
Formalization of Model Partition
Heuristics through Graph Theory

Rogelio Oliva
Harvard Business School

Morgan Hall T87
Boston, MA 02163

Ph +1/617-495-5049; Fx +1/617-496-5265
roliva@hbs.edu

Abstract

This paper builds on the argument that calibration of system dynamics models can be used as a
testing strategy for dynamic hypotheses. In particular, it addresses the issue of how to partition the
model for calibration and testing purposes. Working with small calibration problems reduces the
risk of the structure being forced into fitting the data, increases the efficiency of the estimation, and
concentrates the differences between observed and simulated behavior in the piece of structure
responsible for that behavior. The premise of this paper is that it is possible to focus on the
structural complexity of SD models by using the tools and insights from graph theory to design a
partition strategy that maximizes the test points between the model and the real-world. After
reviewing the graph representation of system structure, the paper presents the rationale and
algorithms and for model partitions based on data availability, and block and cycle partitions. The
paper concludes by identifying future research avenues in this arena, and conjecturing on other
potential applications of the tools developed for the analysis of models structure.

(Analysis of model structure; Graph theory; Hypotheses testing; Model calibration; Parameter
estimation; Simulation; System Dynamics)

1

1. Introduction

The argument for calibration as a testing strategy for a dynamic hypothesis has been articulated
elsewhere by this author (Oliva, 2000b). The argument can be summarized as follows: SD
interventions can only be as good as the dynamic hypothesis (DH) that is used for policy design,
thus careful consideration must go into building confidence in a DH. A DH explicitly posits a
causal link between structure and behavior. Although it is impossible to verify a hypothesis,
science has refined a systematic approach for increasing the confidence of stated hypothesis and
ruling out alternative explanations, viz., experiments designed to falsify the hypothesis. System
dynamics models are well suited for this experimental approach since they are logically sound and
need to be relevant to the problem situation, i.e., they are empirically testable. Calibration explicitly
attempts to link structure and behavior, thus making it a more stringent test than matching either
structure or behavior alone. Automated calibration (AC) techniques are capable of generating an
optimal fit to historical data from a given structure and set of parameters. However, because of the
assumption of correct structure and the effort to match the historical behavior, AC techniques are
typically used to confirm the dynamic hypothesis –can the structure match the observed behavior?
Thus, we are faced with a paradox: While model calibration, by requiring simultaneous adherence
to observable behavior and structure, constitutes a stringent test of the dynamic hypothesis,
automated calibration, the most powerful tool available for calibration, strips the process of its
power to perform the test.

In that paper I argued for three heuristics to increase the power of AC as a testing tool: i) do not
override known (observable) structure, ii) tackle small calibration problems, and iii) use AC to test
the hypothesis: “Does the estimated parameter match the observable structure of the system?” The
paper concluded with a set of increasingly demanding tests to guide the assessment of the AC
output in the context of hypothesis testing, i.e., a set of tools to formalize heuristic iii). The paper,
however, is vague on how to support heuristic ii) and concludes with an invitation for further
research into formal ways of partitioning a model for estimation purposes. This paper tackles this
issue by formalizing the heuristics for model partitions and a sequencing strategy for the
calibration/testing process. But before getting into model partitions, I would like to re-state the
rationale for partial model testing (Homer, 1983) and calibrations over small model partitions.

One of the main benefits of the AC techniques is that it is possible to specify the calibration
problem as a single optimization problem with an error function that contains all data available and
a set of calibration handles that contain all model parameters (Lyneis and Pugh, 1996). By
providing total flexibility to the model structure to adapt to the existing data, such an approach
generates the best possible fit to all data available. From an operational perspective, however,
having a complex error function and multiple optimization handles makes the tractability of the
errors and the diagnosis of mismatches more difficult.

Since not all model parameters affect all output variables in the model, as the number of data series
in the error function increases, individual parameters become less significant. Variations in
individual parameter values have a small impact in a complex error function, thus resulting in wider
confidence intervals for the estimated parameters, i.e., less efficient estimators. Similarly,
increasing the number of parameters to be estimated from an error function reduces the degrees of
freedom in the estimation problem, thus resulting in wider confidence intervals.

The most serious difficulty with a large number of calibration handles, however, is the increased
difficulty to detect formulation errors. In an endeavor to match historical data, the calibration
process ‘fixes’ the model structure to cover formulation errors. Since these corrections are
distributed among the parameters being used in the calibration problem, as the number of
parameters being estimated increases, the ‘correction’ to each parameter becomes smaller. Small
deviations from ‘reasonable’ values and wider confidence intervals make it more difficult to detect

2

fundamental formulation errors, especially when a ‘good fit’ to historical behavior has been
achieved.

Working with small calibration problems reduces the risk of the structure being forced into fitting
the data, increases the efficiency of the estimation (estimators with smaller variances), and
concentrates the differences between observed and simulated behavior in the piece of structure
responsible for that behavior. The goal of the proposed heuristic is to partition the model as finely
as possible, thus focusing the analysis and yielding more efficient estimators of the underlying
parameters governing the model behavior. Model partition requires an understanding of model
structure, the role of individual parameters in determining the model’s behavior, and knowledge
about the sources of data available.

The main challenge when using calibration as testing is to identify how best to use the data
available to validate the structural representation of the system. Exploring and understanding the
structural complexity of a model permits better utilization of the data and a direct understanding of
the role of individual parameters in determining the system’s behavior. “Structural complexity” of a
SD model refers to the interactions among variables and the feedback loops that those interactions
create. Graph theory is concerned with the topology of interconnected sets of nodes, abstracting
from their spatial location (embedding) and the exact nature of the links. By adopting the graph
representation of a SD model, we can focus on its structural complexity rather than the dynamic
complexity that arises from non-linear relations and accumulations. Graph theory has been
successfully used to explore the structure of SD models (Burns, 1979; Kampmann, 1996).

The premise of this paper is that it is possible to focus on the structural complexity of SD models
by using the tools and insights from graph theory to design a partition strategy that maximizes the
test points between the model and the real-world. The rest of the paper is structured as follows.
The following section summarizes the graph representation of system structure and presents some
of the nomenclature used in the paper. Section 3 presents the rationale and algorithms and for
model partitions based on data availability, and block and cycle partitions. Cycle partitions
constitute heavily interconnected pieces of model structure and are at the core of SD models –all
feedback loops are captured in cycle partitions. Since cycle partitions can encompass as much as
90% of the model’s variables, a more detailed strategy to decompose cycle partitions is presented
in section 4. The paper concludes by identifying future research avenues in this arena, and
conjecturing on other potential applications of the tools developed for the analysis of models’
structure.

2. Graph representation of system structure

A directed graph or digraph G is a pair (V,E), where V(G) is a finite set of elements, called
vertices, and E(G) is a binary relation on V —a subset of ordered pairs of elements of V(G). The
elements of E(G) are called edges and constitute the edge set of G. The structure of a system
dynamics model can be represented as a digraph, where the variables are the vertices and the edges
are the relationship “is used in,” i.e., there is a directed edge (u→v) if u is used as an argument in
the computation of v. To facilitate computations, a digraph is often represented as an adjacency
matrix.1 The adjacency matrix representation of a digraph is a square matrix A of size |V|, where
each row (and column) represents a vertex (vertices are numbered 1,2, … |V|). The entries in the
matrix are restricted to zero and one, where auv=1 IFF (u,v)∈ E(G). The ones in row Au represent
the successor set (Succ[u]) for vertex u, while the ones in column Au represent the predecessor set
(Pred[u]) for vertex u. Figures 1a-1c illustrate the mapping of model structure into a digraph and
its corresponding adjacency matrix representation. A tool to generate the adjacency matrix from a
text file containing the model documentation has been developed and is available online.2

3

Figure 1. Graph representation of system structure
SD Model Digraph

Population

Births Deaths

Birth rate Death rate

(d/dt)P=B-D
B=Br*P
D=Dr*P
Pd=P/A

Population
density

Area

Population

Births

Deaths

Birth rate

Death rate

Population
density

Area

Adjacency matrix Adjacency matrix block ordered by levels
Br B P Dr D Pd A

Br
B
P

Dr
D
Pd
A

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 1 1 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0

L

L

L

Pd A P B D Br Dr
Pd
A
P
B
D
Br
Dr

1

2

3

0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 1 1 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

