
Explaining the Behavior of System Dynamics Models

MÁRCIO DE OLIVEIRA BARROS
CLÁUDIA MARIA LIMA WERNER
GUILHERME HORTA TRAVASSOS

COPPE / UFRJ – Computer Science Department
Caixa Postal: 68511 - CEP 21945-970 - Rio de Janeiro – RJ

Voice: 5521 562-8675 / Fax: 5521 562-8676
{marcio, werner, ght}@cos.ufrj.br

Abstract

In this paper we present a technique that helps the analysis of system dynamics models.
The technique, namely Event Tracking, maps simulation trends over time to predefined
events. It uses state machines whose behavior can be traced to changes suffered by selected
variables in a system dynamics model. Changes to variable values trigger messages, which are
presented to the model analyst to help the interpretation of the underlying model behavior.

Event Tracking is an interesting feature to system dynamics simulators, since it maps the
mathematical results achieved through simulation to natural language statements. It allows a
trainer assistant to define the relevant events for a model, highlighting the model major
features through event messages. We have implemented the proposed technique in the
ILLIUM system dynamics simulator. The simulator also allows a student to track model
behavior, executing a simulation and following the presented messages.

KEYWORDS: model analysis, event tracking, simulator tools

1 Motivation

The behavior of large system dynamics models is usually hard to understand. When a
behavior equation is composed by several variables, each one described by a complex
equation, the evaluation of causal relationships among model parameters and results requires
the analysis of a large set of simulation trends. This task is even more difficult when feedback
loops are present, due to the recursive effect of some variables upon their future behavior.

The mathematical representation of system dynamics models is interesting to formally
describe the rules embedded within the model. However, this representation is not well suited
for human interpretation. Therefore a technique to map the mathematical results achieved
through simulation to a representation better suited for human analysis is worthwhile.

We observed the need for such a technique during a software engineering graduate course.
At this course, we have asked a group of students to analyze the software project system
dynamics model developed by Abdel-Hamid and Madnick (1991). This model captures the
effects of management decisions upon the cost and development time of a software project,
being composed by more than two hundred equations. The students were supposed to run
some predefined simulations, each one describing a particular management decision, and
determine the impact of such decisions upon the software project behavior. They were
successful in running the simulations, but they could not interpret their results without the aid
of supervisors who have been studying the model for several weeks.

Since we believe that system dynamics models are valuable training tools and should be
analyzed without on-site help of specialists, we observed the way some analysts use to
interpret model results in order to create a technique that students can apply to this end. We

perceived that during the analysis of a model, analysts track the values of selected variables
and extract the relevant events that occurred during model execution from their simulation
trends. These events are used to explain model behavior.

In this paper we present a technique that automates the tracking of simulation trends. The
technique searches for predefined behavior patterns, identified by specific configurations of
variable values, and triggers messages to alert the user about the occurrence of relevant events
during the simulation. These messages translate the simulation results to natural language.
The technique, namely Event Tracking, allows the specification of the relevant events and
their tracking along simulation trends.

This paper is organized in four sections. Within this one we present the motivation for this
work. In Section 2, we present the concept of event sets and their composition. In Section 3,
we present the current implementation of the Event Tracking technique and an example of its
application. Finally, Section 4 presents the future perspectives of this work, highlighting the
need for experiments that prove its usefulness.

2 Event Sets

Event Tracking is based on executing state machines whose behavior is dictated by the
values of predefined model variables. An event set is a state machine that maps particular
values of one or more variables to events that are relevant to the interpretation of a model
behavior. As any state machine, an event set is composed by states and transitions.

A state represents a set of characteristics that can be found on an event set in a simulation
step. The execution of an event set starts from a specific state, namely the initial state. It
proceeds as the event set changes states due to the activation of its transitions. There can be
only one initial state in an event set.

A transition is a directed relationship between two states. A state change occurs when a
transition originating from the current state is activated. Every transition has an associated
condition that depends on a model variable. The condition specifies the range of values that
the variable must reach to activate the transition. In every simulation step, the transitions
originating from the current state are evaluated and, if a transition is activated, the current
state is set to its target state.

Every transition is also associated with a message. When the transition fires, the message is
sent to the user. Event Tracking logs these messages, which are supposed to highlight events
that help the user to understand model behavior. Transition messages can be parameterized by
model variables. Such parameters are replaced by the variable values in the particular
simulation step when the transition was activated.

Transition conditions can also account for the difference between the current value of a
model variable and its value when the event set reached the current state for the last time. The
condition can specify the range of values that this difference must reach to trigger the
transition, instead of specifying a range for the variable value. When an event set enters a
state, the values of the variables associated to its transitions are saved for future evaluation
within these conditions.

Several event sets can be concurrently analyzed during a single simulation. Event sets are
defined by model specialists and made available to less experienced model analysts. The
specialists are supposed to identify the most relevant variables within a model and the events
that explain model behavior. Event sets map these events, being distributed with the model
and ran by its analysts.

3 The Current Implementation

Event Tracking is currently implemented within the ILLIUM system dynamics simulator
(Barros, 2001). The simulator was developed at COPPE/UFRJ to allow the research of
techniques and tools to support system dynamics modeling and simulation. The simulator has
event set execution capabilities, logging transition messages and presenting these messages to
the user. Figure 1 presents a snapshot from the Event Tracking tool of the ILLIUM simulator.
The tool shows the available event sets in the left and the messages captured in the last
simulation in the right. The number of simulation steps is also presented in the top-left corner
of the window.

The event sets in Figure 1 were developed for the Abdel-Hamid and Madnick (1991)
software project model. They capture the relationships of a growing job, schedule pressure,
developers overwork, and error rates. Model analysts can observe that, as work grows and the
conclusion date is not modified, schedule pressure raises. As developers work harder to
accomplish more work in the same schedule, lower quality code is produced and error rates
rise. Event set are distributed in a XML file format (W3C Consortium, 2000). Since the
current implementation of the ILLIUM tool does not provide an event set authoring tool,
XML was selected due to the availability of XML editors. Figure 2 presents the description of
the schedule pressure event set.

<EVENTSET name="Developers Exhaustion">
<STATE name="Base" Initial="True">

<TRANSITION target="Overworking" variable="AFMDPJ" condition="GE 0.7">
Step $Step: Developers started overworking</TRANSITION>

</STATE>

<STATE name="Overworking">
<TRANSITION target="Hardwork" variable="AFMDPJ" condition="GE 0.9">

Step $Step: Developers are working very hard. Error rates may grow</TRANSITION>
<TRANSITION target="Base" variable="AFMDPJ" condition="LT 0.7">

Step $Step: Developers relaxed</TRANSITION>
</STATE>

<STATE name="HardWork">
<TRANSITION target="Slavery" variable="AFMDPJ" condition="GE 1.1">

Step $Step: Developers are working too hard. Be alert to high error rates.</TRANSITION>

Figure 1 – Event Tracking tool implementation in the ILLIUM simulator

<TRANSITION target="Base" variable="AFMDPJ" condition="LT 0.7">
Step $Step: Developers relaxed</TRANSITION>

</STATE>

<STATE name="Slavery">
<TRANSITION target="Base" variable="AFMDPJ" condition="LT 0.7">

Step $Step: Developers relaxed</TRANSITION>
</STATE>

</EVENTSET>

Figure 2 – XML representation for the Developers Exhaustion event set

4 On Going Work and Future Perspectives

In this paper, we presented Event Tracking, a technique that uses state machines whose
behavior is driven by model variables. They map mathematical results achieved through
simulation to natural language, which is more suitable to model behavior interpretation.

From our first observations, Event Tracking seems a promising technique. However, we
have not yet made experiments to prove its usefulness. We intend to plan and run an
experiment to verify if the proposed technique helps the interpretation of simulation results.
We also intend to improve its current implementation developing an event set authoring tool.
We expect to publish results obtained from the use of Event Tracking in future papers.

Acknowledgements

The authors would like to thank CNPq, CAPES and FINEP for their financial investment
in this work.

References

Abdel-Hamid, T., Madnick, S.E. (1991). Software Project Dynamics: an Integrated Approach,
Prentice-Hall Software Series, Englewood Cliffs, New Jersey

Barros, M.O. (2001) ILLIUM - System Dynamics Simulator, ILLIUM tool homepage at URL
http://www.cos.ufrj.br/~marcio/Illium.html

W3C Consortium (2000). “Extensible Markup Language (XML) 1.0 (Second Edition)”, W3C
Recomendation, available at http://www.w3.org/TR/REC-xml

	Go Back:

