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Abstract

The purpose of this paper is to present the dynamic optimal balance of production. Two
different formulations of this problem discussed here on the examples presented by authors.
The constrained and unconstrained optimization are presented on the basis of many simula-
tion experiments carried out by authors.
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1 Introduction

The problem of optimal dynamics balance of flows is almost completly new on the area of System
Dynamics method. The first attempts in this subject were undertaken by Kasperska (Kasperska
1990), then by Kasperska and Słota (Kasperska and Słota 2000) and the newest publication
by Kasperska, Mateja-Losa and Słota (Kasperska et al. 2000a, Kasperska et al. 2000b). These
attempts were conected with unconstrained optimization during simulation and simulation du-
ring optimization in sense of Coyle (Coyle 1996, Coyle 1998, Coyle 1999). Now authors extended
these formulations to constrained versions of the problem. Many interesting experiments were
taken and some conclusions are presented.

2 The constrained and unconstrained optimizations
of the dynamics balance of production

To approach this problem we have to return to the example of dynamics balance of production,
discussed in paper (Kasperska et al. 2000a, Kasperska et al. 2000b). In Figure 1 an example of the
production system, in view of extended Łukaszewicz symbols (Łukaszewicz 1975, Łukaszewicz
1976), is presented.

The element in ”double surrounding” was called ”optimal balance of α, β, γ”, and has more
important meaning here. Now we want to concentrate on these parts of the model which are
related to constrained and unconstrained optimization in sense of Coyle (Coyle 1996, Coyle
1999).

The parameters α, β, γ were optimized during simulation (and have lower and upper limits).
We assume that there are six cases of balances:

I) unconstrained balance of flows, α + β + γ is optional (any), the formulation of the
objective function fob is clear from the figure 1 (it consists of three elements with three
weighting factors);



Figure 1. Optimal dynamics balance of production.

II) constrained balance of flows, α + β + γ = 1, this condition denotes full accordance
with the actual production of three items with optimal value of their production. Addition
of penalty function was required what resulted in the occurence of discrepancies from the
condition (α+β+γ = 1). When the condition is not fulfiled (α+β+γ < 1 or α+β+γ > 1)
the massive penalty factor named kara is added to the value of the base function fob.
Technically speaking it has a form of:

penalty = kara ∗max
(
0, abs(α+ β + γ − 1)

)
;

III) constrained balance of flows, α + β + γ ¬ 1. The condition of balance is now ”not
sharp”. The difference between case II a this one is that now penalty function has the
form of:

penalty = kara ∗max
(
0, α+ β + γ − 1

)
.

Only when α+ β + γ > 1 the kara is added to the base function fob;

IV) constrained balance of flows, α+β+ γ < 1. The condition of balance is now ”sharp”.
The logistic alternative function clip (see Coyle 1977, Coyle 1996, Forrester 1961, Forrester
1972) is now added:

penalty = kara ∗ clip
(
1, 0, α + β + γ, 1

)
.

The interesting point of view is: how to interpret such a condition α + β + γ < 1. We
think that in such a case the actual values of possible production are bigger than those
required by optimal balance of production. In the affect it should cause the limitation of
actual production;

V) constrained balance of flows, α + β + γ ­ 1. The condition of balance is now ”not
sharp”. Similarly to IV, the logistic function clip is added:

penalty = kara ∗ clip
(
0, 1, α + β + γ, 1

)
.

We can interpret such a condition in the following way: the possibilities of production of
three items are too small when compared to those suggested by optimal balance (α+β+γ >
1) and this should cause the development of these possibilities;



VI) constrained balance of flows, α + β + γ > 1. This is a ”sharp” version of type V.
Similarly to IV and V, we added the logic function clip:

penalty = kara ∗ clip
(
1, 0, 1, α + β + γ

)
.

Different cases of balances (I–VI) require different base conditions of parameters α, β, γ (see
tables 1–6 in the next section of this paper).

Many interesting experiments were undertaken by authors using COSMIC and COSMOS
(Cosmic 1994, Coyle 1996). We have to stress that we are on the beginning of the way to better
experimentation with COSMIC and COSMOS. Lots of attention should be paid to chosing the
factor kara and the base value of parameters.

Now we want to apply the constrained optimization to our idea presented in Lozanna (Ka-
sperska et al. 2000a, Kasperska et al. 2000b), named ”optimization during simulation”. In that
article we promised (in conclusions) that it would be interesting to investigate the so called
”pseudosolution” of differencies Mx− b (see Legras 1974) at the condition xi ­ 0, i = 1, 2, 3. In
such a case of optimal balance of production we have to solve the system of equations, which is
created from the balance of the value of three properties of flows: mass balance (”rate of flow”
in Forrester sense), cost balance and personal balance. The idea of constrained optimization
(xi ­ 0) required the extension of matrix M to the form of:

M =




1 1 1
ucp1 ucp2 ucp3

ulp1 ulp2 ulp3

1 0 0
0 1 0
0 0 1



,

where: ucpi – unit cost of the production of product pi, i = 1, 2, 3, ulpi – unit labour of the
production of product pi, i = 1, 2, 3. The matrix b should be extended to the form:

b =
(
r2, tcp, tle, b4, b5, b6

)T
,

where: r2 – output rate of raw material (production), tcp – total cost expenditure of production,
tle – total labour expenditure of production, bi, i = 4, 5, 6 – the number of large value (chosen
experimentally). The solution of equation:

M · x = b

has taken the form of (Legras 1974):

x = (MT ·M)−1 ·MT · b.

To computer programing of this we used DYNAMO for Windows (Dynamo 1994). Authors’
ideas were supported by their mathematical background and possibilities of language DYNAMO.
The readers can see this in Appendix A.

The comparison of the results of both authors’ investigations: optimization during simula-
tion (in sense of solving system of balance equation during simulation) and simulation during
optimization (in sense of Coyle), we can see discussing figures in the next section of the paper.



3 The results of simulation

First we want to present some of the results of the experiments that we achieved from simulation
during optimization (using COSMIC and COSMOS).

Tabel 1 contains the results of the first experiment type I of optimization (described in
section 2 of our paper). We can see that all of the three parameters: α, β, γ are assuming their
upper limits and find the value of function fob which constitutes 34 % of its initial value.

Table 1.

Parameter Final Orginal Lower Upper
value value limit limit

α 1.0 0.50 0 1
β 1.0 0.25 0 1
γ 1.0 0.25 0 1

Initial value of objectiv function fob 0.124 · 1010

Final value of objectiv function fob 0.420 · 109

Final value of sfftb 10.3 · 107

Final value of sffcp 10.2 · 108

Final value of sfflp 80.5 · 106

Table 2 contains the results of the experiment number 2 type I of optimization, which differ
from the assumption of the experiment number 1 about the values of parameters tcp and tle
(tcp differ from 7000 to new value 3500 and tle from 1800 to 1000). Parameter α assumes its
lower imit, and final value of function fob has 19 % of its initial value.

Table 2.

Parameter Final Orginal Lower Upper
value value limit limit

α 0.000 0.50 0 1
β 0.855 0.25 0 1
γ 0.924 0.25 0 1

Initial value of objectiv function fob 0.203 · 109

Final value of objectiv function fob 0.383 · 108

Final value of sfftb 15.7 · 106

Final value of sffcp 76.0 · 106

Final value of sfflp 18.9 · 106

Table 3 contains the results of the experiment number 3 of type II of optimization (α+β+γ =
1). Parameters α and γ assume their lower limits and parametr β assumes its upper limit. The
value of objective function fob is 61 % of its initial value. The characteristic result is that
sfftb = 0.

Table 4 contains the results of the experiment number 4 of type III of optimization (α+β+
γ ¬ 1). The sum of values of parameters α, β and γ is considerably smaller than one, and the
value of objective function fob is 84 % of its initial value.

Table 5 contains the results of the experiment number 5 of type IV of optimization (α +
β + γ < 1). The assumed values of α, β and γ are such that their sum is smaller than one. The
value of objective function fob is 92 % of its initial value. Such results show that chosen initial
values were very close to the optimum values.



Table 3.

Parameter Final Orginal Lower Upper
value value limit limit

α 0.0 0.50 0 1
β 1.0 0.25 0 1
γ 0.0 0.25 0 1

Initial value of objectiv function fob 0.186 · 1010

Final value of objectiv function fob 0.113 · 1010

Final value of sfftb 0.0
Final value of sffcp 20.89 · 108

Final value of sfflp 71.74 · 106

Table 4.

Parameter Final Orginal Lower Upper
value value limit limit

α 0.429 0.50 0 1
β 0.559 0.25 0 1
γ 0.003 0.25 0 1

Initial value of objectiv function fob 0.124 · 1010

Final value of objectiv function fob 0.105 · 1010

Final value of sfftb 18.34 · 102

Final value of sffcp 29.36 · 108

Final value of sfflp 73.23 · 106

Table 5.

Parameter Final Orginal Lower Upper
value value limit limit

α 0.365 0.30 0 1
β 0.317 0.25 0 1
γ 0.317 0.25 0 1

Initial value of objectiv function fob 0.194 · 1010

Final value of objectiv function fob 0.176 · 1010

Final value of sfftb 1.0314
Final value of sffcp 32.87 · 108

Final value of sfflp 97.95 · 106

Table 6 contains the results of the experiment number 6 of type VI of optimization (α+β+
γ > 1). The parameters α, β and γ assumed their upper limit values. The value of objective
function fob is 34.3 % of its initial value.

Some of these results are presented in an illustrative form on figures 2–10.
Now we want to present some of the results of the experiments that we achieved from

optimization during simulation (using DYNAMO for Windows). Some values of parameters ucp1

(see Section 2 of this paper), tle, tcp and values of bi, i = 4, 5, 6 vary in respective experiments
numbered 1–5 (see program in Appendix A). The system appeared to be very sensitive to these
values, what readers can see in figures 11–13.



Table 6.

Parameter Final Orginal Lower Upper
value value limit limit

α 1.0 1.00 0 1
β 1.0 0.25 0 1
γ 1.0 0.25 0 1

Initial value of objectiv function fob 0.168 · 1010

Final value of objectiv function fob 0.577 · 109

Final value of sfftb 10.32 · 107

Final value of sffcp 10.22 · 108

Final value of sfflp 80.45 · 106

Figure 2. The results of unconstrained optimization: α+β+ γ = optional (the dynamics of the
characteristic of some variables of the production system).



Figure 3. The results of unconstrained optimization: α+β+ γ = optional (the dynamics of the
characteristic of the objective function and its elements).

Figure 4. The results of unconstrained optimization: α+β+ γ = optional (the dynamics of the
characteristic of the production rates for three items).



Figure 5. The results of constrained optimization: α + β + γ = 1 (the dynamics of the charac-
teristic of some variables of the production system).

Figure 6. The results of constrained optimization: α + β + γ = 1 (the dynamics of the charac-
teristic of the objective function and its elements).



Figure 7. The results of constrained optimization: α + β + γ = 1 (the dynamics of the charac-
teristic of the production rates for three items).

Figure 8. The results of constrained optimization: α + β + γ < 1 (the dynamics of the charac-
teristic of some variables of the production system).



Figure 9. The results of constrained optimization: α + β + γ < 1 (the dynamics of the charac-
teristic of the objective function and its elements).

Figure 10. The results of constrained optimization: α+ β + γ < 1 (the dynamics of the charac-
teristic of the production rates for three items).



Figure 11. The dynamics of the characteristic of some variables of the model by optimization
during simulation (ucp1 = 10, tcp = 4000, tle = 990, b4 = b5 = b6 = 300).

Figure 12. The dynamics of the characteristic of some variables of the model by optimization
during simulation (ucp1 = 10, tcp = 3500, tle = 1000, b4 = b5 = b6 = 50).



Figure 13. The dynamics of the characteristic of some variables of the model by optimization
during simulation (ucp1 = 10, tcp = 4000, tle = 990, b4 = 100, b5 = b6 = 50).

4 Conclusion

After modelling and simulating some optimal balance of production we have come up to the
following conclusions:

a) The optimization during simulation allows to achieve the optimal pseudosolutions of the
underdetermined system of equations (in sense of Legras (Legras 1974)). The solutions
keep limitation xi ­ 0, i = 1, 2, 3, which was required by the physical sense of flows. The
future experiments will go towards more precise selection of the value of ”large” variables
(see section 2) in matrix b, to minimize the norm of the discrepancies (Axi−bi), i = 1, 2, 3.

b) The simulation during optimization (in sense of Coyle) allows to achieve the optimal
solution (the value of parameters α, β, γ) and the objective function fob. The future
experiments should extend the set of optimizing parameters, for example the parameters:
tle, tcp, ucpi, i = 1, 2, 3. Much more attention should be paid to selecting the base value
of parameters α, β, γ in different kinds of constrained optimization.

The authors are on the beginning of the way to better experimentation with COSMIC and
COSMOS. We are planning to extend the optimal balancing of flows to more value of dimension
and more sophisticated form of the objective function.

We want to thank to Prof. R. G. Coyle for the inspiration from his books and articles and
for his COSMOS and COSMIC which are the fruitful tools for working with System Dynamics
models.
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Appendix A. Program in DYNAMO

* Balance of production of 3 items
note
note level of raw material during transformation
note
n lmt=1000
l lmt.k=lmt.j+dt*(r1.jk-r2.jk)
note
note input rate to lmt (r1)
note
r r1.kl=g1*input.k
c g1=5
note
note input - source of raw material
note
a input.k=po+p1*sin((6.28*time.k)/perd)
c po=100
c p1=30
c perd=52
note
note output rate from lmt (r2)
note
r r2.kl=lmt.k/t1
c t1=2
note
note unit cost of production of 1-st item (ucp1)
note unit cost of production of 2-st item (ucp2)
note unit cost of production of 3-st item (ucp3)
note
c ucp1=10
c ucp2=5
c ucp3=2
note
note unit labour of production of 1-st item (ulp1)
note unit labour of production of 2-st item (ulp2)
note unit labour of production of 3-st item (ulp3)
note
c ulp1=2
c ulp2=2
c ulp3=1
note
note total cost of expediture of production (tcp)
note total labour of expediture of production (tlc)
note
c tcp=4000
c tle=990
note
note vector b
note
a b1.k=r2.kl



a b2.k=tcp
a b3.k=tle
a b4.k=100
a b5.k=50
a b6.k=50
note
note vector at.b
note
a bb1.k=b1.k+b4.k+b2.k*ucp1+b3.k*ulp1
a bb2.k=b1.k+b5.k+b2.k*ucp2+b3.k*ulp2
a bb3.k=b1.k+b6.k+b2.k*ucp3+b3.k*ulp3
note
note matrix c=at.a
note
a c11.k=2+ucp1*ucp1+ulp1*ulp1
a c12.k=1+ucp1*ucp2+ulp1*ulp2
a c13.k=1+ucp1*ucp3+ulp1*ulp3
a c21.k=1+ucp1*ucp2+ulp1*ulp2
a c22.k=2+ucp2*ucp2+ulp2*ulp2
a c23.k=1+ucp2*ucp3+ulp2*ulp3
a c31.k=1+ucp1*ucp3+ulp1*ulp3
a c32.k=1+ucp2*ucp3+ulp2*ulp3
a c33.k=2+ucp3*ucp3+ulp3*ulp3
note
note determinant of matrix c=at.a
note
a detc.k=-c13.k*c22.k*c31.k+c12.k*c23.k*c31.k+c13.k*c21.k*c32.k ^

-c11.k*c23.k*c32.k-c12.k*c21.k*c33.k+c11.k*c22.k*c33.k
note
note matrix d=Det[c]*Inverse[c]
note
a d11.k=c22.k*c33.k-c23.k*c32.k
a d12.k=c13.k*c32.k-c12.k*c33.k
a d13.k=-c13.k*c22.k+c12.k*c23.k
a d21.k=-c21.k*c33.k+c31.k*c23.k
a d22.k=-c13.k*c31.k+c11.k*c33.k
a d23.k=c13.k*c21.k-c11.k*c23.k
a d31.k=-c22.k*c31.k+c21.k*c32.k
a d32.k=c12.k*c31.k-c11.k*c32.k
a d33.k=-c12.k*c21.k+c11.k*c22.k
note
note rate of production of 1-st item (rp1)
note rate of production of 2-st item (rp2)
note rate of production of 3-st item (rp3)
note
a rp1.k=(bb1.k*d11.k+bb2.k*d12.k+bb3.k*d13.k)/detc.k
a rp2.k=(bb1.k*d21.k+bb2.k*d22.k+bb3.k*d23.k)/detc.k
a rp3.k=(bb1.k*d31.k+bb2.k*d32.k+bb3.k*d33.k)/detc.k
note
note
note



a bl1.k=(b1.k-rp1.k-rp2.k-rp3.k)*(b1.k-rp1.k-rp2.k-rp3.k)
a bl2.k=(ucp1*rp1.k+ucp2*rp2.k+ucp3*rp3.k-b2.k)
x *(ucp1*rp1.k+ucp2*rp2.k+ucp3*rp3.k-b2.k)
a bl3.k=(ulp1*rp1.k+ulp2*rp2.k+ulp3*rp3.k-b3.k)
x *(ulp1*rp1.k+ulp2*rp2.k+ulp3*rp3.k-b3.k)
a bl4.k=(rp1.k-b4.k)*(rp1.k-b4.k)
a bl5.k=(rp2.k-b5.k)*(rp2.k-b5.k)
a bl6.k=(rp3.k-b6.k)*(rp3.k-b6.k)
a functio.k=bl1.k+bl2.k+bl3.k+bl4.k+bl5.k+bl6.k
note
note parameters of simulation
note
spec length=104/dt=1/savper=1
save rp1,rp2,rp3,r1,r2,lmt,detc,functio

Appendix B. Program in COSMIC

note Balance of production of 3 items
l lmt.k=lmt.j+dt*(r1.jk-r2.jk)
n lmt=0
c g1=5
c po=100
c p1=30
c perd=52
c t1=2
r r1.kl=input.k*g1
c tcp=7000
c ucp1=10
c ucp2=5
c ucp3=2
c alfa=0.5
c beta=0.25
c gamma=0.25
c tle=1800
c ulp1=2
c ulp2=2
c ulp3=1
c w1=10
c w2=2
c w3=2
r r2.kl=lmt.k/t1
a input.k=po+p1*SIN(6.283*time.k/perd)
a fob.k=w1*sfftb.k+w2*sffcp.k+w3*sfflp.k
r rs1.kl=(1-alfa-beta-gamma)*ar2.k
a ar2.k=lmt.k/t1
r rp1.kl=alfa*ar2.k
r rp2.kl=beta*ar2.k
r rp3.kl=gamma*ar2.k
r rs2.kl=tcp-rp1.kl*ucp1-rp2.kl*ucp2-rp3.kl*ucp3
r rs3.kl=tle-rp1.kl*ulp1-rp2.kl*ulp2-rp3.kl*ulp3
l sfftb.k=sfftb.j+dt*((rs1.jk)**INT(2))



n sfftb=wp1
l sffcp.k=sffcp.j+dt*((rs2.jk)**INT(2))
n sffcp=wp2
l sfflp.k=sfflp.j+dt*((rs3.jk)**INT(2))
n sfflp=wp3
c wp1=0
c wp2=0
c wp3=0
note
note output and control sector
note
c dt=1
c length=104
c prtper=5
c pltper=5
print 1)rp1,rp2,rp3
plot rp1=1,rp2=2,rp3=3
note
note simulation experiments
note
run basic model of balance
note
note definitions of variables
note
d alfa=(1) fraction of production ar2 (of item P1)
d ar2=(unit/week) transformation of raw material (production)
d beta=(1) fraction of production ar2 (of item P2)
d dt=(week) solution interval
d fob=(1) objuction function
d g1=(1) gain between input and output rate r2
d gamma=(1) fraction of production ar2 (of item P3)
d input=(unit/week) source of raw material
d length=(week) simulated period
d lmt=(unit) level of raw material during transformation
d p1=(1) parameter of amplitude of sinusoidal input
d perd=(week) parameter, period of input
d pltper=(week) graph plotting interval
d po=(1) parameter step of input
d prtper=(week) table printing interval
d r1=(unit/week) input rate to lmt
d r2=(unit/week) output rate to lmt
d rp1=(unit/week) rate of production of first item (p1)
d rp2=(unit/week) rate of production of second item (P2)
d rp3=(unit/week) rate of production of third item (P3)
d rs1=(unit/week) input rate to sfftb
d rs2=(dolar/week) input rate to sffcb
d rs3=(men/week) input rate to sfflb
d sffcp=($**2/week) sum function of fitting cost balance
d sfflp=(men**2/week) sum function of fitting person balance
d sfftb=(unit**2/week) sum function of fitting total balance
d t1=(week) average time of production



d tcp=($/week) total cost expenditure of production (rate)
d time=(week) time within simulation
d tle=(men/week) total labour expenditure of production (rate)
d ucp1=($/unit) unit cost of production of product P1
d ucp2=($/unit) unit cost of production of product P2
d ucp3=($/unit) unit cost of production of product P3
d ulp1=(men/unit) unit labour of production of product P1
d ulp2=(men/unit) unit labour of production of product P2
d ulp3=(men/unit) unit labour of production of product P3
d w1=(1) weighting factor for sfftb
d w2=(1) weigting factor for sffcb
d w3=(1) weighting factor for sfflb
d wp1=(unit**2/week) initial condition for sfftb
d wp2=($**2/week) initial condition for sffcb
d wp3=(men**2/week) initial condition for sfflb
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