Once the model structure is captured in an adjacency matrix, it is possible to use recursive
algorithms to analyze and visualize model structure. For instance, another useful representation of
model structure is the reachability matrix. The reachability matrix represents a digraph whose edge
set is defined by the relation “is antecedent to” and it is equivalent to the transitive closure of A
(Rii=1; Rij=Aij; Rij∩Rjk⇒ Rik). The reachability matrix is reflexive, i.e., its main diagonal is filled
with ones, thus making each vertex a member of its own predecessor and successor sets. The
reachability matrix can easily be obtained by adding the identity matrix to the adjacency matrix
(B=A+I) and raising the sum to some Boolean power k such that Bk-1≠Bk=Bk+1=R (Warfield,
1989).3

3. Model partitions

This section describes tools and techniques to facilitate the analysis of the model structure and
follow the heuristic for model calibration in the smallest possible equation set. In particular, we
will explore different algorithms to partition a model and identify structural clusters that can be
independently calibrated. The algorithms described below have been coded in a popular computer
environment and are available online (Oliva, 2000a).

3.1 Data-availability partition

Given an available set of data series, it is possible to determine the minimum equation set that can
be used for estimation purposes. In other words, it is possible to systematically identify the set of
equations and parameters that are directly involved in the computation of an outcome variable from
a set of known inputs. The minimum equation set will guarantee that all parameter ‘handles’ used
in the estimation are involved in the generation of the selected model outcome, hence, being the
best use of the data possible.

Let us first illustrate the process. Assume that time series data are available for a set of variables
represented in a model. Considering one of these variables as an outcome variable (independent
variable in the traditional regression model), it is possible to use the model to explore the causal
structure behind that variable, and obtain an expanding tree of causal factors (see figure 2). The

4

tree branches as each input required for calculating a variable is in turn expanded into its required
components. The branch ends whenever an element is either a parameter (i.e., it has no
predecessors), or an element is already identified in the tree structure (i.e., its predecessors have
already been identified).

Figure 2. Causal tree for Time per order

 Time per order

(Desired TO)

(Time per order)

 DTO chg

 Initial DTO

alpha

 Work pressure

 t to adjust DTO

(Desired TO)
(Time per order)

ttdn
ttup

 Desired service capacity (Desired TO)
esired order fulfillment rate

 Service capacity
effect of fatigue on Prod
Effective labor fraction

on office service capacity

 Desired TO

 effect of wp on to

min processing TPO

It is now possible to isolate the causal tree from the rest of the model structure by clipping the tree
at the variables where data are available, i.e., the computational predecessors for that variable is not
needed since it is possible to use data to substitute for those computations. In the example of figure
2, by using Service capacity and Desired order fulfillment rate as known data sources, the causal
tree for Time per order is isolated. The resulting structure can be easily translated into a calibration
problem that allows for the estimation of up to 5 parameters (italics in figure 2) using 7 equations.4

Not all parameters need to be identified as handles in the calibration problem; if there is certainty in
the value of a parameter, it is best to leave it as part of the system structure and do the search with
other handles. Table 1 lists the calibration problem by substituting the variable names with model
equations. Note that, since the calibration problem uses the data for the outcome variables only in
the objective function, the calibration problem is well specified, even if the dependent variable is
fed back into the equation set (e.g., Time per Order are used in the computation of DTO chg). Note
also that the calibration problem can be solved if feedback loops are contained in the equation set
(e.g., Desired DTO, t to adjust DTO, DTO chg).

Table 1. Calibration problem

Minimize
∑(Time per order(t) - Time per order(t))2 for {t | Time per Order(t)= value}

Over :
Initial DTO > 0; alpha < 0; ttup > 0; ttdn > 0

Subject to:
Time per order = max(Desired TO * effect of wp on to, min processing TPO)
Desired TO = INTEG (DTO chg, Initial DTO)
DTO chg = (Time per order-Desired TO)/t to adjust DTO
t to adjust DTO = IF THEN ELSE(Time per order>Desired TO , ttup , ttdn)
Desired service capacity = Desired order fulfillment rate * Desired TO
Work pressure = (Desired service capacity - Service capacity)/Desired service capacity
effect of wp on to = EXP(alpha * Work pressure)
min processing TPO = 0.6

Bold variable names represent the historical time series for the variable.
For clarity the time subindex has been eliminated from the constraint equations.

The back-tracing of outcome variables can also be used to identify data requirements for estimation
purposes. If an equation set expands too far back, it is possible to identify from the tree structure a

5

variable that, if data were available, could reduce the equation set and yield a more precise
estimation of intermediate parameters.

The generation of the minimum equation set for each data series available can be automated using a
breadth-first search to explore the tree structure and clipping the search whenever an element is
found for which data are available. Figure 3 shows the pseudo-code for an algorithm that takes as
input the model’s adjacency-matrix A and a data-availability vector d —a vector containing the list
of variables for which data are available. For each data series available, the algorithm generates the
calibration problem that uses the minimum set of equations possible. The calibration problem is
defined by a dependent variable (y), a list of independent variables or known inputs (x), the set of
equations required for the optimization problem, and the list of parameters (β) that could be
estimated from it.

Figure 3. Pseudo-code for data-availability partition - Based on Cormen et al. (1990)
[y,x,β ,eq] ← BFS(A ,d)
for each vertex i ∈ V[A] for all vertex in model

if PredA[i]=∅ if no predecessors
p ← p ∪ i id as system parameters

m ← 0 initialize problem counter
for each vertex i ∈ d for each vertex with available data

m ← ++ increment problem counter
y(m) ← i
for each vertex j ∈ V[A]-i for all other vertex

color[j] ← white mark as not discovered
Q ← i initialize queue with data vertex
while Q ≠ ∅ while elements in queue

j ← head[Q] take first element from queue
for each vertex k ∈ PredA[j] for each predecessor

if color[k] = white if not discovered
color[k] ← gray mark as discovered
if k ∈ d if data available

x(m) ← x(m) ∪ k enter as known input
e l s e else

if k ∈ p if parameter
β(m) ← β(m) ∪ k enter as parameter

e l s e otherwise
eq(m) ← eq(m) ∪ k enter as equation
Enqueue (Q,k) enter k in queue

Dequeue (Q) drop (j) from queue
color[j] ← black mark as explored

end end
end end

In the unlikely event that all model parameters are reachable from the existing data available, only
the data-availability partition would be needed to articulate the required calibration problems. In
most situations, however, it will be necessary to develop a sequence of partial model calibrations
so that insights and outputs from early calibrations may be used to tune further calibrations.
Confidence in DH normally built by gradually moving form simple and observable pieces of
structure to more complex and strongly connected components of the system. Ideally, the same
approach should be used to develop a sequence of calibration problems that yields increasing
confidence in the model structure and enables the use of insights and findings from simple
structures in testing complex components of the structure. In order to do that we need a map of the
system structure to identify its strongly connected components and how parameters are used within
the causal hierarchy of the model. Levels and cycles are structural partitions that can facilitate the
navigation of the model structure and the sequencing of partial model calibrations.

6

3.2 Block partition

First, it is possible to obtain the hierarchy of the causal structure by partitioning the reachability
matrix into blocks of vertices at the same level in the model’s causal structure. For this kind of
analysis all the vertices in a feedback loop are considered to be at the same level since it is not
possible to specify causal precedence between any two vertices in a loop. The members of the first
block (also called level) are those that do not have any successors outside of its predecessor set5

—normally the outcome variables of a model. Successive blocks are identified by eliminating from
the reachability matrix the top level, and looking again for vertices without successors outside of
the predecessor set. Figure 4 shows the pseudo-code for an algorithm to partition a digraph by
level blocks and an illustration of a simple digraph mapped by level. The algorithm generates an
array with the list of vertices that correspond to each level in each cell.

Figure 4. Pseudo-code for level partition - Based on Warfield (1989)

Lev ← Levels(R)

k ← 1 initialize level counter

while V[R] ≠ ∅ while vertex left

for each vertex u ∈ V[R] for each vertex remaining

do if PredA[u] ∩ SuccA[u] = SuccA[u] if vertex is at top level, i.e. all successors are in predecessor set

Lev[k] ← Lev[k] ∪ u introduce vertex to level

V[R] ← V[R] - Lev[k] remove level from graph

k ← k++ increment level counter
end end

3.3 Cycle partition

Since all the elements in a feedback loop share the same predecessor and successor set in a
reachability matrix, a level partition clusters the elements of interconnected feedback loops into a
single block. It is possible to further partition a level into blocks of vertices that share the same set
of predecessors and successors in a reachability matrix (the algorithm to do this is trivial). This
further partition is called a cycle partition and the set of vertices is called a maximal cycle set
(Warfield, 1989). The main characteristics of a maximal cycle set is that all its elements are
reachable from every element of the set, i.e., its reachability matrix is full of ones, and that all
elements can be traced into a single (maximal) feedback loop. Cycle partitions are strongly
interconnected graphs and are at the core of SD model structure as they contain all the feedback
loops in a model.

If the adjacency matrix is reordered according to level structure, the resulting matrix is a lower
block triangular with each block representing a level. Elements in the main block diagonal
correspond to elements in maximal cycle sets. Figure 1d illustrates the block ordering of an
adjacency matrix with three levels, and a cycle set in level 2. Figure 5 shows the adjacency matrix
(ones are represented by bullets), block ordered by level, for a typical SD model of 200 equations.
The model has 12 levels with cycle sets in levels 5, 8, 9, 10 and 11.

7

Figure 5. Level partitions of adjacency matrix

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160

180

200

L1

L10

L12
L11

L2

L4
L3

L6
L5
L7

L8

L9

Although, the process of model calibration is determined by what kind of data is available, having
the level partition gives a path for a desirable sequence to estimate parameters or test the model. For
example, once a ‘high-level’ piece of structure has been tested and calibrated, it would be possible
to use the output of intermediate equations —originally unobserved— as data for estimation/testing
structure deeper into the model. The sequential process reduces the size of the calibration problems
in the lower levels of the structure. I have found it useful to start at either end of the level structure
and work towards the inner parts of the model structure —normally the strongly interconnected
blocks.

Level partitions, however, are of limited usefulness when confronted with large cycle sets
—blocks of densely interconnected variables. The cycle set in the eighth level of figure 5
represents 44% of the model variables (89/203) and knowing that all those variables are at the same
depth of the causal structure is not very helpful in determining a calibration sequence.
Unfortunately, such cycle sets are not atypical of SD models. The next subsection presents a
strategy for tackling the structural complexity of a cycle set and providing some insights into how
to sequence the calibration process.

4. Hierarchy of cycle sets

The main advantage of a cycle partition is that it identifies the set of strongly interconnected
elements that contain all the feedback complexity of a model structure. The interconnectedness of a
cycle partition, however, makes it difficult to segment it and make separate estimations of
parameters. Furthermore, the number of possible feedback loops in a cycle set is very large.

8

Kampmann (1996) defined an independent loop set (ILS) as a maximal set of loops whose
incidence vectors are linearly independent, and showed that the ILS, while not unique, is a
complete and non-redundant description of the feedback complexity of a graph. In this section, I
propose a strategy to identify an ILS based on the shortest loops possible, and an algorithm to
organize the ILS in a way that permits the structural understanding of the relationships among the
loops and informs a more structured partial testing strategy. The process is illustrated here with a
cycle partition; a full analysis of a model’s structure would require the process to be repeated for all
cycle partitions in the model.

A well known result from graph theory states that raising a reflexive adjacency matrix —an
adjacency matrix with its main diagonal filled with ones— to the ith power, yields the matrix of a
digraph with the relationship “reachable with i steps”. Using this result, it is possible to derive a
distance matrix (D) that shows in each cell the length of the shortest path between two vertices
(Warfield, 1989).

B C I

D C B B
C

= +

= + −()−

=

−

∑ i i i

i

1

2

1

Where C is a cycle partition of an adjacency matrix and all
operators are in ordinary (non-Boolean) matrix algebra, with the
exception of the powers of B, which result from Boolean products.

Notice that, since all the elements of a cycle partition are reachable from every other element of the
cycle set, all entries of D are non-zero. By recursive inspection of the distance matrix, it is possible
to identify the particular sequence of vertices that form a path between any two vertices. A
feedback loop (cycle) between vertices u and v is defined by two paths: u→v and v→u. Figure 6
shows the pseudo-code of an algorithm to identify the elements of a geodetic cycle between two
vertices by identifying first the elements of the u→v path and then tracking the v→u path.

A cycle identified from a distance matrix is called a geodetic cycle since there is no shorter cycle in
which these two vertices are involved. The length of the geodetic cycles can be obtained by adding
the transpose of the lower block triangular component of the distance matrix to its upper triangular
component (L=DL’+DU). The resulting matrix is upper triangular, and the maximum entry in L
defines the longest geodetic cycle in the set.

Taking advantage of the length matrix (L) to order the search process, it is possible to
systematically explore the feedback loops in a cycle partition. Figure 7 shows the pseudo-code of
an algorithm that makes use of the loop_track routine and generates an array with the vertices
involved in a feedback loop in each cell. Since the tracking of loops is driven by loop-length —first
all loops of length two, then three, etc.— loops in the output array are ordered by length. Notice
that the algorithm only reports geodetic cycles —i.e., the shortest cycle linking any two elements—
and does not identify all the feedback loops possible in a cycle set. Nevertheless, the number of
geodetic cycles is still large. For the cycle set of 89 elements depicted in Level 8 of Figure 5, the
algorithm identified 997 unique geodetic cycles. While the number is still large, the algorithm is
much more efficient than an exhaustive search of loops, and still guarantees that all edges in the
cycle set are considered.6

Kampmann (1996) proved that an ILS can be formed by only accepting a feedback loop into the set
if it contains at least one edge that was not included in the previously accepted loops. It can be
proven that using this simple construction rule on a list that includes all the geodetic cycles in a
cycle partition generates the full ILS. Furthermore, if the loops considered are in order of their
length, the resulting ILS is formed of the shortest loops possible. While not unique, an ILS
constructed from the shortest loops possible does represent the simplest, and most granular,
representation of the structure in a cycle set.7 For example, the 997 unique geodetic cycles

9

identified for the cycle partition in Figure 5 were reduced trough this process to an ILS with 66
loops.

Figure 6. Pseudo-code for tracking loop elements - Based on Warfield (1989)

x ← Loop_track(u ,v , D)

k ← 1 initialize element counter

x(k) ← u add first element to loop

the u→v path
for i=1:D uv- 1 for every distance 1 up to Duv-1

rh ← PredD[v] == Duv-i id predecessors of v that are Duv-i steps away

lh ← SuccD[x(k)] == 1 id successors of last element in loop

k ← k++ increment element counter

for each vertex w ∈ rh for each predecessor of v

if w ∈ lh if element of the successor group

x(k) ← w add element to loop
break break from for

end end
end end

the v→u path

k ← k++; increment element counter

x(k) ← v add mid-way element to loop
for i=1:D vu- 1 for every distance 1 up to Dvu-1

rh ← PredD[u] == Dvu-i id predecessors of u that are Dvu-i steps away

lh ← SuccD[x(k)] == 1 id successors of last element in loop

k ← k++ increment element counter

for each vertex w ∈ lh for each successor of last element in loop

if w ∈ rh if element of the predecessor group

x(k) ← w add element to loop
break break from for

end end
end end

Figure 7. Pseudo-code for identifying geodetic cycles - Based on Warfield (1989)

lps ← Loops (C)

k ← 1 initialize loop counter

B=C+I calculate distance matrix (see text)
D=C
for i=2:|C |-1

D=D+i*(Bi-Bi-1)

L=DL’+DU calculate length of loops
for i=2:max(L) for all loop lengths

pairs ← Luv==i id all vertex pairs linked by loop of length i

for each pair j ∈ pairs for all active pairs linked by loop of length i

lps(k) ← loop_track(j(1),j(2),D) call loop_track routine

pairs ← pairs - (pairs ∩ lps(k)) remove other pairs already id in loop

k ← k++ increment loop counter
end end

end end

10

It is possible to create a graph with each feedback loop from the ILS in a vertex and the relationship
“vertices are included in” as edges (Warfield, 1989). Applying the level partition algorithm
described in the previous section to the resulting graph yields a loop hierarchy from simple (short)
to complex (long). Figure 8 shows the hierarchy of loops in the cycle set of Level 8 in Figure 5.

Figure 8. Hierarchy of independent geodetic loops in a cycle partition†

1 2

4 5 7 891213 15

16

17 20

21

23

24

262729

30

31

32 3334

35

3638 39

40

41 42 434445 47 48

50

5253545556 57 58

5960

61 626364 65 66

† Loops not listed are level 1 loops with no other loop contained in them.

Notice that because the set of loops is an ILS, there are no cycle partitions in the resulting loop
hierarchy structure. Furthermore, the loop hierarchy structure is relatively flat, and the density of
‘inclusions’ among loops (loops whose vertices are contained in other loops) is not very high. The
resulting hierarchy of feedback loops can be used to develop an incremental testing sequence based
on building confidence in simple structures first —inner loops in a model— and moving into more
complex and interdependent structures.

5. Closing remarks

This paper has identified strategies to partition model structure and to sequence the calibration
problems in order to develop confidence in the model structure while maximizing the information
and insights that can be extracted from the data available. Of course, each calibration problem
should be assessed to test whether the model structure is capable of replicating the historical
behavior AND if the estimated model structure is consistent with what is known about the system
(Oliva, 2000b). Furthermore, it should be noted that calibration is only the first step for testing a
DH and should really be viewed as part of the model building process. Forrester stated that
“confidence in a model arises form a twofold test —the defense of the components and the
acceptability of over-all system behavior” (1961, p. 133). The proposed testing strategy aims only
to increase the defensiveness of the model components. Full testing of a DH also requires tests at
the system level, specifically, the historical fit of the model and the significance of the behavioral
components of the hypothesis (Oliva, 1996).

In terms of future developments for this research, I foresee two fronts where this could be utilized.
First, the articulation of partition heuristics and the formalization of the proposed heuristics are the
first steps towards a “semi-intelligent process to use modeler’s expertise with the abilities of
automated calibration” that Lyneis and Pugh (1996) argued for. Much work still needs to be done
in this area. Second, the tools developed to assist in the analysis of the model structure should also
help on the research to use loop dominance as the main tool for analysis of the behavior of system
dynamics model. I am particularly optimistic of the potential of the reduced ILS formed with the
shortest geodetic cycles. I believe that short feedback loops provide a more intuitive explanation of
the loop dominance proposed by Kampmann (1996). The conjecture that the reduced ILS is unique
for any given model needs to be proven formally. If that is the case, such ILS should be the
foundation for any tool-set to analyze loop dominance.

11

1 Although system dynamics models normally generate sparse graphs that are represented more efficiently through an
adjacency-list (Cormen et al., 1990), the adjacency-matrix representation will be used throughout this presentation
because of the simplifications it allows in the codification of algorithms.

2 http://www.people.hbs.edu/roliva/research/sd/ .

3 Boolean matrix algebra is defined based on the Boolean addition (0+0=0; 0+1=1; 1+1=1). The Boolean product of
two binary matrices W=YZ is defined only if the number of columns of Y corresponds to the number of rows in Z.
Each entry on W is found by performing the Boolean sum wij=Σkyikzkj.

4 See Oliva (2000b) for a full description and specification of a calibration problem.

5 If a vertex v is an element of Succ[u] and Pred[u] in a reachability matrix, it means that v and u are in a feedback
loop (i.e., v is reachable form u and u is reachable from v) and belong to the same level.

6 For comparison, Kampmann’s (1996) exhaustive algorithm to identify feedback loops in a cycle set had identified
over 12,000 feedback loops in the same cycle set before it was interrupted by an out-of-memory error.

7 There is a chance that the ILS formed from the shortest possible loops might be unique.

6. References

Burns J. 1979. An algorithm for converting signed digraphs to Forrester's Schematics. IEEE Transactions on
Systems, Man, and Cybernetics SMC-9(3): 115-124.

Cormen TH, Leiserson CE, Rivest RL. 1990. Introduction to algorithms. MIT Press: Cambridge MA.

Forrester JW. 1961. Industrial dynamics. MIT Press: Cambridge MA.

Homer JB. 1983. Partial-model testing as a validation tool for system dynamics. Proceedings of the 1983 Int.
System Dynamics Conference, pp.919-932. Chestnut Hill MA.

Kampmann CE. 1996. Feedback loop gains and system behavior. Proceedings of the 1996 Int. System Dynamics
Conference, pp.260-263. Cambridge MA.

Lyneis JM, Pugh AL. 1996. Automated vs. 'hand' calibration of system dynamics models: An experiment with a
simple project model. Proceedings of the 1996 Int. System Dynamics Conference, pp.317-320. Cambridge
MA.

Oliva R. 1996. Empirical validation of a dynamic hypothesis. Proceedings of the 1996 Int. System Dynamics
Conference, pp.405-408. Cambridge MA.

Oliva R. 2000a. A Matlab implementation to assist Model Structure Analysis. System Dynamics Group,
Massachusetts Institute of Technology, Memo D-4864. Cambridge MA. Available from
http://www.people.hbs.edu/roliva/research/sd/.

Oliva R. 2000b. Model Calibration as a Testing Strategy for Dynamic Hypotheses. Harvard Business School,
Working Paper #01-047. Boston, MA. Available from http://www.people.hbs.edu/roliva/research/sd/.

Warfield JN. 1989. Societal systems: Planning, policy and complexity. Intersystems Publications: Salinas CA.

	Go Back:

