractional gain 
increase will cause an increased decay, i.e. a decrease in the half-life time. If the 
elasticity is negative, then the decay will decrease, i.e. an increase in the half-life time 
(see table 6). 
 
Thus, for real eigenvalues and elasticities, we can characterize the impact of a fractional 
change in a link gain on a particular mode of behavior, and thus identify the relationship 
between the structure and behavior of a model. These findings are summarized in the 
following table: 
 

 Positive Eigenvalue Negative Eigenvalue 

Positive Elasticity Increase in growth fraction 
(Decrease in doubling time)

Increase in decay fraction 
(Decrease in half-life time) 

Negative Elasticity Decrease in growth fraction 
(Increase in doubling time) 

Decrease in decay fraction 
(Increase in half-life time) 

 
Table 6: The growth and decay fraction resulting from a fractional gain increase 

conditioned upon the elasticity and the real eigenvalue  
 
Second, we consider complex eigenvalues and the associated complex elasticities. We 
can now utilize the following properties of the real and the imaginary components of the 
link elasticities (Forrester, 1983):  
 
(a) The real component of a link elasticity characterizes the impact of a fractional 

change in the gain on the absolute value (length) of the associated eigenvalue. I.e.: 
Re{εkj}= ( δ|λk| / |λk|=)�/ (δgj  / gj ) 

 
 

(b) The imaginary component of a link elasticity characterizes the impact of a fractional 
change in the gain on the angle of the associated eigenvalue. I.e.: 

Im{εkj}= δθκ=/ (δgj  / gj ) 



  

 
In section 3.1, we described the relationship between the absolute value and the angle of 
an eigenvalue, on the one hand, and the associated mode of model behavior on the 
other. Thus, also for complex eigenvalues and elasticities, we can now characterize the 
impact of a fractional change in a link gain on a particular mode of behavior, and thus 
identify the relationship between the structure and behavior of a model.  
 
From (a) above, we can draw the following conclusion: Since the absolute value 
(length) of a complex eigenvalue characterizes the natural frequency of an oscillatory 
mode of behavior, the real component of a link elasticity (associated with that eigen-
value) characterizes the marginal impact of a fractional change in the gain on that 
natural frequency.  I.e. the higher the magnitude of the real component of the elasticity, 
the more significantly will a fractional change in the gain impact that natural frequency. 
If the real component (of elasticity) is positive, then a fractional gain increase will cause 
an increased natural frequency, - if the real component is negative, it will cause a 
decrease (see figure 13). 
 
From (b) above, we can draw the following conclusion: Since the angle of a complex 
eigenvalue characterizes the damping ratio of an oscillatory mode of behavior, the 
imaginary component of a link elasticity (associated with that eigenvalue), characterizes 
the marginal impact of a fractional change in the gain on that damping ratio.  I.e. the 
higher the magnitude of the imaginary component of the elasticity, the more 
significantly will a fractional change in the gain impact that damping ratio. If the 
imaginary component (of elasticity) is positive, then a fractional gain increase will 
cause an increased damping, - if the imaginary component is negative, it will cause a 
decrease (see figure 13). 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13: The change in a complex eigenvalue resulting from a fractional increase in 

gain, - conditioned upon the current elasticity 
 
Referring to figure 13, a positive imaginary component of elasticity will cause a 
fractional increase in the gain to induce more damping in the model. And, a negative 
imaginary component of elasticity will cause a fractional increase in the gain to induce 
less damping in the model. In general, a larger absolute value taken by the imaginary 
component, whether positive or negative, will cause a certain fractional gain increase to 
result in a more significant, marginal contribution to the damping that takes place.  
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Moreover, as described in section 3.1, the damping ratio has two effects on the behavior 
of the model, one on the contraction/expansion of the envelope within which the 
behavior unfolds, and one on the observed damped frequency of that behavior. 
Combining the findings in sections 3.1 and 3.2, therefore, we have described the impact 
of a fractional change in a link gain on the model behavior, conditioned upon the link 
elasticity. 
 
 
3.3 The utilization of link elasticities in management 
 
Managers typically face the challenge of modifying behavior by changing the link gains 
in a system, - here represented by link gains in the model. For that purpose, managers 
identify the modes that dominate the total behavior of the model and influence; 
(a) the growth or decay of the monotonic behavior; or the envelope within which the 

oscillatory behavior unfolds;  and, possibly 
(b) the empirical frequency with which the behavior oscillates, 
so as to obtain a more favorable overall model behavior. Our analysis in sections 3.1 
and 3.2 indicates that the manager can expect a variety of different outcomes with 
respect to model behavior, resulting from a fractional increase in the gain of a link. This 
is because that outcome depends on the choice of link (and associated gain) and the 
combination of values taken by; 
- the eigenvalues associated with the dominating modes of behavior; and 
- the link elasticities associating the gains of the links in question to those 

eigenvalues. 
 
For monotonic modes of behavior, characterized by real eigenvalues, a manager can 
utilize table 6 to identify gains that, when increased (or decreased), can be expected to 
yield; 
(a) an increased or decreased divergence; or  
(b) an increased or decreased convergence. 
Depending on what is considered a favorable change of behavior, the manager can now 
operate through a specific subset of gains to obtain the desired modification of the 
current behavior. 
 
For oscillatory modes of behavior, characterized by complex eigenvalues, a manager 
can utilize table 7 to identify gains that, when increased (or decreased), can be expected 
to yield; 
(a1) an increased (incr.) or decreased (decr.) expansion (exp.) of the envelope; or  
(a2) an increased (incr.) or decreased (decr.) contraction (contr.) of the envelope;  
and 
(b) an increased or decreased of the natural frequency (indicated with a transparent 
arrow); combined with 
(c) an increase or decrease in the empirical (damped) frequency, relative to the natural 

frequency (indicated with a regular arrow); 
Again, depending on what is considered a favorable change of behavior, the manager 
can now operate through a carefully selected subset of gains to obtain the desired 
modification of behavior both with respect to expansion/contraction and frequency. 
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Table 7: The effect of a fractional increase in a link gain on the envelope and 

frequency characterizing an oscillatory mode of behavior, conditioned upon the 
eigenvalue (λλλλ), and the link elasticity (εεεε) 

 
With respect to an increase or decrease in the expansion or contraction of the envelope, 
table 7 is unambiguous. With respect to the empirical frequency, table 7 is unambiguous 
when the empirical frequency is changed, relative to the natural frequency, in the same 
direction as the natural frequency (arrows in the same direction). When the two 
directions are in conflict (arrows in opposite directions), then the outcome with respect 
to the empirical frequency is ambiguous, and depends on whether the change in the 
natural frequency dominates the change in the relationship between the two frequencies 
or not. The implication is that the manager, in such a case, must rely on an empirical 
calculation of the net effect. In fact, as we will illustrate in section 5.5 such a calculation 
can be performed for all the cases represented in table 7. As we will discuss in that 
section, table 7 enables the manager to interpret the results of such calculations.  
 
 
4 The Inventory Workforce Case  
 
4.1 Introduction   
 
The inventory-workforce model analyzed in this paper is taken from the CD of the 
Business Dynamics book (Sterman 2000). The name of the file is “laborwlo.sim” 
(Powersim model). The model is described in details in chapter 19 in the book. We 
recommend the reader to review the model, and the associated explanation. In this 
section, we provide an overview of the model. Basically, the model consists of two 
sectors, the production and inventory sector, and the labor sector. The two sectors are 
coupled through desired production and labor. Labor explicitly controls production in 
the model.   In response to a demand shock, the model oscillates. According to Sterman, 
the research in system dynamics suggests that the business cycle is a damped oscillation 
originating from the interaction of inventory management with the labor supply chain. 
This damped oscillation is kept alive in the real world by continuous, random 
disturbances originating from the environment.   
 
 
 



  

4.2 The production and inventory sector 
 
Below, in figure 14, we portray the stock and flow diagram of the production and 
inventory sector. The equations of this sector are listed in Sterman’s book (Chapter 19).  
 

 
Fig. 14: Production and Inventory sector, stock and flow diagram  

 
 

4.3 The labor sector 
 
Below, in figure 15, we portray the stock and flow diagram of the labor sector. Again, 
the equations of this sector are listed in Sterman’s book (Chapter 19).  

 
Fig. 15: Labor sector, stock and flow diagram 
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4.4 Model Behavior 
 
Below, in figure 16, we portray the model response to unanticipated 20% increase in 
demand (customer orders) in week 5. 
 
It is obvious that the dominant mode of behavior of the model is a mode of “damped 
oscillations” of period about 53 weeks (~ 1 year). This mode of behavior represents the 
business cycle.  
 
In the next section - the model analysis section - we will identify the structural 
components of the model that dominates this mode of behavior (i.e. the damped 
oscillations). By structural components we mean the links in the model.  

 
Fig. 16: Model Behavior  
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5 Model Analysis 
 
5.1 Introduction 
 
In section 5, we apply eigenvalue analysis to the inventory-workforce model, in order to 
identify the structural origin of the damped oscillation mode. Here are the steps of this 
analysis: 
1. In section 5.2, we identify the state variables in the model.  
2. In section 5.3, we identify the gain matrix, which characterizes the model structure.  
3. In section 5.4, we identify the eigenvalues of the model, which are computed from 

the gain matrix.  
4. In section 5.4, we also identify the dominant mode of behavior (i.e. the dominant 

eigenvalue). 
5. Finally, in section 5.5, we compute all link elasticities associated with the dominant 

eigenvalue so as to identify the dominant structure that most significantly impact the 
dominant mode of behavior. By analyzing these elasticities, we can identify the 
significance of various points of intervention, i.e. link gains, with respect to model 
behavior and thus develop a key to the management of such behavior. 

 
 
5.2 State variables  
 
The first step in the model analysis is to identify the state variables of the model. The 
state variables include the stock variables in the model (the levels), in addition to the 
state variables hidden in the delay functions. In this model, there is only one material 
delay function of third order between Production_Start_Rate and the Production_ Rate. 
Below is a list of the state variables identified: 
 
1.Expected_Order_Rate  2.Inventory   3.Labor  4.Production_Transit_1 (in the delay 
function) 5.Production_Transit_2  6.Production_Transit_3  7.Vacancies  
8.Work_In_Process_Inventory 
 
 
5.3 The Gain Matrix 
 
The properties of the structure of the model that we will be considering are the gains of 
the links that constitute the structure of the model. In any model, we can identify the 

gain matrix. Each element (
j

i
x

x
∂

∂� ) in the gain matrix constitutes a compact gain; i.e. 

the change in the net rate (slope) of each state variable in response to a change in the 
level (value) of any state variable in the model.  
 
In this model, after week 50, the gain matrix is constant -- i.e. the model is, in fact, 
reduced to a linear one after week 50 -- and is given as: 
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Whoever is interested in the details of the computations of the elements of this gain 
matrix, and all the other computations associated with the (eigenvalue) analysis of this 
model can email the authors. 
 
 
5.4 Eigenvalues in the model 
 
One can directly compute the eigenvalues from the gain matrix, where each eigenvalue 
characterizes a certain mode of behavior. The dominant mode of behavior is the mode 
associated with the dominant eigenvalue. 
 
In this model, the gain matrix is constant after week 50 -- i.e. the model is a linear one 
after week 50 -- and thus the eigenvalues will also be constant. Here is the list of the 
eigenvalues: 
 
{-0.0128 + 0.1194i ; -0.0128 - 0.1194i; -0.2840 + 0.1201i; -0.2840 - 0.1201i; -0.4582 + 
0.0767i; -0.4582 - 0.0767i; 0.0000; -0.1250} 
 
As the gain matrix is constant then the dominant eigenvalue in the long run will be the 
eigenvalue with the greatest real part.  In our case, this will be the complex conjugate 
pair of eigenvalues (which represents an oscillatory mode of behavior) whose real 
component is equal to  -0.0128. We have ignored the “zero” eigenvalue, as its left 
eigenvector is orthogonal to the slope vector. Since the other eigenvalues have real 
components that are much more negative (an order of ten) than the real component of 
the dominant eigenvalue (i.e.   -0.0128), those modes of behavior will die (dampen) 
more rapidly than the dominant mode of behavior. 
 
Thus, in conclusion, the dominant mode of behavior (in the long run) will be the mode 
represented by the complex eigenvalue whose real component is equal to -0.0128, and 
its imaginary component is equal to 0.1194. This complex eigenvalue represents a mode 
of “damped oscillations”. The period (T) of one damped cycle is given as: 
 

T  =  2π/ imaginary part; I.e. T  =  2π/0.1194 = 52.63 month ≈1 year 
 

This period corresponds to (matches) the behavior generated by the model (see figure 
15). Consequently, we have obtained an eigenvalue characterization of the model 
behavior resulting from an analysis of the underlying model structure, in particular the 
gains of the compact links constituting this structure.  
 



  

Note that, in our case, the model happened eventually to develop into a linear model in 
the long run. In general, however, one cannot expect that such a linearization takes 
place and we need to recognize the fact that there may be shifts in mode dominance. In 
such a case, we will need to consider the model and its behavior over infinitely small 
time intervals and emulate this process by iterating the analysis procedure over a finite 
number of sufficiently small time intervals (Saleh & Davidsen, 2000). 
 
 
5.5 Links elasticities 
 
The link elasticities associated with the dominant eigenvalue of the model are sum-
marized in table 8. A careful analysis of these elasticities allows us to map the effect of 
changing the associated link gains on model behavior. We can thus classify the various 
link gains with respect to their qualitative impact on that behavior and rank them with 
respect to their marginal effect on that behavior. We classify the impact of a fractional 
increase in the gain of each of the links (column 1) in the model into; 
- the marginal impact on the natural frequency (column 2); and  
- the marginal impact on the damping ratio (column 3). 
 

 
Relationship (link) 

Marginal 
impact on 

natural 
frequency 

Marginal 
impact on 
damping 

Adjustemnt_For_Labor →Desired_Hiring_Rate + 0.5054 + 0.0719 
Adjustment_For_Vacancies→DesiredVacancy_Creation_Rate + 0.0151 + 0.1029 

Adjustment_For_WIP→ Desired_Production_Start_rate + 0.3722 - 0.0284 
Desired_Hiring_Rate  →Desired_Vacancies + 0.3295 + 0.0218 

Desired_Hiring_Rate→ Desired_Vacancy_Creation_Rate + 0.1648 + 0.0109 
Desired_Labor→ Adjustemnt_For_Labor + 0.4199 - 0.2299 

Desired_Production →Desired_Production_Start_rate + 0.0477 - 0.2015 
Desired_Production_Start_rate → Desired_Labor + 0.4199 - 0.2299 

Desired_Production→Desired_WIP + 0.0637 - 0.2686 
Desired_Vacancies→ Adjustment_For_Vacancies + 0.3295 + 0.0218 

Desired_WIP→ Adjustment_For_WIP + 0.0637 - 0.2686 
DesiredVacancy_Creation_Rate→Vacancy_Creation_Rate + 0.1798 + 0.1138 

Expected_Attrition_Rate→ Desired_Hiring_Rate - 0.0111 - 0.0392 
Hiring_Rate→Vacancy_Closure_Rate - 0.1572 + 0.0405 

Inventory → Production_Adjustment_From_Inventory + 0.1114 - 0.4701 
Labor→ Adjustemnt_For_Labor + 0.0855 + 0.3018 
Labor→ Production_Start_Rate + 0.4198 - 0.2299 

Labor→Quit_Rate - 0.0129 + 0.0022 
Production_Adjustment_From_Inventory → Desired_Production + 0.1114 - 0.4701 

Production_Start_Rate—||→Production_Rate + 0.0159 - 0.0672 
Quit_Rate→ Expected_Attrition_Rate - 0.0111 - 0.0392 

Vacancies→ Hiring_Rate + 0.3370 + 0.0732 
Vacancies→Adjustment_For_Vacancies - 0.3144 + 0.0811 

Work_In_Process_Inventory → Adjustment_For_WIP + 0.3085 + 0.2402 
 

Table 8: The effects of fractional increases in links gains on the natural frequency 
and damping 

 



  

By sorting table 8 according to column 2, we rank the links with respect to the marginal 
impact of a fractional increase in the associated gains on the natural frequency of the 
model. Consequently, if there is a need to modify the frequency of the oscillations, then 
the resulting table indicates which gains have the largest marginal impact on that 
frequency.   
 
By sorting table 8 according to column 3, we rank the links with respect to the marginal 
impact of a fractional change in the associated gains on the damping ratio of the model. 
Consequently, if there is a need to modify the envelope of the oscillations, then the 
resulting table indicates which gains have the largest marginal impact on the damping of 
that envelope. 
 
In section 3.3, we presented the theoretical framework for interpreting the relationship 
between a change in the link gains characterizing the structure of the model and the 
resulting change in a mode of behavior. Referring to (Kampmann, 1996), we can, in 
general, calculate, at any point in time, the marginal impact of a fractional change in 
each such gain on the real and imaginary components of the eigenvalue characterizing 
such a mode of behavior. As described in section 3.1, the real component corresponds to 
the fractional expansion (growth) or contraction (decay) of the envelope within which 
the oscillatory behavior unfolds; while the imaginary component of an eigenvalue 
corresponds to the frequency empirically observed in a convergent or divergent 
oscillatory behavior. In table 9, we classify the impact of a fractional increase in the 
gain of each of the links (column 1) in the model into; 

-  
- the marginal impact on the expansion / contraction of the envelope (column 2), i.e. 

the marginal impact on the real component of the eigenvalue. 
 ( δRe{λ k}  /|λk|=)�/ (δgj  / gj ) 

 
- the marginal impact on the empirical (damped) frequency (column 3), i.e. the 

marginal impact on the imaginary component of the eigenvalue. 
 ( δIm{λ k}  /|λk|=)�/ (δgj  / gj ) 

 
 
By sorting table 9 according to column 2, we rank the links with respect to the marginal 
impact of a fractional increase in the associated gains on the expansion or contraction 
exhibited by the behavior envelope of the model. Consequently, if there is a need to 
modify that expansion or contraction, then the resulting table indicates which gains have 
the largest marginal impact on the envelope.   
 
By sorting table 9 according to column 3, we rank the links with respect to the marginal 
impact of a fractional increase in the associated gains on the empirical (damped) 
frequency of the model. Consequently, if there is a need to modify the empirical 
frequency of the oscillations, then the resulting table indicates which gains have the 
largest marginal impact on that frequency.   
 
Table 7 in section 3.3 furnishes the manager with an interpretation of the calculations 
resulting in the numbers in table 9. Column 2 in table 9 corresponds to the upper 
compartment of the cells in table 7. Column 3 in table 9 represents the net effect of the 



  

change in the natural frequency combined with the change in the relationship between 
the natural and empirical frequency of the model behavior, - each portrayed with arrows 
in the lower compartment in the cells in table 7.  Thus the net effect represented in 
column 3 (table 9), can be decomposed in these two partial effects.  
 

 
Relationship (link) 

Marginal 
impact on 
envelope 

Marginal 
impact on 
damped 

frequency 
Adjustemnt_For_Labor →Desired_Hiring_Rate -0.1254 +0.4949 

Adjustment_For_Vacancies→DesiredVacancy_Creation_Rate -0.1039 +0.0040 
Adjustment_For_WIP→ Desired_Production_Start_rate -0.0114 +0.3731 

Desired_Hiring_Rate  →Desired_Vacancies -0.0568 +0.3253 
Desired_Hiring_Rate→ Desired_Vacancy_Creation_Rate -0.0284 +0.1627 

Desired_Labor→ Adjustemnt_For_Labor +0.1838 +0.4420 
Desired_Production →Desired_Production_Start_rate +0.1953 +0.0689 

Desired_Production_Start_rate → Desired_Labor +0.1838 +0.4420 
Desired_Production→Desired_WIP +0.2603 +0.0920 

Desired_Vacancies→ Adjustment_For_Vacancies -0.0568 +0.3253 
Desired_WIP→ Adjustment_For_WIP +0.2603 +0.0920 

DesiredVacancy_Creation_Rate→Vacancy_Creation_Rate -0.1323 +0.1666 
Expected_Attrition_Rate→ Desired_Hiring_Rate +0.0402 -0.0069 

Hiring_Rate→Vacancy_Closure_Rate -0.0235 -0.1606 
Inventory → Production_Adjustment_From_Inventory +0.4555 +0.1609 

Labor→ Adjustemnt_For_Labor -0.3092 +0.0528 
Labor→ Production_Start_Rate +0.1838 +0.4419 

Labor→Quit_Rate -0.0008 -0.0131 
Production_Adjustment_From_Inventory → Desired_Production +0.4555 +0.1609 

Production_Start_Rate—||→Production_Rate +0.0651 +0.0230 
Quit_Rate→ Expected_Attrition_Rate +0.0402 -0.0069 

Vacancies→ Hiring_Rate -0.1087 +0.3273 
Vacancies→Adjustment_For_Vacancies -0.0471 -0.3213 

Work_In_Process_Inventory → Adjustment_For_WIP -0.2717 +0.2811 
 
Table 9: The effects of fractional increases in links gains on the damped frequency 

and the envelope 
 
 
6 Conclusion: A management perspective on complex, dynamics 
system  
 
From a system dynamics perspective, model behavior can be managed through a favor-
able choice of gain values associated with the links of the system. We have developed a 
method whereby complex, dynamic systems can be investigated and managed this way. 
To that end, we use a system dynamics model to represent and investigate the system 
and to rank the links that constitute the system structure according to their impact on the 
behavior of the model. By controlling the gain of links of high significance, we may 
exercise control through relatively small gain modifications. Whether it is practically of 
economically feasible to exercise such control, is another matter.  
 



  

In principle, we may therefore take into consideration the feasibility of exercising 
control over a particular link gain by multiplying table 9 (or table 8) by a feasibility 
table in which each cell contains a binary number indicating whether control might be 
exercised (1) or not (0). Moreover, one can multiply table 9 (or table 8) with a cost 
table, indicating the marginal costs of introducing a unit change in the each link gain. 
This enables the manager to calculate the marginal effect of an investment in control 
through the utilization of a particular link gain, so as to compare the resulting effects 
and to identify the most cost effective and efficient mode of control. 
 
In general, a gain link is associated with all modes of behavior from which the model 
behavior arise. Thus there are multiple ways in which the choice of a certain link gain 
value may impact the behavior of a model. In practice, one will primarily consider the 
impact conveyed through each of the most dominating modes of behavior. Thus 
managing systems according to this method implies a two-step process: First, we 
identify the most dominant modes of behavior. Subsequently, we identify the links (and 
associated gains) of greatest significance to those modes of behavior.  
 
Herein lies a managerial challenge not addressed so far in this paper: Suppose the 
behavior of a system is composed of a number of dominant modes of behavior. Then 
the modification of a particular gain, may result in multiple, partial effect on the total 
behavior, - each constituting the effect on a single mode of behavior. Consequently, the 
manager is forced to consider the combined effects of modifying each of the link gains 
under his/her control and carefully select and utilize a subset of such gains. Preferably, 
these are the gains that are expected to allow him to exercise the most precise 
(unambiguous) control over the total behavior of the system.  
 
As has already been stated throughout the paper. In nonlinear systems, the eigenvalues, 
right eigenvectors and link elasticities are subject to changes resulting from the 
dynamics of the system. Consequently, the method outlined in this paper must be 
applied iteratively over a sequence of appropriately small time intervals. 
 
Finally, recognizing that links form the loops that constitute the structure of feedback 
models, in our subsequent work, we will investigate the significance of such loops with 
respect to model behavior. Thus we will shift our structural unit of analysis from links 
to loops.   
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