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Abstract 

 

The purpose of the System Dynamics method is to study the relationship between 

structure and behavior in non-linear, dynamic systems. In such systems, the 

significance of various structural components to the behavior pattern exhibited, 

changes as the behavior unfolds. Changes in structural significance, in turn modifies 

that behavior pattern, which, in turn, feeds back to change the relative significance of 

structural components. We develop a mathematical framework within which we can 

study the characteristics of this feedback between structure and behavior. This 

framework is based on a piecewise observation of the model over time, a 

characterization of the behavior pattern exhibited using eigenvalue analysis, and an 

identification of the relative contribution of each of the loop in the model to each of 

the eigenvalues that characterize the total behavior, and thus to the total behavior. 

This work is an extension of the work by Nathan Forrester and Christian Kampmann 

on the use of eigenvalue analysis in system dynamics. Our main contribution, in this 

paper, is embedding eigenvalue analysis in a broader analytic framework to capture 

the transient as well as long-term behavior of non-linear models in general. The 

mathematical framework developed has been implemented in the form of computer 

algorithms and tested in a variety of cases. 
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Using this method, we can classify, at any point in time, the feedback loops in a 

system with respect to their relative significance to the system behavior. This allows 

us to offer a structural interpretation of the behavior exhibited. Moreover, the method 

is a key to managing such systems because it allows us to rank, at any point in time, 

the loops of a model with respect to their significance to the behavior of that model.  

Thus, as a basis for our management of the system, we may identify the loops that 

contribute most significantly to the model behavior in a favorable or in an 

unfavorable way, and, consequently, the loops to strengthen and weaken, respectively, 

while managing the system.  
 

 

1 Introduction 
 

System dynamics is the theory of the relationship between structure and behavior in 

dynamic systems. One of the most challenging tasks in system dynamics has been to 

understand how behavior emerges from the underlying structure, i.e. how behavior is 

created in non-linear models and how that behavior feeds back to change the relative 

significance of the various loops of the underlying model structure. 

 

In this paper, we will identify the units of analysis of the structure and the behavior of 

a non-linear model and develop a method by which we can identify the causal 

relationship between the two. More specifically, we want to attribute the properties of 

the model behavior, characterized by the Behavior Pattern Indexes, to properties of 

the underlying model structure, characterized by the gains of the loops in the model. 

As indicated in figure 1, we will demonstrate that the eigenvalues of the model 

constitute the link between model structure and behavior. On the one hand, they 

originate solely from the loops of the structure of the model and, on the other hand, 

they characterize the behavior of the model. 
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Fig. 1: Structure drives behavior through the intermediate eigenvalues link. 
 

We will illustrate the theory presented in this paper with several examples. A simple 

main example --example 1-- has been incorporated throughout the text to demonstrate 

the elements of the theory. In addition, we use other, more specific examples to 

illustrate particular issues raised. At the end of the paper, we present the “yeast cells 

generation” example to demonstrate all the steps of the procedure that we recommend 

be followed in the analysis of complex, dynamic systems. 

 

Our main example, example 1, described below, is inspired by a similar example 

given by Mojtahedzadeh (Mojtahedzadeh, 1996, p. 38) to demonstrate that a 

traditional eigenvalue analysis, alone, is not sufficient to explain the transient 

behavior of even such a simple model. He argued that eigenvalue analysis could only 

be used to study long-term behavior. Our contribution, in this respect, is to 

demonstrate that eigenvalue analysis can be embedded in a broader analytic 

framework to capture the transient as well as long-term behavior of non-linear models 

in general. 

 

Example 1, presented in figure 2 and table 1, is a simple linear, second order model 

with state variables, Level_1 and 2, governed by the rates Slope_1 and _2, 

respectively.  

 

Behavior

Eigenvalues

Structure (loop gains)
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Fig. 2: Example 1, stock and flow diagram 
 

init  Level_1 = 7 
flow  Level_1 = Slope_1 
 
init  Level_2 = 3 
flow  Level_2 = Slope_2 
 
Slope_1 = (-0.15*Level_1)+(-0.2*Level_2)+const_1 
Slope_2 = (-0.2*Level_1)+(-0.15*Level_2) 
 
Const_1 = 0.1 
 
Simulation Setup Parameters: 
Start Time=0; Stop Time =45; Simulation Time Step = 0.1 
 

Table 1: Example 1, equations 

 

Note: In this paper, we denote scalars using variables in small letters; vectors in bold, 

underscored, small letters; and matrices in bold, capital letters. 

 
 
2 Behavior pattern indexes  
 
2.1 Definitions and justification 
 

The properties of the behavior that we will be focusing on are the slope (s), and the 

curvature (c) of each state variable (x). These are defined, in this paper, as follows: 

- the slope, s, is defined as the (time) derivative, x& , of that state variable, x; and  

Level_1

Level_2

Const_1

Slope_1

Slope_2
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- the curvature, c, is defined as the double (time) derivative, x&& , of that state variable. 
 

The convergence/divergence of a state variable at any instant of time is defined as the 

rate of change of the absolute value of the slope, s, of this state variable, i.e. d|s|/dt. If 

the state variable is in a convergent mode, then d|s|/dt will be negative, i.e. the abso-

lute value of the slope, |s|, is decreasing with time. If the state variable is in a diver-

gent mode, then d|s|/dt will be positive, i.e. the absolute value of the slope vector, |s|, 

is increasing with time. Note that |s|=0 is a partial condition for equilibrium. 

 

As the state of a model changes over time, so do the slopes associated with each of the 

state variables. Consequently, for a state variable x, we may express the new slope, 

i.e. sx new, in terms of the original slope, sx current, and the rate of change in the slope 

over the subsequent period of time, i.e. the curvature, cx.  
 

sx new = sx current + ∆t * c x 

 
We may now investigate the properties of the ratio: 
 

cx / sx current 
 
We want to illustrate that this ratio can be considered as a proxy for the d|sx|/dt 

indicator. Note that if cx and sx current have the same sign, then this ratio will be 

positive, and the absolute value of the slope will increase (i.e. d|sx|/dt > 0), - an 

indicator of divergent behavior. If, on the other hand, the two have opposite signs, 

then the ratio will be negative, and the absolute value of the slope will decrease (i.e. 

d|s|/dt < 0), - an indicator of convergent behavior. If c = 0, then the ratio will be 0, so 

that the absolute value of the slope will not change, i.e. d|sx|/dt = 0. In such a case, if 

cx changes its value from -ε (ε− >0) to +ε, then the ratio (cx / sx current) will change from 

negative to positive -- or the reverse, depending on the sign of sx current. As a 

consequence, the value of d|sx|/dt will also change from negative to positive -- or the 

reverse, - an indicator of a transition in the mode of behavior from convergence to 

divergence -- or the reverse. If sx current changes its value from -ε to +ε, then the ratio 

(cx / sx current) will change from  -∞  to +∞  -- or the reverse, depending on the sign of cx. 

That would be an indicator of a discontinuity in d|sx|/dt, and thus, also in this case, a 

transition in the mode of behavior from convergence to divergence – or the reverse.  
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Since the ratio cx / sx current is characterization of the mode of behavior exhibited by the 

state x, we define an indicator of that behavior in the form of a Behavior Pattern 

Index (BPI), associated with a particular state variable, x, as: 

 

BPIx = cx / sx 

 

BPIx serves as a normalized proxy for the d|sx|/dt. 

 

For the model as a whole, there is an array of slopes, the s ( x&) vector, and curvatures, 

the c ( x&& ) vector. For a model, we define the overall BPI to be the angle between the 

two vectors, s and c. Generally, in a nth order model, say, a 300 states model the s and 

c vectors cannot be visualized (in R300). Yet, any two vectors in R300 will, however, 

span a two-dimensional R2 subspace of R300; i.e. a plane 1. In this plane, the angle 

between the two vectors is real and well defined (measurable). In fact, the angle (θ) 

between the two vectors s and c is given as: 

 

||*||
.

cs
csCos =θ (Watkins, 1991, p. 137) 

 

Where s.c is the inner (scalar) product of the two vectors; |s| is the (Euclidian) length 

of slope vector; and |c| is the (Euclidian) length of curvature vector. 

 

The angle between s and c is an indication of the divergence or convergence of the 

model as a whole at any time instance. If the angle (between s and c) is in the range of 

[0o,90o), then the model, as a whole, will be in a divergent mode. If, on the other hand, 

this angle is in the range of (90o,180o], then the model, as a whole, will be in a 

convergent mode. The condition of a “sustained mode” for the model as a whole is a 

persistent angle of 90o. 

 

The logic behind the idea of using the angle (between s and c) as an overall BPI is 

based on a generalization of the one-state variable case discussed above and goes as 

follows:  

                                                        
1 The two vectors will span a one-dimensional sub-space (i.e. a line) if they were linearly dependent. 
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The first step is to explicitly define what we mean by a divergent or a convergent be-

havior mode for the model as a whole. A direct measure of the convergence or diver-

gence of a model at any instant is the rate of change of the length of the slope vector, 

d|s|/dt. If the whole model is in a convergent mode, then d|s|/dt will be negative, i.e. 

the length of the slope vector, |s|, is decreasing with time. Note that a necessary 

condition for equilibrium of the model is |s|=0. If the whole model is in a divergent 

mode, then d|s|/dt will be positive, i.e. the length of the slope vector, |s|, is increasing 

with time. And if the whole model is in a sustained mode, then the length of the slope 

vector, |s|, is constant over time.  

 

The next step is to understand how the angle θ between the vectors s and c can be 

seen as a characterization of the rate of change of the length of the slope vector, 

d|s|/dt, in any nth order model. Now, in a very small time interval; 

 

s new =  s old + ∆t * c (a vector summation). 

 

In the same plane spanned by c and s, we can decompose the vector c into two 

components, one parallel to the vector s, and the other perpendicular to the vector s. 

The parallel component is; 

 

|c| cos(θ) (s /|s|), 

 

Where (s /|s|) is a unit vector along the same direction as the slope vector. The length 

of the perpendicular component is given as: 

 

|c| sin(θ). 

 

If one takes the limit of the equation (s new =  s old + ∆t * c) as 0→∆t , then the 

perpendicular component of c, will not affect the length of the vector s. It will just 

shift the direction of the vector s, i.e. it will make vector s rotate around the origo 2. 

                                                        
2 The angular velocity of the slope vector ω slope (the speed of rotation around the origo) can be 
calculated from the perpendicular component of c. See example 3 for illustration.  
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And the only component (of vector c) that will affect the length of the slope vector, |s|, 

is the parallel component, i.e. |c| cos(θ) (s /|s|). Consequently, we can conclude that if 

θ is in the range of [0o,90o), then cos(θ) > 0 and |s| will increase, i.e. d|s|/dt is positive. 

If, on the other hand, θ is in the range of (90o,180o], then cos(θ) < 0 and |s| will 

decrease, i.e. d|s|/dt is negative. Moreover, if θ equals 90o, then cos(θ) = 0 and |s| will 

be constant, i.e. d|s|/dt is zero. 

       

We may use the overall BPI (angle θ)  to characterize the mode of behavior of a 

model. This is because, using the angle θ, one can characterize qualitatively (pos. / 

neg.) the rate of change of the length of the slope vector, d|s|/dt. Thus the angle θ can 

be considered a proxy for d|s|/dt. 

 

In the rest of this section, we will present several examples to illustrate the use of 

behavior pattern indexes in SD models. 
 

 

2.2 Behavior pattern indexes –example 2 

 

Example 2 is a simple first order model with the state variable Level_1, governed by 

the Slope_1, - a model that can exhibit exponential growth or decay, depending on the 

value of the parameter Constant_1. A positive value implies exponential growth, 

while a negative one implies exponential decay. 

 

 
Fig. 3: Example 2, stock and flow diagram of the model 

 

Constant_1

Level_1Slope_1
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In order to analyze the model in example 2, we need to add an auxiliary structure, see 

figure 4, that calculates the pattern index, Pattern_Index, for the state variable based 

on the first derivative, Slope_1, and second derivative, Curv_1; it also calculates the 

rate of change of the absolute value of the slope, Rate_Change_ABS_Slope: 

 
 

 
Fig. 4: Example 2, stock and flow diagram of the calculation of the behavior 

pattern index, and the rate of change of the absolute value of the slope 
 
Below is the table of equations for example 2. 

 
init  Level_1 = 1 
flow  Level_1 = Rate_1 
 
Slope_1 = Constant_1*Level_1 
Curv_1 = DERIVN(Slope_1) 

Note: DERIVN is the time derivative function. 
 
Constant_1 = 2 (or –2) 
 
Pattern_Index = Slope_1/Curv_1 
ABS_Slope =ABS(Slope_1) 

Note: ABS is the absolute function. 
 
Rate_Change_ABS_Slope = DERIVN(ABS_Slope) 

 
Simulation Setup Parameters: 
Start Time=0; Stop Time =10; Simulation Time Step = 0.01 

 
Table 2: Example 2, equations 

 
For Constant_1 = 2, this model exhibits the following behavior with respect to the 

state variable (Level_1), BPILevel_1, and d|s|/dt: 

Rate_Change_ABS_Slope

ABS_Slope

Pattern_Index

Curv_1

Slope_1
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Fig. 5: Example 2, behavior, Constant_1= 2 

 
 
Note that the graphs for BPILevel_1 and d|s|/dt qualitatively provide the same informa-

tion about the state variable Level_1, -- that the state variable is divergent since both 

of them take positive values. BPILevel_1 is constant because it is a normalized expres-

sion of the divergence, i.e. of curvature, c with respect to slope, s. BPILevel_1 is thus a 

compact characterization of the mode of behavior exhibited by the state variable. 

 

In figure 6, we portray the relationship between the slope and curvature of Level_1. 

This is a linear relationship reflecting precisely the fact that there is a constant 

positive BPILevel_1, - i.e. a constant ratio between curvature and slope. 
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Fig. 6: Example 2, the relationship between the slope and the curvature of the 

state variable, Constant_1= 2 
 

 
We now turn to a characterization of the model in example 2 as a whole, recognizing 

the fact that this is a model with only one state variable. In this example, if; 

 

s= [v1] is a vector of one element 

∴  c = [2 * v1] is a vector of one element, 

then; 

Cos
||*||

.
cs

cs=θ  = 
|1*2|*|1|

1*2*1
vv

vv
 = 1 

 

Note that the overall BPI for the entire model is defined as the angle θ between the 

curvature and slope vectors. Thus the overall BPI is 0o, which is a qualitative 

indication of a divergent behavior mode exhibited by the model. 

 

Now, if, in this model, we change the value of Constant_1 from “2” to “–2”, then we 

will obtain the following behavior with respect to the state variable (Level_1), 

BPILevel_1, and d|s|/dt: 
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Fig. 7: Example 2, behavior, Constant_1= -2 
 
 
Again note that the graphs for BPILevel_1 and d|s|/dt qualitatively provide the same 

information about the state variable Level_1, -- as they both take negative values, 

indicating that the state variable is convergent. 

 

In figure 8, we once more portray the relationship between the slope and curvature of 

level_1. And again there is a linear relationship reflecting the fact that we have a 

constant, this time negative, BPILevel_1, - i.e. a constant ratio between curvature and 

slope. 
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Fig. 8: Example 2, the relationship between the slope and the curvature of the 
state variable, Constant_1= -2 

 

Once more, we turn to a characterization of the model in example 2 as a whole, - this 

time for Constant_1 = -2. In this example, if; 

 

s= [v1] is a vector of one element 

∴  c = [-2 * v1] is a vector of one element, 

then; 

Cos
||*||

.
cs

cs=θ  = 
|1*2|*|1|

1*2*1
vv

vv
−

−
 = -1 

 

Note that the overall BPI for the entire model is defined as the angle θ between the 

curvature and slope vectors. Thus the overall BPI is 180o, which is a qualitative 

indication of the convergent behavior mode exhibited by the model. 

 

2.3 Behavior pattern indexes –example 3 

 

Our next example, example 3 (fig. 9), is a second order model with the state variables 

Level_1 and 2, governed by the rates Slope_1 and _2, respectively. This example 

provides us with an opportunity to comment on the distinction between the behaviors 

of the individual state variables, characterized by BPI_1 (BPI Level_1) and BPI_2 (BPI 
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Level_2) respectively, and the behavior of the model as a whole, characterized by an 

overall BPI.  

 

Fig. 9: Example 3, stock and flow diagram of the model 

 

Fig. 10: Example 3, stock and flow diagram of the calculation of the behavior 

pattern indexes and the length of the slope vector. 
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Fig. 10 illustrates the auxiliary structure in example 3, that is responsible for 

calculating the behavior pattern indexes and the length of the slope vector. Below is 

the table of equations for example 3. 
 

init  Level_1 = 1 
flow  Level_1 = Slope_1 
 
init  Level_2 = 1 
flow  Level_2 = Slope_2 
 
Slope_1 = 0.1*Level_2 
Slope_2 = -0.1*Level_1 
 
Curv_1 = DERIVN(Slope_1) 
Curv_2 = DERIVN(Slope_2) 
 
BPI_1 = Curv_1/Slope_1 
BPI_2 = Curv_2/Slope_2 
 
Overall_BPI    = (180/PI)*ARCCOS( ( (Slope_1*Curv_1)+(Slope_2*Curv_2) ) /  
       (SQRT(Slope_1^2+Slope_2^2)*SQRT(Curv_1^2+Curv_2^2) ) ) 
 
Length_Slope_Vector=SQRT( (Slope_1^2)+(Slope_2^2)) 
 
Rate_Change_ABS_Slope1 = DERIVN(ABS(Slope_1)) 
Rate_Change_ABS_Slope2 = DERIVN(ABS(Slope_2)) 
 
Simulation Setup Parameters: 
Start Time=0; Stop Time =200; Simulation Time Step = 0.01. 
 

Table 3: Example 3, equations 

 

The behavior of this model is exhibited in figure 11 portraying the behavior of the 

state variables, Level_1, and 2; the individual BPIs, BPI_1 and BPI_2; the overall BPI 

(in this case constant); and the |s| (in this case constant, indicating a zero change in the 

length of the slope vector). In this model, while as each of the state variables are 

alternating between a converging and a diverging behavior mode, as indicated by the 

dynamics of the associated BPIs, the model as a whole exhibits a sustained mode of 

behavior (i.e. a sustained oscillation) as indicated by the overall BPI, that permanently 

takes the value 90o as well as the fact that the length of the slope vector, s, is constant. 
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Fig. 11: Example 3, behavior 
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We may now provide an explanation for the constant length of the slope vector in the 

case of a sustained oscillations based upon a decomposition of the curvature vector, c, 

into two components, - one along the slope vector and one perpendicular to that 

vector. In this case, the projection along the slope vector amounts to 0 (cos 90o = 0) 

and, therefore, the only change in the slope vector that takes place is a displacement 

perpendicular to that vector. This displacement is infinitely small and, consequently, 

does not cause a change in the length of the vector. Moreover, thus having changed 

direction by an infinitely small angle, a second, infinitely small displacement can take 

place, also that perpendicular to the new vector, - again causing no change in the 

length of the vector. This series of infinitely small adjustments of the direction of the 

vector, with no change in the length of the vector, causes the slope vector to move 

along a trajectory that constitutes an arc of a circle with the radius equal to the length 

of the slope vector.  

 

This can be seen from figure 12, where the slope vector is portrayed in a space 

spanned by the slopes of the individual state variables of the model. The slope vector 

rotates clockwise along the circle centered at origo. In figure 13, we illustrate the 

trajectory of the curvature vector that constitutes the rate of change of the slope 

vector. For illustration purpose, we consider the slope vector and the corresponding 

curvature vector at a particular point in time. As seen from those figures, the curvature 

vector is perpendicular to the slope vector at that particular point of time. As a 

consequence, the slope vector is displaced clockwise along the tangent of the circle 

portrayed in figure 12, with a tangent velocity that is equal to |c| sin 90o, i.e. |c| (the 

length of the curvature vector). Moreover, the curvature vector, remaining 

perpendicular to the slope vector, traverses clockwise the circle in figure 13. Over 

time, a series of infinitely small displacements, perpendicular to the slope vector, take 

place so as to move the slope vector along the circle portrayed in figure 12, and, thus, 

the curvature vector along the circle portrayed in figure 13. As the tangent velocity of 

the slope vector equals |c|, then the angular velocity ωslope (radians per time unit) of 

the slope vector will equal to |c|/|s|. As, in this case, both |s| and |c| are constants, then 

ωslope will in turn be constant. In example 3, the calculation of ωslope goes as follows:  

in figure 12 as s=[0.1,0.1], then |s| = 0.1* 2 ; and 

in figure 13 as c=[0.01,-0.01], then |c| = 0.01* 2 ; thus 
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ωslope = |c|/|s|= (0.01* 2 )/ (0.1* 2 ) = 0.1  

If we denote T to be the duration of one rotation around the origo (the period of one  

cycle); then, T = 2π / ωslope =  20 π; which is approximately 63 time units. 

 

Fig. 12: Example 3, the trajectory of the slope vector in the phase space 

 

 

Fig. 13: Example 3, the trajectory of the curvature vector in the phase space  
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Also here we may graph BPI_1 and BPI_2; as well as d|s Level_1|/dt and d|s Level_2|/dt to 

demonstrate that they, qualitatively, provide the same information about the behavior 

mode of each state variable, -- the fact that they alternate between a divergent and a 

convergent mode of behavior. This characterization of the individual behavior modes 

as alternating (between divergent and convergent behavior) is not in conflict with, but 

rather consistent with the characterization of the model behavior mode, as a sustained 

mode (of oscillation). 

 

Note from the figure below that, in this example, BPIx and d|sx|/dt will always have 

the same sign, so that they qualitatively provide the same information about the modes 

of behavior of the state variables of the model. 

 

 

Fig. 14: Example 3, the relationships between the BPIx and the rates of change of 
the absolute values of the slopes for the state variables. 
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2.4 Behavior pattern indexes –back to example 1 

 

The discussion of the relationship between the individual BPIs, associated with state 

variables, and the overall BPI, can be generalized to models exhibiting non-sustain-

able behavior. For that purpose, consider the behavior of the original model (Example 

1, fig. 1). As indicated in figure 15 and table 4, we first add an auxiliary structure to 

the model; in order to calculate the individual and the overall BPIs; and also to 

calculate the rate of change of the length of the slope vector and its components: 

 

 
Fig. 15: Example 1, stock and flow diagram of the calculation of BPI_1 and _2 

(BPILevel_1 and  _2), the Overall BPI represented by the angle, and the Rate of 
change in the length of the slope vector and its components. 

 
 

BPI_1 = Curv_1/Slope_1 
BPI_2 = Curv_2/Slope_2 
 
Overall_BPI    = (180/PI)*ARCCOS( ( (Slope_1*Curv_1)+(Slope_2*Curv_2) ) /  
          (SQRT(Slope_1^2+Slope_2^2)*SQRT(Curv_1^2+Curv_2^2) ) ) 
 
Rate_Change Len_Slope_Vect = DERIVN ( SQRT( Slope_1^2+ Slope_2^2) ) 
 
Rate_Change_Abs_Slope1 = DERIVN(ABS( Slope_1)) 
Rate_Change_Abs_Slope2 = DERIVN(ABS(Slope_2)) 
 

Table. 4: Example 1, equations for BPI_1 and _2, the Overall BPI, and the rate 
of change of the length of the slope vector and its components. 

 

 

Overall_BPI 

Rate_Change_Abs_Slope2 

Rate_Change_Abs_Slope1 

BPI_1 

BPI_2 

Curv_2 

Slope_2

Slope_1

Curv_1 

Rate_Change_Len_Slope_Vect 
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Fig. 16: Example 1, Behavior 
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As seen in figure 16, we may consider one state variable at a time. Beginning with 

Level_1, we observe that, in the first phase, the slope, s, is negative and approaching 

0, while the curvature, c, is positive, and diminishing, yet not reaching 0. The 

implication is that that BPI_1 = c/s approaches - ∞ . Thereafter, the slope, s, is positive 

and increases, while the curvature, c, continues to approach zero (yet it never reaches 

zero). Then the curvature increases slowly. Between these two modes of behavior, a 

transition taken place at time 6.07, whereby BPI_1 changes from - ∞  to + ∞ , i.e., and 

thus, more significantly, from a negative to a positive value.  

 

Now, considering the other state variable, Level_2, we observe that, in the first phase, 

the slope, s, is negative and increasing yet not reaching 0, while the curvature, c, is 

positive, and diminishing, while approaching 0. The implication is that that BPI_2 = 

c/s approaches 0. Thereafter, the slope decreases (becomes more negative), and the 

curvature also decreases (becomes more negative).  Between these two modes of 

behavior, a transition takes place at time 10.93, whereby BPI_2 changes, also in this 

case, from a negative  (- ε) to a positive value (+ ε). 

 

For the model as a whole, the overall BPI (angle) starts out with a value around 1800 

and slowly approaches 00. At the point of transition for the model as a whole, the 

overall BPI takes on the value 900. This happens at time 8.5, i.e. between the points of 

transition for the individual state variables of the model; or, more specifically, -- 

midway between the two state transitions (i.e. 8.5=6.07 + (10.93-6.07)/2). Thus we 

can define a period of transition of behavior mode dominance for the model as a 

whole, initiated by the time the first state variable transition takes place and ending at 

the time of the last state variable transition. For the model as a whole, therefore, we 

define the transition of mode dominance to take place when the overall BPI = 900. 

 
Note one very important fact: The model described above is a linear model and 

yet it exhibits shifts between modes of behavior while in a transient development.   

 
In figure 17, we portray the behavior of the model as a whole, expressed in terms of 

the overall BPI, and we relate that to the rate of change of the length of the slope 

vector. In the first phase, the overall BPI is larger than 90o, and the rate of change in 
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the length of the slope vector is, consequently, negative. This implies a contraction of 

the slope vector and indicates a convergent behavior for the model as a whole. The 

contraction is gradually fading and reaches 0 at time = 8.5.  At that time, the overall 

BPI takes the value 90o, and there is neither a contraction, nor an expansion in the 

slope vector. Subsequently, in the second phase, the overall BPI is smaller than 90o, 

and the rate of change of the length of the slope vector is, consequently, positive. This 

implies an expansion of the slope vector and indicates a divergent behavior for the 

model as a whole. 
 

 

 
Fig. 17: Example 1, the relationship between the overall BPI and the rate of 

change of the length of the slope vector. 
 

 
Note from figure 18 that BPIx and d|sx|/dt will always have the same sign, so that they 

qualitatively provide the same information about the modes of behavior of the state 

variables of the model. 
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Fig. 18: Example 1, the relationships between the BPIx and the rates of change of 

the absolute values of the slopes for the state variables. 
 
 

To summarize our analysis of this example (example 1) so far, observe that the 

transition of the mode of behavior of the model as a whole takes place in the midst of 

a series of single mode behavior transitions, each associated with a particular state 

variable. At each such individual change in mode of behavior, a particular component 

of the slope vector changes from a contraction to an expansion in length (or, as in 

other cases, the reverse). The total impact of such individual component transitions on 

the length of the slope vector, determines the mode of behavior of the model as a 

whole. In this case, there is a transition from contraction to expansion in the first slope 

vector component, i.e. Slope_1 at time 6.07. Thereafter, however, the second 

component, i.e. Slope_2, is still contracting and that contraction is sufficiently 

significant to continue the contraction in the length of the slope vector as a whole. 

Over the next time period, until time = 8.5, the contraction continues, in spite of the 

expansion of the first slope vector component. Eventually, however, at time = 8.5, this 

expansion begins to dominate the mode of behavior of the model as a whole, in the 

sense that the contraction in the second vector component, i.e. Slope_2, is no longer 
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sufficient to compensate for the expansion in the first component, i.e. Slope_1. As a 

consequence, we experience a transition in the mode of behavior for the model as a 

whole from convergence to divergence, i.e. the contraction of the slope vector halts 

and an expansion sets in. Over the next time period, until time = 10.93, the second 

component of the vector, i.e. Slope_2, still contracts. But now the impact of this con-

traction on the length of the vector as a whole is less significant than the impact of the 

reinforced expansion, taking place in the first component, i.e. Slope_1. Thus the 

divergent behavior mode of the model as a whole becomes gradually more apparent. 

At time = 10.93, we see a transition from contraction to expansion also in the second 

slope vector component, i.e. Slope_2. Thereafter, both of the components of the slope 

vector are expanding and, thus, so also the vector itself.  

 

The transition of the mode of behavior of a model, state variable by state variable, 

which we have described above, - one that eventually leads to a transition of the 

model of behavior of the model as a whole, can be generalized to a model of n state 

variables. Typically, we may observe a transition in the mode of behavior for single 

state variables long before there is a change in the mode of behavior of the model as a 

whole. Moreover, other single state variable mode transitions are taking place after 

there has been a transition in the mode of behavior of the model as a whole. Note that 

such transitions typically constitute significant  “events” in the development of 

dynamic systems, events that we want to recognize, predict, prepare for, promote or 

postpone, cause or avoid. Our analysis can be generalized to any nth order model, and 

indicates that we may establish an “early warning system” for such events, based on 

“leading indicators”, so as to be able to take appropriate actions in time. 

 

 

3 The impact of the eigenvalues on the rate of change of the 

length of the slope vector and its components 

 
3.1 The gain matrix as a foundation for the relationship between the 
curvature and slope vectors 
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The properties of the structure of the model that we will be considering are the gains 

of the links that constitute the structure of the model. In any model, linear as well as 

non-linear, we can identify the gain matrix (equivalent to the Jacobian used in linear 

analysis):  
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Each element (
j

i
x

x
∂

∂& ) in the above matrix constitutes a gain; i.e. the change in the 

net rate (slope) of each state variable in response to a change in the level (value) of 

any state variable in the model. Note that for any non-linear model, the value of any 

element in the gain matrix can be calculated numerically (using finite-difference 

approximations) for any state of the model (i.e. values of the state variables at any 

point in time). 

 

Note that as 

 
),...,,( 21 ni xxxFx =&  

 
Then, by the chain rule: 
 

n
n

iii
i xx

xxx
xxx

xx &&&&&&&& ∗∂
∂++∗∂

∂+∗∂
∂= ...2

2
1

1
 

 
 
We can now utilize the chain rule for all state variables with the following result: 

 
 

xGx &&& =  
 
Thus  
 

c = G s 
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so that the gain matrix, G, relates the slope vector characterizing the behavior of the 

model at any point in time to the curvature vector, also characterizing that behavior. 

At any point in time, therefore, G transforms the s vector into the c vector in an n-

dimensional standard space. In this space, the solution to the system of differential 

equations,  

 
c = G s, 

 
provides us with the time trajectory of the curvature and the slope of the model. In 

general, however, this system of differential equations can be solved only in 

exceptionally simple cases because of the fact that each curvature x&&  in principle is a 

linear combination of all the slopes x& . The implication is that the curvature 

x&& associated with a single coordinate (axis) in this space is determined by the slopes 

associated with all the coordinates ( x&) (components mixing). 

 
To be able to solve for the time trajectories of the curvature and the slope of the 

model, we consequently, change coordinate system using eigenvalue analysis. (The 

reader who is interested in a thorough overview of matrix eigensystem theorems may 

consult appendix A).   

 

From the gain matrix, G, we can derive the eigenvalues and the right eigenvectors, as, 

per definition; 

 
G r i = λi r i 

 
If G is an n x n matrix, we will have n eigenvalues, λi, each associated with a right 

eigenvector r i. In the normal case, we will have n distinct eigenvalues and the right 

eigenvectors will be linearly independent (see appendix A, Corollary A.3), and span 

an n-dimensional space, Rn; i.e. the right eigenvectors will form a new coordinate 

system in Rn that we, in this paper, will call the “eigen-coordinate system”. Note that, 

in general, the coordinates in this system are not orthogonal, yet they are of unity 

length. The eigenvectors only specify a variety of directions in this space along which 

the dynamics of the model unfold as explained below.   
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In this space, therefore, the slopes vector, s, can, at any time be expressed as a linear 

combination of the right eigenvectors: 

 
s = α1 r1 + α2 r2 +  .... + αn rn 

 
In this new (eigen-) coordinate system the alphas (αi) will be the new components of 

the slope vector. 

 
By differentiating the previous equation over time we obtain 
     

nn rrrc α++α+α= &&& ...2211  
 
In this new (eigen-) coordinate system, iα& will be the new components of the 

curvature vector. 

 
Substituting s into the equation, c = G s, we obtain; 
 

c = G [α1 r1 + α2 r2 +  .... + αn rn] 
 
by rearranging, we obtain; 
 

c = α1 G  r1 + α2 G  r2 +  .... + αn G  rn  
 
and utilizing that G r i = λi r i, we obtain; 
 
 

c = α1 λ 1 r1 + α2 λ 2  r2 +  .... + αn λ n  rn 
 
Recalling that  

nn rrrc α++α+α= &&& ...2211  
 
then, along a particular coordinate (spanned by a right eigenvector), the dynamics that 

takes place, can be described by the following differential equation: 

 
iii αλ=α&  

Hence we obtain the solutions 
 

αi = αi
0
 eλ

i
(t-τ), 

 
where τ is the initial time. αi

0 are the initial values of αi  (at  time τ). 
 
It is clear that the only factor determining the dynamics along a particular coordinate 

(i.e. right eigenvectors) is the eigenvalue associated with that coordinate itself. 
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Substituting these solutions into the equation for the slope vector yields the time 

trajectory of the slope: 

 
s =  α1

0
 eλ

1
(t-τ) r1 + α2

0eλ
2
(t-τ) r2 +  .... + αn

0 eλ
n
(t-τ) rn 

 
Now, in a linear model, the relationship 
 

c = G s 
 
holds over time and so does the expression for the time trajectory of the slope vector, 

s. For a non-linear model this relationship is instantaneous. We will presuppose that 

the relationship, G, holds for a small period of time, corresponding to the original 

simulation interval. Thus the expression for the time trajectory of s will also hold for 

this small period of time. For the purpose of our numerical analysis, we will now 

choose a new simulation interval that constitutes a fraction of the original interval. 

Partitioning the time horizon, will allow us to apply the analysis described above to 

non-linear models over each of the resulting time intervals.  

 

We have now described the relationship between the eigenvalues λ i  and the behavior 

of the model, characterized by the slopes and the curvatures that are exhibited by the 

state variables of the model. More specifically, we have demonstrated that the 

dynamics along each of the coordinates (i.e. the right eigenvectors) is determined by a 

single eigenvalue. 

 

Note that the eigenvalues originate from the loops of the structure of the model (as 

explained in section 4.1). Thus, by studying their relative impact on the rate of change 

of the length of the slope vector, we will be able to identify the impact of the 

structural components, i.e. loops, of the model on the model behavior. Moreover, by 

studying the impact of the eigenvalues on the rate of change of the length of a 

particular slope vector component that is associated with a single state variable, we 

will be able to identify the impact of the structural components in the model, on the 

behavior of that state variable.  

 

In the rest of this section, we outline our method of investigating the relative impact 

of a particular eigenvalue on the model behavior as a whole. We also apply this 

method to our main example, example 1. 
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3.2 A method for ranking eigenvalues according to their relative 

impact on the dynamics of the slope vector or its components 

 

In this method, we first start out with a base run, whereby we allow for all of the 

eigenvalues to simultaneously impact the behavior of the model as described by the 

equation for the time trajectory of s. Subsequently, we eliminate, one at a time, the 

dynamics of the model along one particular eigenvector, ri, caused by the associated 

eigenvalue, λ i. I.e. in the equations for s, we multiply a particular exponent λ i (t-τ) by 

0, e.g. for i=1; 

 
s =  α1

0
 eλ

1
(t-τ)*0 r1 + α2

0eλ
2
(t-τ) r2 +  .... + αn

0 eλ
n
(t-τ) rn 

 

i.e. s =  α1
0
 r1 + α2

0eλ
2
(t-τ) r2 +  .... + αn

0 eλ
n
(t-τ) rn 

 
The result is that there is no more dynamics along r1 . That is, the value taken along 

this axis (the contribution to the total behavior) is constant, α1
0, i.e. the initial value 

taken by α1 at the start of the current time interval.   

 

By repeating this process for each i = 1... n, we can rank the eigenvalues according to 

their relative impact on the rate of change of the length of the slope vector at any 

point (interval) in time. Since each of these eigenvalues characterizes the dynamics 

along a specific eigenvector, we implicitly rank the impact of each such dynamic 

component on the total behavior of the model. 

 

We now return to Example 1 (fig. 1) to illustrate the relationship between the 

eigenvalues and the rate of change of the length of the slope vector. We first describe 

an additional section in the model (fig. 19 and table 5); one that describes the slopes, 

Slope_1 and _2 in terms of the eigenvalues, thus linking the eigenvalues to the 

behavior of the model.  

 

Note that the flags introduced in the equations for Slope_1 and _2 are used to (de-) 

activate the impact of the eigenvalues on the behavior of the model. 
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Fig. 19: Example 1, stock and flow diagram, linking behavior to eigenvalues. 
  
 

Eigen_Slope_1 = 
(InitAlpha1*r1(1)*EXP(Eigenvalue1*(TIME-STARTTIME)*Flag_Eigen_1)) 
+(InitAlpha2*r2(1)*EXP(Eigenvalue2*(TIME-STARTTIME)*Flag_Eigen_2)) 
 
Eigen_Slope_2= 
(InitAlpha1*r1(2)*EXP(Eigenvalue1*(TIME-STARTTIME)*Flag_Eigen_1)) 
+(InitAlpha2*r2(2)*EXP(Eigenvalue2*(TIME-STARTTIME)*Flag_Eigen_2)) 
 
Length_Slope_Vector_Testing  = SQRT(Eigen_Slope_1^2+Eigen_Slope_2^2)   

 
Flag_Eigen_1 = 1 (set to 1 or 0) 
Flag_Eigen_2 = 1 (set to 1 or 0) 
 
Where: 
Eigenvalue1 is the first eigenvalue. 
Eigenvalue2 is the second eigenvalue. 
r1 is first right eigenvector associated with Eigenvalue1; r1(i) is the ith element in the vector. 
r2 is second right eigenvector associated with Eigenvalue2; r2(i) is the ith element in the 
vector.  
Note that the eigenvalues and the eigenvectors are calculated form the gain matrix G. 
 
InitAlpha1, and InitAlpha2 are the initial values of the αs.  Their values are computed from 
the following simultaneous equations: 
Initial value of Slope_1 = InitAlpha1 * r1(1)  + InitAlpha2 * r2(1)   
Initial value of Slope_2 = InitAlpha1 * r1(2)  + InitAlpha2 * r2(2)   
Note that those simultaneous equations result from substituting TIME by STARTTIME in 
the equations of the slopes. 
 
Simulation Setup Parameters: 
Start Time=0; Stop Time =45; Simulation Time Step = 0.005; Analysis Time Step = 0.1 
(original simulation time step). 
 

Table. 5: Example 1, equations, linking behavior to eigenvalues. 
 

 
We will now perform two experiments, one in the convergent phase using the analysis 

time step (0,0.1); and the other experiment in the divergent phase using the analysis 

time step (20,20.1). Each experiment will take as a point of departure its unique initial 

values for the αs, which are computed from the eigenvectors (that are computed from 

 

Flag_Eigen_1 

Flag_Eigen_2 Length_Slope_Vector_Testing 

Eigen_Slope_2 Eigen_Slope_1 
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the gain matrix, G) and the initial values of the slopes at the start of the analysis time 

step. In the first experiment, the initial values of slopes are the values of the slopes in 

the original model at time = 0. In the second experiment, the initial values of the 

slopes are the values of the slopes in the original model at time = 20. 

 
• First Experiment: 
 
The parameters governing the simulation are: 
Start Time=0; Stop Time =0.1; Simulation Time Step = 0.005; Analysis Time Step = 
0.1; Time for Setting Flags= Start Time=0.  

 
The Gain Matrix is computed from table 1 as follows: 
 

G = 





−−
−−

15.02.0
2.015.0

 

 
From G, one can use a “matrix eigensystem” algorithm to compute the eigenvalues 

and the eigenvectors. The interested reader may consult the “EISPACK Guide” (Goos 

& Hartmanis, 1976). 

 
Eigenvalue1=0.05; Eigenvalue2=-0.35 

 

r1 =










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

−

2
1

2
1

;  r2 =
















2
1

2
1

 

 
 
The Initial Values of the slopes (at time = 0) are: 
 

Slope_1 = -1.55; Slope_2 = -1.85 
 

Hence, the Values of InitAlpha1 and InitAlpha2 are: 
 

InitAlpha1 = -0.212; InitAlpha2 = -2.404 
 

Now, we are carry out three simulation runs, each with a different setting of the flags, 

and we report on the dynamics of the length of the slope vector for each run in the 

following table. 

  
Base Run: Flag_Eigen_1 = 1, Flag_Eigen_2 = 1 

 
1st Case: Flag_Eigen_1 = 0, Flag_Eigen_2 = 1 

 (Stop the dynamics associated with the first eigenvalue) 
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2nd Case: Flag_Eigen_1 = 1, Flag_Eigen_2 = 0  
(stop the dynamics associated with the second eigenvalue) 

 
 

Time |s| in Base Run  |s| in 1st case |s| in 2nd Case 
0.0 2.41 2.41 2.41 
0.1 2.33 2.33 2.41 

 
Table. 6: Example 1, results of the first experiment, the impact of the eigenvalues 

on the Dynamics of the length of the slope vector. 
 
It is clear from these results that eliminating the effect of the first eigenvalue (in this 

time interval) does not cause a change in the rate of change of the length of the slope 

vector. On the other hand, eliminating the effect of the second eigenvalue (in this time 

interval) does cause a significant change in the rate of change of the length of the 

slope vector.  In fact, the rate of change of the length of the slope vector becomes 0. 

From this we can conclude that that the second eigenvalue dominates the model 

behavior in this time interval. 

 
• Second Experiment: 
 
The parameters governing the simulation are: 
Start Time=20; Stop Time =20.1; Simulation Time Step = 0.005; Analysis Time Step 
= 0.1; Time for Setting Flags= Start Time=20 
 

 
The Gain Matrix is: 
 

G = 





−−
−−

15.02.0
2.015.0

 

 
Note that the gain matrix in the second experiment is the same as the gain matrix in 

the first experiment. Thus we have the same values for the eigenvalues and the 

eigenvectors. Generally, in non-linear models, the gain matrix will change with time, 

yet this will have no effect on our method of analysis (as we mentioned before).  

 
 

Eigenvalue1=0.05; Eigenvalue2=-0.35 
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The Initial Values of the rates (at time = 20) are: 
 

Slope_1 = 0.406; Slope_2 = -0.409 
 

Hence, the Values of InitAlpha1 and InitAlpha2 are: 
 

InitAlpha1= -0.577; InitAlpha2= -0.00218 
 

 
Once again, we carry out three simulation runs, each with a different setting of the 

flags, and we report on the dynamics of the length of the slope vector for each run in 

the following table. 

  
Base Run: Flag_Eigen_1 = 1, Flag_Eigen_2 = 1 

 
1st Case: Flag_Eigen_1 = 0, Flag_Eigen_2 = 1 

 (Stop the dynamics associated with the first eigenvalue) 
 

2nd Case: Flag_Eigen_1 = 1, Flag_Eigen_2 = 0  
(stop the dynamics associated with the second eigenvalue) 

 
 

Time |s| in Base Run |s| in 1st case |s| in 2nd Case 
20.0 0.577 0.577 0.577 
20.1 0.579 0.577 0.579 

 
Table. 7: Example 1, results of the second experiment, the impact of the 

eigenvalues on the Dynamics of the length of the slope vector. 
 
 
It is clear from these results that eliminating the effect of the second eigenvalue (in 

this time interval) does not cause a change in the rate of change of the length of the 

slope vector. On the other hand, eliminating the effect of the first eigenvalue (in this 

time interval) does cause a significant change in the rate of change of the length of the 

slope vector.  In fact, the rate of change of the length of the slope vector becomes 0. 

From this we can conclude that that the first eigenvalue dominates the model 

behavior in this time interval. 
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3.3 Remarks on the method of ranking eigenvalues 

 

3.3.1 The eigen-loop 

 

We want to comment on an important observation that is revealed by the experiments 

reported in the previous section. Note that the gain matrix, G, was constant over time 

(as this is a linear model) and hence the eigenvalues and eigenvectors were also 

constants; yet eigenvalue2 was dominating at the analysis time step (0,0.1), while 

eigenvalue1 was dominating at the analysis time step (20,20.1). So, what is the reason 

behind this shift in dominance for the eigenvalues in this linear model? From the 

above experiments, one can see that the only attributes that changed from the analysis 

time step (0,0.1) to the analysis time step (20,20.1) were the initial values of the αs 

(InitAlpha1& InitAlpha2). Hence one can conclude that the changes in the values of 

the initial values of the αs, caused this shift in eigenvalue dominance. So, what do the 

initial values of the αs represent after all? In the eigen-coordinate system, the initial 

values of the αs represent the components of the slope vector (along each of the right-

eigenvectors) at the start time of the analysis period. So what make the values of αs 

evolve (change) with time? Recall that the dynamics of each α is governed by the first 

order differential equation: iii αλ=α& . In SD terminology, this differential equation 

constitutes a first order loop like the one shown in the figure below. 

 

Rate_Change_Alpha Alpha

EigenValue
 

Fig. 20: The Eigen-Loop 
 

Thus, from the eigen-coordinate system perspective, a linear model -- or a non-linear 

one, whose gain matrix is constant over a short period of time (by numerical 

approximations) -- can be visualized as a collection of “n” disjoint simple feedback 
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loops (such as the one in the figure above). Each loop has its unique dynamic 

characteristic that is solely determined by its eigenvalue. 

  

3.3.2 Complex eigenvalues  

 

Finally, in this section we turn our attention to the fact that an eigenvalue can be a 

complex number; yet as we are going to explain below, the equation of the time 

trajectory of the slope vector (or any of its components) will contain only real values.  

     

In fig. 9, we portray an example of a model (example 3) that has complex 

eigenvalues. Recall that this model has a sustained oscillation behavior.  

 

From table 3, we can calculate the gain matrix. 

 
 

G= 




− 01.0

1.00
 

 
From the gain matrix, we can compute the eigenvalues. 
 

λ1 = 0 + 0.1 i; λ2 = 0 - 0.1 i  
 

Notice that λ2 is the complex conjugate of λ1. In general if λ i is a complex number, 

then λ i+1 is its complex conjugate. As we are going to see below, the superposition of a 

complex conjugate pair of eigenvalues in the time equation of the slope vector (or any 

of its components) yields a real sinusoidal wave (with no complex values).  

 

In our method to rank eigenvalues (according to their impact on the model behavior) 

we will treat complex eigenvalues slightly different than real ones. Recall that the 

method to determine the impact of an eigenvalue on the model behavior is to 

eliminate the dynamics associated with this eigenvalue.  In the case where we have a 

complex conjugate pair of eigenvalues, we will eliminate the dynamics associated 

with these two complex conjugate eigenvalues at the same time to determine their 

compound effect on the behavior.3  

                                                        
3 For future research, one may consider eliminating separately the dynamics associated with the real 
part of the eigenvalues, and the dynamics associated with the imaginary part of the eigenvalues. 
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We will demonstrate that superposition of λ1 and λ2 in the time equation of Slope_1 

(like the one given in table 5) yields a real sinusoidal wave. 

 

We will start by computing the right eigenvectors and the initial values of αs 

(InitAlpha1 and Init Alpha2) at time =0. 

 

The right eigenvectors are computed directly from the gain matrix, G. 

 

 

r1 =

















+ i
2

10
2

1
 & r2 =

















− i
2

10
2

1
 

 
Notice that each element in r1 has its complex conjugate counterpart in r2.  
 
InitAlpha1 and Init Alpha2 are computed from the initial values of rates and the right 

eigenvectors (as we mentioned before in table 5).  

  
At time = 0  

Slope_1 = 0.1 & Slope_2 = -0.1 
 

Thus 
Init Alpha1 = )

2
1

2
1(*1.0 i+  & Init Alpha2 = )

2
1

2
1(*1.0 i−  

 
The time equation of Slope_1 (in table 5) is as follows: 
   
Slope_1 = (InitAlpha1*r1(1)*EXP(λ1*TIME) + (InitAlpha2*r2(1)*EXP(λ2*TIME) 

 
Substituting the values of InitAlpha1, InitAlpha2, r1(1), r2(1), Eigenvalue1and 

Eigenvalue2 yields: 

 
Slope_1=0.1*[( i

2
1

2
1 + )*

2
1 *Exp(0.1i* t) +( i

2
1

2
1 − )*

2
1  Exp(-0.1i* t)] 

 
 

Slope_1= 0.1*[1/2{EXP(0.1i * t)+Exp(-0.1i * t)}+(1/2)i{EXP(0.1i* t)- Exp(-0.1i*t)}] 
 

Slope_1 = 0.1* cos(0.1*t)- 0.1*sin(0.1*t)  
 

Slope_1 = 0.1 * 2 * sin (0.1* t + 135o) 
 

Thus the time equation of Slope_1 is a sinusoidal wave, i.e. oscillatory behavior.  
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Note that if the eigenvalues had a real part, i.e. λ1= a + b i; λ2= a - b i, then the time 

equation of Slope_1 will take this general form: 

 

Slope_1= C * EXP(a*TIME) * sin (b*TIME+ψ ) 
 
Where C is a real number. 
 

 

4 The impact of the feedback loops on the eigenvalues 
 
4.1 The structural foundation of the eigenvalues 
 
In this section we will describe the relationship between the gains and the 

eigenvalues. This section is mainly based on the works by Nathan Forrester 

(Forrester, 1982 & 1983) and Christian Kampmann (Kampmann, 1996). Traditional 

eigenvalue analysis is based on a compact model representation, called a “condensed 

form” by N.  Forrester and a “reduced form” by C. Kampmann, which focus only on 

state variables and the associated net rates. Such a compact representation constitutes 

a homomorphic mapping, i.e. an abstraction, of the original model structure and thus 

constitutes a loss of information. The problem is, therefore, that the results of the 

analysis performed on a model in its compact form do no easily lend themselves to an 

interpretation with respect to the model expressed in its original form. 

 

In order to retain the mathematical rigor and convenience offered by the compact 

form of representing a model and yet not loose the association with the original 

model, we choose, in this paper, a mini model form (representation) suggested by 

Scott Guthrie (Guthrie, 1999), as a tool for teaching dynamic systems thinking. In this 

mini-model form, we retain the individual inflows and outflows and the 

corresponding rates associated with each of the state variables in the original model. 

The result is a semi-compact (mini-) model which does not contain any of the 

auxiliaries of the original model, yet can be recognized as a semi-compact 

representation of the system portrayed by the original model. The mini-model serves a 

very important purpose: On the one hand, it is close enough to the compact model to 

allow us to perform the mathematical and computational analysis facilitated by the 

compact form. On the other hand, the mini- model is close enough to the original 
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model so as to allow us to interpret the loops of the mini- model in the context of the 

system, represented by the original model. Thus we are able to interpret the 

significance of its feedback loops to the behavior of that model. By building this 

bridge between a relatively abstract, compact model and the original model, the mini-

model constitutes an interpretable representation of the relationship between 

structure and behavior, and thus serves an important pedagogical purpose. 

 

To establish the relationship between the eigenvalues and the underlying feedback 

loops that constitute the structure of the model, we first begin by defining the units of 

analysis of structure as the gain of a link and the "characteristic gain" (hereafter called 

the “gain”) of a loop. All the links in the mini-model form, relate rate variables to the 

state variables of the model. The gain of a link, say from state A to rate B is 

mathematically defined as:  

gAB = A
B

∂
∂  

 
By definition, the gain of a loop is the product of the gains of the links that constitutes 

that loop. Note: in the process of computing the gain of a loop (in the mini-model), we 

multiply the gains of links associated with outflow rates by –1. 

 

The eigenvalues of a model are determined from the loop gains of that model as 

described by C. Kampmann (Kampmann, 1996):  

 
“ The eigenvalues λ are determined as the roots of the characteristic polynomial P(λ), and it 
turns out that the coefficients of this polynomial can be expressed in terms of the gains of the 
loops in the system.”  
 
Moreover, in some system dynamics models one may be able to identify a subset of 

the structure of the model that exclusively determine the values of certain 

eigenvalues. We first begin by introducing some "graph theory' definitions that 

characterize the structure of a model in its mini-model form. Any pair of state 

variables, say x and y, is said to be strongly connected, if there is a path of directed 

links from x to y and a corresponding directed path from y to x 4. A strongly 

connected structure component -- in short, a strong structure component -- is a subset 

of the structure of the model in which any pair of state variables in this subset is 

                                                        
4 Not necessarily a feedback loop 
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strongly connected. If there is a model consisting of a set of disjoint strong structure 

components, where no pairs of state variables from two separate components are 

strongly connected (yet they maybe unidirectional connected), then the strong 

components of the model independently determine corresponding subsets of the 

eigenvalues. The implication is that individual eigenvalues in such cases are rooted in 

distinct subcomponents of a model. A documentation of this fact can be found in 

(Kampmann, 1996).  

 
 
4.2 A measure for the significance of a gain of a unit structure on a 

certain eigenvalue 

 
4.2.1 The elasticity measure 

 

We now want to develop a measure for the significance of a gain of a unit structure 

(link or loop) on a certain eigenvalue. N. Forrester (Forrester, 1982 & 1983) suggests 

the eigenvalue elasticity as a measure for the significance of a gain of a unit structure, 

whether link or loop, to a certain eigenvalue. The eigenvalue elasticity is a 

dimensionless ratio defined as the relative change in an eigenvalue resulting from a 

relative change of the gain. The eigenvalue elasticities are defined as the fractional 

response in the eigenvalues to a fractional change in the gains and thus resemble the 

price elasticities of goods used in economics.  The larger the magnitude of an 

eigenvalue elasticity associated with the gain of a certain unit of structure, the more 

significant is that structural unit to that particular eigenvalue. Note that we have 

already suggested a way to rank the eigenvalues with respect to their significance to 

the model behavior. We can now weigh the significance of each structure unit to a 

particular eigenvalue, with the significance of that eigenvalue to the model behavior. 

In this way, we obtain a direct measure of the significance of a structure unit on the 

model behavior. This will be illustrated in the “yeast cells generation” model 

described in section 5. 

 
We have established that the eigenvalue elasticity is a key concept in identifying the 

significance of a structure unit on model behavior, and we now provide a formal 

definition of this concept. 
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4.2.2 Compact link elasticity 

 

We are going to calculate the elasticity, e, of an eigenvalue, λ, with respect to the 

gain, g, associated with a link in a compact model:  

 
e= (δλ/λ)/(δg/g) = (δλ / δ g) * (g/λ) = s * (g/λ) 

 
where s (δλ / δ g) is the sensitivity of the eigenvalue to the gain. 

 
Fortunately, there is a mathematical formula that expresses this sensitivity as a 

function of the corresponding elements in the associated eigenvectors. The interested 

reader may consult appendix A. 

 

4.2.3 Mini-model link elasticity 

 

The next step is to relate the elasticities of links in the mini-model form to the 

elasticities of links in the compact form. To do so, we will first investigate the 

relationship between the gains of links in the mini-model form and the gains of links 

in the compact form. After that, we will investigate the relationship between the 

eigenvalue sensitivities of links in the mini-model form and the sensitivities of links 

in the compact form. For this purpose we will use the following simple example as an 

illustration. 

 

 
 

Fig. 21: Mini-model form of the relationship between state variables A and B 
 

R1 B

A

R2

R3
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Fig. 22: Compact form of the relationship between state variables A and B 

 
As seen in the figure 21, in the mini-model form, there are two state variables, A and 

B, where B has two inflow rates R1, R2, and one outflow rate R3. Hence the net rate 

of B, R_Net, equals R1+R2-R3. There are three links from state A to the three rates 

respectively. We will denote the gains of those links g1, g2, g3 respectively.  

 

On the other hand, in the compact form (fig. 22), there is only a single link from state 

A to the net rate (R_Net) of state B. We will denote the gain associated with this 

single link g_net.  

 

Suppose we introduce a small change in the value of state A, i.e. δA, then the values 

of the rates will change from R1original, R2original, R3original to R1new, R2new, R3new 

respectively. 

 
Now, the mathematical formula for g_net is: 
 
g_net = δR_Net/δA= (1/δA) * [ (R1new+ R2new-R3new) - (R1original+ R2original- R3original)] 

 
g_net = (1/δA) * [ (R1new- R1original)+( R2new- R2original)-( R3new- R3original) ] 

 
g_net = (δR1/δA)+( δR2/δA)-(δR3/δA) 

 
g_net = g1 + g2 - g3 

 
Having identified the relationship between the gains of links in the mini-model form 

and the gains of links in the compact form, it remains to relate the eigenvalue 

sensitivities in the mini-model form to the eigenvalue sensitivities in the compact 

form. 

 
Suppose we introduce a small change in the value of g1, i.e. δg.  As  

B

A

R_Net
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g_net = g1 + g2 - g3, 

 
is a linear relationship, then a change in g1 with the magnitude of δg, leads to a 

change in the value of g_net with exactly the same magnitude δg, thus inevitably 

causing a change in the eigenvalue with the magnitude of 

 
s * δg, 

 
where  
 

s = (δλ / δ g_net) 
 

is the sensitivity of the eigenvalue to g_net. As a change in g1 with magnitude δg 

causes a corresponding change in the eigenvalue of magnitude s*δg, then the 

sensitivity of the eigenvalue to g1 is 

 
s * δg / δg, 

 
i.e. s itself.  
 
Similary g2 will also have its eigenvalue sensitivity equal to s.   
 
As g3 is associated with an outflow rate, i.e. R3, its case will be slightly different: 

Suppose we introduce a small change in the value of g3, i.e. δg. As 

 
g_net = g1 + g2 - g3, 

 
then a change in g3 with a magnitude of δg, causes a corresponding change in the 

value of g_net with the magnitude of -δg, thus leading inevitably to a change in the 

eigenvalue with the magnitude of  

 
-s*δg. 

 
Hence the sensitivity of the eigenvalue to g3 is -s. 
 
Now, we are finally ready to relate the eigenvalue elasticities in the mini-model form 

to the eigenvalue elasticities in the compact form. 

 
e_net = s * (g_net/λ) = (s/ λ) *  (g1 + g2 - g3) 

 
e_net = ( s * g1/ λ) +  ( s * g2/ λ) +  (-s * g3/ λ)  
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i.e. 
 

e_net = e1 + e2 + e3 
 

where e_net is the elasticity of g_net, e1 is the elasticity of g1, e2 is the elasticity of 

g2, and e3 is the elasticity of g3. 

 

In general, the elasticity of a compact link equals the sum of elasticities of those links 

in the mini-model that constitute that compact link. 

 

Having established the relationship between link elasticities in a compact and a mini-

model form, we now turn to the elasticities of loops in the mini-model. 

 

4.2.4 Loop elasticity 

 

The concept of loop elasticities originates from N. Forrester (Forrester, 1982, p. 225). 

He identified a property of eigenvalue link elasticities that demonstrates the existence 

of eigenvalues loop elasticities as well: 

  
"Note that the sum of the eigenvalue elasticities of all links coming into a variable equals the 
sum of the eigenvalue elasticities of all links leaving the variable…  This property implies that 
a certain numerical value for the eigenvalue elasticity passes from one link to another around 
each feedback loop. The elasticity of any link is the sum of the elasticities of all the loops that 
pass through the link. A link could lie in two different feedback loops with opposite effects on 
an eigenvalue. The elasticities of the two loops would cancel, leaving the link with a small 
elasticity. Both loops might be considered unimportant, because they contained a link with a 
small elasticity. The problem of cancellation can be overcome by solving a system of 
simultaneous linear equations for the eigenvalue elasticity associated with each loop. To 
make the calculation, first identify all feedback loops in the model and all the links they pass 
through. Then set up and solve a set of simultaneous equations, where each equation sets the 
eigenvalue elasticity of a structural link equal to the sum of eigenvalue elasticities of all the 
loops that contain the link."  
 
C. Kampmann (Kampmann, 1996) uses the metaphor of a “current” to describe the 
loop elasticity:  
 
"In network theory, a set of values that fulfill the condition that the sum of ingoing and 
outgoing values are equal is called a current in the network."  
 
In Appendix A, we investigate further the relationship between an eigenvalue and the 

feedback loops to demonstrate the key role that the loop elasticities play. The 

interested reader may see section A.11, Appendix A.  
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In his paper, based on graph theory, (Kampmann, 1996), C. Kampmann addresses a 

problem that arises from N. Forresters work: N. Forrester suggested the method of 

solving simultaneous equations to identify the loop elasticities of a model. The 

problem is that, in many models, the number of loops will be far larger than the 

number of links, i.e. the number of unknowns (loop elasticities) is larger than the 

number of equations (the system of equations is under-determined). Hence, in general, 

there will not be a solution to those simultaneous equations. Moreover, even if a 

solution exists, the total number of feedback loops can reach astronomical numbers 

even for medium sized models. Consequently, the computational task of identifying 

that solution may be prohibitively large.  

 

To solve this problem, C. Kampmann focuses on an independent set of loops that, in 

large models, typically contains a significantly smaller number of loops than the total 

number of feedback loops in the model. This set of independent loops is constructed 

so that each of the loops constitutes a unique composition of links. This implies that a 

matrix of linearly independent columns can be used to represent the membership of 

links in the set of independent loops:  
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where ki is a link elasticity and lj is the loop elasticity and where aij = 1 if the link i is a 

component in loop j, 0 otherwise. The number of loops in this independent set of 

loops is lower than the number of links. Hence the system of equations, as suggested 

by N. Forrester, will always be over-determined, yet it will be consistent and thus will 

have a solution. As Kampmann puts (Kampmann, 1996) it: 

 

 "the most significant contribution [of his paper] is the notion of an independent loop set, 
which gives grounds for optimism about using the method to large-scale models, even though 
these will contain millions of feedback loops" 
 

Note that this set of independent loops is a pertinent description of the model as a 

whole, which by no means disregard some important structural information in the 
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model; it only eliminates the redundant structural information associated with the 

superfluous dependent loops. The purpose of this selection of an independent set of 

loops is to identify the loop elasticities. Now, there may be several sets of independent 

loops and, from a practical point of view, the choice is not arbitrary: As C. 

Kampmann points out, our goal should be to identify an independent set of loops that 

contains a large subset of relatively comprehensive (i.e. containing relatively many 

links), insignificant loops and a small subset of relatively specific (i.e. containing 

relatively few links), significant loops. This is important since we can identify a 

subset of specific loops that are responsible for the main dynamics of the model, we 

may legitimately simplify our understanding of the model, and we may utilize this 

small number of high leverage loops for management purposes. 

 

4.3 Non-linear models 

 

In a non-linear model, the loop gains are dependent on the current state of the model 

(i.e. the current values of the state variables). Thus the loop gains may change over 

time. The implication is that the contribution of the loops to each of the eigenvalues 

will change. This will modify the eigenvalues.  Such a change in an eigenvalue will in 

turn affect the behavior of the model. Therefore, the relationship between the model 

structure and behavior, which is characterized by the intermediate eigenvalues link, is 

a dynamic one that needs to be assessed iteratively over the simulation time period.  

 

In non-linear models that have been analyzed over a sequence of elementary 

(analysis) time intervals, we experience a continuous change in the characteristic 

gains of the loops, and thus a continuous change in the contribution of the various 

feedback loops to the individual eigenvalues. Consequently, there is a continuous 

change in the values of the eigenvalues and hence a continuous change in the 

contribution of each of these eigenvalues to the model behavior. By aggregating the 

results from the sequence of analyses associated with the elementary (analysis) time 

intervals, we can obtain a characterization of the contribution of each feedback loop to 

the eigenvalues that govern (dominate) the model behavior over a longer time 

horizon. In summary, the method outlined allows us to investigate the transient 
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behavior of complex, non-linear models in view of the underlying structure of these 

models. To exemplify this, our next example will be a non-linear model.   

 

 

5 Closing Example: The yeast cells generation 
 

5.1 Model introduction 

 

We will conclude this paper with a model of yeast cell growth 5, portrayed in the form 

of a stock-and-flow diagram in figure 23. Yeast cells produce alcohol that, in high 

concentrations is toxic to the cells and thus reduces the birth rate and increases the 

death rate of the cells so that the net growth rate of the cells eventually falls below 0, 

so as to cause a depletion of the cells. We will apply our method of analysis, which is 

a formal rigorous mathematical analysis, to understand what are the various feedback 

loops in the model that generate the observed cell’s pattern of behavior. 

 
 

Fig. 23: The yeast cells generation example, stock and flow diagram of the model 
 
 

Considering the corresponding causal loop diagram, portrayed in figure 24, the model 

consists of four feedback loops, L1 – L4. L1 is the cells-births-cells loop. L2 is the 

cells-deaths-cells loop. L3 is the cells-alcohol (through the AlcoholGeneration rate) -

births-cells loop. L4 is the cells-alcohol-deaths-cells loop. 

 

                                                        
5 This is a demo model that is not based on real data. Magne Myrtviet is the one who originally 
suggested this model as an intriguing model to study. 

Deaths

Cells

Births

Alcohol

AlcoholGeneration

EffAlcOnBirthsCellDivisionTime EffAlcOnDeathsCellLifeTime

AlcoholPerCellGeneration
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Moreover, in this example, the gains of the links are calculated (analytically) and 

portrayed in figure 25.  In the mini model form, the gains are G11_inflow (effect of 

cells on births), G11_outflow (effect of cells on deaths), G12_inflow (effect of 

alcohol on births), and G12_outflow (effect of alcohol on deaths), G21 (effect of cells 

on alcohol generation), and G22 (effect of alcohol on alcohol generation) which are 

both constant. The gain of L1 (the first loop), g (L1), is equal to G11_inflow. The gain 

of L2, g(L2), is equal to (–1*G11_outflow). The gain of L3, g(L3), is equal to 

(G12_inflow* G21). The gain of L4, g(L4), is equal to (-1*G12_outflow* G21). 

  

In the compact form, the gains are G11 (effect of cells on the net rate of the cells), and 

G12 (effect of alcohol on the net rate of cells); in addition to G21 (effect Cells on 

alcohol generation), and G22 (effect of alcohol on alcohol generation). 

 

Note: in this case we can analytically calculate the gains; in most non-linear models 

we must use finite-difference approximations to calculate the gains. 

 

 
Fig. 24: The yeast cells generation example, - causal loop diagram of the model 

Cells
Deaths

Alcohol

Births L2L1

L3 L4

L1: Cells-->Births-->Cells
L2: Cells-->Deaths-->Cells
L3: Cells-->Alcohol-->Births-->Cells
L4: Cells-->Alcohol-->Deaths-->Cells



 49

 
Fig. 25: The yeast cells generation example, stock and flow diagram of the 

calculations of the gains of links (mini-model & compact forms) 
 

In addition, we calculate the BPI_1, based on the first and second derivatives of the 

cell state variable, and the rate of change of the absolute value of the net rate (slope) 

of the cell state variable (see figure 26).  

 

Table 8 contains the equations of the model organized according to the various stock-

and-flow diagrams presented above. 

 

G11_Inflow

EffAlcOnBirths CellDivisionTime EffAlcOnDeaths CellLifeTime

G11_Outflow

G11

G12_Inflow

G12
G12_Ouflow

G22G21

AlcoholPerCellGeneration
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Fig. 26: The yeast cells generation example, - stock and flow diagram of the 

calculations of the BPI_1 & the rate of change of the absolute value of the net 
rate of cells state 

 
 

• First Part, The Model: 
 
init  Cells = 1 

    flow  Cells = Births -Deaths 
          

init  Alcohol = 0 
flow  Alcohol = AlcoholGeneration 
 
Births = (Cells/CellDivisionTime)*EffAlcOnBirths 
Deaths = (Cells/CellLifeTime)*EffAlcOnDeaths 
AlcoholGeneration = Cells*AlcoholPerCellGeneration  
 
EffAlcOnBirths = (-0.1*Alcohol)+1.1 
EffAlcOnDeaths = EXP(Alcohol-11) 
 
CellLifeTime = 30 
CellDivisionTime = 15 
AlcoholPerCellGeneration = 0.01 
 
 
• Second Part, the calculations of the gains of links (mini-model & compact forms): 
 
Mini-model: 

 
 G11_Inflow = (EffAlcOnBirths/CellDivisionTime) 
 G11_Outflow = (EffAlcOnDeaths/CellLifeTime) 
 G12_Inflow = (-0.1* (Cells/CellDivisionTime) ) 
 G12_Ouflow =  ( (Cells/CellLifeTime) * EXP(Alcohol-11)) 
 G21 = AlcoholPerCellGeneration 
 G22 = 0 
 
 Compact-model:  
 
 G11 = G11_Inflow-G11_Outflow 
 G12 = G12_Inflow-G12_Ouflow  
 G21 = AlcoholPerCellGeneration 
 G22 = 0 
 

Deaths

Net_Rate_Cells
Births

Double_Cells

BPI_1

Rate_Change_Abs_Net_Rate_Cells
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• Third Part, the calculations of the BPI_1 and the rate of change of the absolute value 
of the net rate of cells state:  

 
Net_Rate_Cells = Births-Deaths 
Double_Cells = DERIVN(Net_Rate_Cells) 
 

 BPI_1 = Double_Cells/ Net_Rate_Cells 
 Rate_Change_Abs_Net_Rate_Cells = DERIVN(ABS(Net_Rate_Cells)) 
  
 Simulation Setup Parameters: 

Start Time=0; Stop Time =85; Simulation Time Step = 1  
 

Table 8: The yeast cells generation example, - equations 
  
 
The behavior, exhibited by the cells state, is portrayed in figure 27. At first glance, 

this behavior can be characterized as “exponential” growth, an overshoot and a 

collapse. In fact, as we shall see from our mathematical treatment, the behavior of this 

relatively simple model is quite complex. As we will see below, our mathematical 

analysis reveals that a number of modes of behavior are hidden under this apparently 

simple behavior. We will see that a divergent behavior yields to an oscillatory 

behavior, which subsequently yields to a convergent behavior. The transitions from 

one mode of behavior to the next are characterized by qualitative changes (or, as we 

will explain later, bifurcations) in the eigenvalues that characterize the behavior. We 

will investigate each of these modes of behavior in more detail. 

 

 
Fig. 27: The yeast cells generation example, cells state behavior 
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5.2 First time phase: time interval 0-39 

 

The first time phase (0-39) is characterized by a divergent mode of behavior. This is 

indicated by the graph of cells state (fig. 28); and by the positive values for BPI_1 and 

for the rate of change of the absolute value of the net rate of cells (fig. 29). In this 

time phase, there are two positive eigenvalues (fig. 30), which also indicates a 

divergent behavior. Towards the end of this period, the eigenvalues approach each 

other. Thereafter they bifurcate into a complex eigenvalue pair (as we will discuss in 

the next phase), consisting of a complex number and its complex conjugate. 

 

 
 

Fig. 28: Cells state behavior in the first phase 
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Fig. 29: BPI_1 and the rate of change of the absolute value of the net rate of cells 

state in the first time phase. 
 
 

 
Fig. 30: Eigenvalues in the first time phase 
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In order to identify the feedback loop(s) that is mainly responsible for the divergent 

behavior in this time phase, we will pick an arbitrary analysis time step during this 

phase and compute the gains and the eigenvalues at this time step. Then we will 

identify the eigenvalue(s) that dominates the behavior (the one with the largest impact 

on behavior) at this analysis time step. Then, for this dominant eigenvalue, we will 

compute and rank the elasticities of all loops in the model, so as to identify the 

dominant loop(s). In this phase we will focus on the analysis time step 7.0-8.0 

(arbitrarily chosen). 

 
Gains, Eigenvalues, Elasticities in the Analysis time step 7.0-8.0 

 
Mini-model gains: 

 
G11_inflow = 0.073 
G11_outflow 0≈ 6 

G12_inflow = -0.011 
G12_outflow 0≈  

 
Compact_form gains: 

 
G11 = 0.073 
G12 = -0.011 

 
Compact gain matrix: 

 





 −

=
001.0
011.0073.0

G  

 
Note that always G21=0.01 & G22=0. 

 
Eigenvalues 

 
λ1= 0.071 & λ2 = 0.0015 

 
Now, we will rank the eigenvalues according to their impact on the cells state 

behavior. As we did before (recall section 3.2), we will set the analysis time step 

equal to the original simulation time step, i.e. 1, and then reduce the simulation time 

step to 0.1. We start out with a base run whereby we allow for all of the eigenvalues 

to simultaneously impact the behavior of the state of the cells. Subsequently, we 

eliminate the dynamics caused by the each eigenvalue, one at a time. Recall that to do  

                                                        
6 To the accuracy of 4 decimal points 
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this we must calculate the right eigenvectors (at time =7) from the G matrix, and also 

the initial values of αs (at time =7) from the right eigenvectors and the values of net 

rates. Here we will only report the final results, i.e. the impact of stopping the 

dynamics associated with each eigenvalue on the absolute value of the net rate of state 

of the cells. 

 
1st Case: stop the dynamics associated with the first eigenvalue (λ1= 0.071). 

 
2nd Case: stop the dynamics associated with the second eigenvalue (λ2 = 0.0015) 

 
 

 Time |net rate cells| in 
Base Run  

|net rate cells| in 
1st case 

|net rate cells| in 
2nd Case 

7.0 0.119 0.119 0.119 
8 0.128 0.119 0.128 

 
Table. 9: First phase experiment, the impact of stopping the dynamics associated 

with each eigenvalue on the absolute value of the net rate of cells state. 

 

From table 9, it is obvious that the first eigenvalue (λ1= 0.071) is dominant at that 

time. The next step is to draw the “elasticity map” associated with this dominant 

eigenvalue.  The elasticity map is a causal-loop diagram of the model that shows the 

elasticities (e) of all loops in the model. We will also show the gains (g) of the loops 

in the model.  

Fig. 31: The elasticity map of the dominant eigenvalue (λ1= 0.071) in the analysis 
time step 7-8. 

Cells Deaths

Alcohol

Births L2L1

L3 L4

e(L1) = 1.044
e(L2) = 0
e(L3) = -0.022
e(L4) = 0

g(L1) = 0.073
g(L2) = 0
g(L3) = -0.0001
g(L4) = 0
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From figure 31, it is obvious that first loop (L1), i.e. the cells-births-cells loop, has the 

largest elasticity; hence one can directly conclude that this is the dominant loop at that 

time; L1 is the loop that mainly contributes to the generation of the divergent behavior 

observed in the first time phase.  

 

5.3 Second time phase: time interval 39-78 

 

This time phase (39-78) is characterized by an oscillatory behavior. This is indicated 

by the graph of cells state (fig. 32) and by the fluctuating signs (+/-) for BPI_1 and for 

the rate of change of the absolute value of the net rate of cells state (fig. 33). At this 

time there are two complex conjugate pairs of eigenvalues (their real and negative 

parts are plotted in fig. 34), - an additional indicator of oscillatory behavior (recall 

section 3.3.2). 

 

Fig. 32: Cells state behavior in the second phase 
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Fig. 33: BPI_1 and the rate of change of the absolute value of the net rate of cells 

state in the second phase 

 

Fig. 34: The real and imaginary parts of the complex eigenvalues pair in the 

second phase 
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In the graph above, observe that the imaginary part of the complex eigenvalues pair is 

equal to zero at the start and the end of the second phase. Also observe that the value 

of the real part of the complex eigenvalues pair at the beginning of the second phase is 

equal to the values of both real eigenvalues at the end of the first phase (recall fig. 

30), and that the value of the real part of the complex eigenvalues pair at the end of 

the second phase is equal to the values of both real eigenvalues at the beginning of the 

third phase (as will be shown in fig. 39). In fact, the points of transitions between 

different time phases are points of bifurcations in the eigenvalues. 

 

In this time phase, we will repeat the same procedure that we followed in the previous 

phase. Yet, in this case, we will study two analysis time steps (50-51 and 70-71), 

rather than a single one as we did previously. The reason for this is that we observed 

in our various experimentations with the model, that there is shift in loop dominance 

occurring during this second time phase; thus, by identifying the different dominant 

loops at these two time steps, we are able to track this shift in loop dominance. 

 

Gains, Eigenvalues, Elasticities in the Analysis time step 50.0-51.0 
 

Mini-model gains: 
 

G11_inflow= 0.047 
G11_outflow 0≈  

G12_inflow= -0.166 
G12_outflow=0.0007 0≈  

 
Compact form gains: 

 
G11 = 0.047 
G12 = -0.166 

 
Compact gain matrix: 

 





 −

=
001.0
166.0047.0

G  

 
λ1= 0.024+0.033 i; λ2 = 0.024-0.033 i 

 



 59

In this case, there is only one compound eigenvalue (complex conjugate pair of 

eigenvalues). The figure below shows the “elasticity map” associated with this 

compound eigenvalue. 

 

Fig. 35: The elasticity map of the compound eigenvalue (the complex conjugate 
pair) in the analysis time step 50-51. 

 
From figure 35, it is obvious that loops L1 and L3 are the loops whose elasticities 

(magnitudes) are the largest; hence both loops L1 and L3 are the dominant loops at 

that time. 

 
Gains, Eigenvalues, Elasticities in the Analysis time step 70.0-71.0 

 
 

Mini-model gains: 
 

G11_inflow= 0.0006 0≈  
G11_outflow  = 0.03 
G12_inflow= -0.266 
G12_outflow=1.2 

 
Compact form gains: 

 
G11 = - 0.03 
G12 = -1.466 

 
Compact gain matrix: 

 

Cells Deaths

Alcohol

Births L2L1

L3 L4

e(L1) = 0 - 0.7 i             ; i.e. |e(L1)| = 0.7
e(L2) = 0
e(L3) = 0.5 + 0.35 i      ; i.e. |e(L3)| = 0.61
e(L4) = 0

g(L1) = 0.047
e(L2) = 0
e(L3) = -0.0017     
e(L4) = 0
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



 −−

=
001.0
466.103.0

G  

 
λ1=  -0.015 + 0.12 i; λ2 = -0.015 - 0.12 i 

 
Also, at that time there is only one compound eigenvalue (complex conjugate pair of 

eigenvalues). The figure below shows the “elasticity map” associated with this 

compound eigenvalue.  

 

Fig. 36: The elasticity map of the compound eigenvalue in the analysis time step 

70-71 

 

From figure 36, it is obvious that loop L4 is the dominant loop at the time step 70-71, 

while loops L1 and L2 play a less significant role. Recall that, at the time step 50-51, 

loops L1 and L3 were the dominant loops; hence there has been a gradual shift in loop 

dominance from time 50 till time 70. This shift in loop dominance did not 

qualitatively change the eigenvalues (they remain a complex pair of eigenvalues). Yet 

what did change is the sign of the real part of the complex eigenvalues pair (recall that 

the real part was equal to 0.024 at time 50, and it was equal to –0.015 at time 70). A 

positive real part is an indication of a diverging (oscillatory) behavior, while a 

negative one is an indication of a converging (oscillatory) behavior. This shift, from a 

diverging oscillation at the start of the second time phase, to a converging one in the 

end of the phase, is consistent with the fact that this oscillatory behavior takes over 

Cells
Deaths

Alcohol

Births L2L1

L3 L4

e(L1) = 0             
e(L2) = 0 + 0.12i          ; i.e. |e(L1)| = 0.12
e(L3) = 0.09 - 0.01 i     ; i.e. |e(L3)| = 0.091
e(L4) = 0.41 - 0.05 i     ; i.e. |e(L4)| = 0.41

g(L1) = 0             
g(L2) = -0.03         
g(L3) = -0.0027     
g(L4) = -0.012    
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from a divergent behavior in the first phase, and then yields to a convergent behavior 

in the last phase (as we will see below). 

 

5.4 Third time phase: time interval 78-85 

 

This time phase (78-85) is characterized by a convergent behavior, indicated by the 

graph of state of the cells (fig. 37) and by the negative values for BPI_1 and for the 

rate of change of the absolute value of the net rate of the state of the cells (fig. 38). In 

this phase, there are two negative eigenvalues (fig. 39), - another indicator for 

convergent behavior. 

 

 

 

 

 

 

 

 

 

 

Fig. 37: Cells state behavior in the third phase 

 

 

 

 

 

 

 

 

 

 

 

 



 62

Fig. 38: BPI_1 and the rate of change of the absolute value of the net rate of cells 

state in the third phase 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 39: Eigenvalues in the third phase. 
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Gains, Eigenvalues, Elasticities in the Analysis time step 80.0-81.0 
 

Mini-model gains: 
 

G11_inflow = -0.017 
G11_outflow = 0.413 
G12_inflow = -0.028 
G12_outflow = 1.736 

 
Compact_form gains: 

 
G11 = -0.43 
G12= -1.764 

 
Compact gain matrix: 

 





 −−

=
001.0
764.143.0

G  

 
λ1= -0.384 & λ2 = -0.046 

 
As we did at the analysis time step 7-8, we are going to rank the eigenvalues 

according to their impact on the behavior. Here are the results. 

 
1st Case: stop the dynamics associated with the first eigenvalue (λ1= -0.384). 

 
2nd Case: stop the dynamics associated with the second eigenvalue (λ2 = -0.046) 

 
Time |net rate cells| in 

Base Run 
|net rate cells| in 

1st case 
|net rate cells| in 

2nd Case 
80.0 0.119 0.119 0.119 
81.0 0.128 0.119 0.128 

 
Table. 10: Third phase experiment, the impact of stopping the dynamics 

associated with each eigenvalue on the absolute value of the net rate of cells state. 

 

From table 10, it is obvious that the first eigenvalue (λ1= -0.384) is dominant in this 

case. Below is “elasticity map” associated with this dominant eigenvalue. 
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Fig. 40: The elasticity map of the dominant eigenvalue (λ1= -0.384) in the analysis 
time step 80-81. 

 

From figure 40, it is obvious that second loop (L2), i.e. the cells-deaths-cells loop, is 

the dominant loop at that time; L2 is the loop that is mainly generating the convergent 

behavior observed in this phase.  

 
 

6 Conclusion 
 
Using the system dynamics method, we should be able to understand the nature of the 

complexity governing the real world – i.e. how structure drives behavior and how the 

resulting behavior causes shifts in structural dominance in complex non-linear, 

dynamics systems. This would then serve as a foundation for problem identification, 

problem analysis, for problem solving in the form of policy design and strategy 

development and, thus for the management of complex, dynamic systems. Yet, until 

now, the explanatory power of system dynamics has not been sufficient. Most system 

dynamicists (Ford, 1999; Richardson, 1984; Sterman, 2000, etc.) agree that a 

rigorous, scientific method for identifying dominant feedback loops is required in 

order to boost the explanatory power of system dynamics field. In this paper we 

document such a method. 

Cells
Deaths

Alcohol

Births L2L1

L3 L4

e(L1) = 0.05
e(L2) = 1.22
e(L3) = -0.002
e(L4) = -0.133

g(L1) = -0.017
g(L2) = -0.413
g(L3) = -0.0003
g(L4) = -0.017
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The method suggested consists of the following steps: First, we have provided a 

characterization of model behavior in the form of the slope, the curvature, the 

individual BPIxs, and the overall BPI. We have also documented the significance of 

the rate of change of the length of the slope vector and its components to the behavior 

of a model. Moreover, we have demonstrated that the overall BPI and the BPIxs are 

qualitative indicators that serve as proxies for the rate of change of the length of the 

slope vector and its components, respectively. Second, we described the relationship 

between the eigenvalues and the rate of change of the length of the slope vector and 

its components. Third, we described the relationship between the gains of loops in the 

model, i.e. the structure of the model and the eigenvalues. Hence we demonstrated 

that the eigenvalues serve as a link between the structure and the behavior in dynamic 

models. 

 

In a nutshell, our method of identifying dominant feedback loops is a two-stage 

filtration process. In the first stage, we rank eigenvalues according to their impact on 

the behavior. Then we select the dominant eigenvalue(s). In the second stage we rank 

loops according to their significance to the dominant eigenvalue(s). Then we select 

the dominant loops. As the dominant eigenvalues and the dominant loops may change 

with time, we iterate this two-stage filtration process over the simulation period. The 

main goal of this filtration process is to identify the “core structure” of the model, -

where the core structure is defined as the smallest number of loops that is responsible 

for generating the behavior of the model over time. The core structure is a presentable 

distillation of the structure of the model (an archetype). Another important goal is 

identifying the time phases in which different parts of the core structure are active (i.e. 

dominating the behavior). By focusing on the active part of the core structure in a 

certain time phase, we may legitimately simplify our understanding of the model. And 

we may utilize the small number of high leverage loops, which are present in the 

active part, for management purposes.  

 

So what is the Next step? To continue research in this direction, it is essential to 

develop a user-friendly software package that can automate this method of identifying 

dominant feedback loops for any SD model. Steps have already been taken in this 

direction. Most of the algorithms that are required to compute the gains, the 
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eigenvalues and elasticities have been implemented. In future research, we may 

investigate the rare case of a defective gain matrix (see Appendix A, Corollary A.3). 

Also steps have been taken to design a friendly user-interface that presents the steps in 

and the results from this sophisticated mathematical method in a simple and intuitive 

way. For more details, the reader can refer to (Myrtveit & Saleh 2000). The software 

package to be developed shows promise as an important tool that may contribute 

significantly to our understanding of large complex non-linear SD models. Moreover, 

this package we enable us to further test our method on a variety of large, complex 

models. Thus we can further validate our method and improve on it. 
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Appendix A: Matrix eigensystem theorems 
 
A.1 Definitions of eigenvalues, eigenvectors, and the characteristic 
polynomial 
 
A number λ is an eigenvalue of a nxn real matrix A, if there is a nonzero n vector r 

such that: 

A ∗ r = λ ∗ r 

 

The corresponding vector r is called the right-eigenvector of matrix A. It is called 

“right-eigenvector” in the sense that it appears on the right-hand side of matrix A in 

the previous equation. Vector r has n elements, where at least one element is a 

nonzero element. 

 

In the meanwhile, the left-eigenvector l is defined by the following equation:  

 

lT * A = λ ∗ lT 

 

Where lT is the transpose of l 
 

It is called “left-eigenvector” in the sense that it appears on the left-hand side of 

matrix A in the previous equation. Vector l has n elements, where at least one element 

is a nonzero element. 

 

Note: It is clear (from the previous equations) that eigenvectors (right and left) are 

defined only to within a scalar multiple. If v is an eigenvector, then so is αv for any 

nonzero scalar α.  
 

The equation that defines the eigenvalue λ (i.e. A ∗ r = λ ∗ r) can be written in the 

following form: 

 

[A- λI] ∗ r = 0 

 

Where I is nxn identity matrix. 
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The previous equation has a nonzero solution (i.e. a vector r whose elements are not 

all zero) if and only if Det[A- λI] = 0 (i.e. the determinant  equals zero). 

 

Recall that if the Det[A- λI] has a nonzero value, then [A- λI]− 1 (the inverse) does 

exist, and the previous equation could be multiplied by it yielding: 

 

[A- λI]− 1 ∗ [A- λI] ∗ r = 0 

 

r = 0   

Which is a contradiction. 

 

The equation: Det[A- λI]  is a polynomial of the n degree in the variable λ.  

 

Det[A- λI]  = λn + c1 λn-1 + … + cn-1 λ + cn 

 
It is called the characteristic polynomial of matrix A; where ci (i = 1… n) are the 

coefficients of the characteristic polynomial. 

 

The “n” roots of the characteristic polynomial are the eigenvalues of matrix A. The 

roots of the characteristic polynomial can be either real numbers or complex ones; yet 

if a complex number is a root for the characteristic polynomial, then its complex 

conjugate must also be a root.  

 

Each element in an eigenvector (right or left), which is associated with a real eigen-

value, is a real number.  
 

Each element in an eigenvector (right or left), which is associated with a complex 

eigenvalue, is, in general, a complex number that has its complex conjugate 

counterpart element in the eigenvector that is associated with the complex conjugate 

eigenvalue.  
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In the following theorems, we will use the term “distinct eigenvalues”. Distinct 

eigenvalues implies distinct (non-repeated) roots to the characteristic polynomial. 

Equal eigenvalues coming from multiple roots are called “degenerate”.  

 

Theorem A.2: For any real square matrix A, the right-eigenvectors associated with 

the distinct eigenvalues are linearly independent. 
 

Proof 

Say that we have q distinct eigenvalues. Now, we will assume that the q right-

eigenvectors (associated with the q distinct eigenvalues) are linearly dependent; and 

then we will falsify this hypothesis.   
 

In mathematical term our hypothesis (that we want to falsify), can be stated as:  

 

0*
1

=α∑ =
p

i ii r  … (1) 

 

Where p is the “smallest” number of linearly dependent right-eigenvectors 

The value of p satisfies the following inequality:  

 

qp ≤<1  

ri is the right-eigenvector associated with the eigenvalue λi 

And αi is a nonzero scalar value. 

 

Multiplying equation (1) by A yields: 

∑∑ == =λα=α p

i iii
p

i ii rrA
11

0**** … (2) 

 

Multiplying equation (1) by λp yields: 

0**
1

=λα∑ =
p

i ipi r   … (3) 

 

In equations (2) and (3) the summand αp*λp* rp is identical, then subtracting equation 

(2) from (3) yields: 
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0*)(*
1

1
=λ−λα∑ −

=
p

i iipi r  

 

Since the eigenvalues are distinct, then none of the coefficients in the previous 

equation is equal to zero, thus we have (p-1) linearly dependent right-eigenvectors. 

This contradicts our hypothesis that p is the “smallest” number of linearly dependent 

right-eigenvectors. Therefore, we can directly conclude that the q right-eigenvectors 

are linearly independent. 
 

Corollary A.3: For any real square matrix A (nxn) with n distinct eigenvalues 

{λ1...λn}; its n right-eigenvectors span the whole n-dimensional space. That is every 

real vector x in the n-dimensional space has a unique representation as:  
 

∑ = α= n

i ii rx
1

*  

 

Where ri is the right-eigenvector associated with the eigenvalue λi 

And αi is a scalar value (can be zero). 

 

In matrix form equation ∑ == n

i ii rx
1

*α  can be written as: 

  

x = R * α   ...(1) 
 

Where R = [ ]nrrr .21 ;  ri is the right-eigenvector associated with the eigenvalue 

λi 

α is a n vector. 

 

The first step is to illustrate that R− 1 (the inverse of R) always exist. 

The inverse R− 1 exists if, and only if, rank(R)=n. 

 The rank of a matrix equals the maximum number of linearly independent column 

vectors in this matrix. 
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In the previous theorem, we demonstrated that the right-eigenvectors of the distinct 

eigenvalues are linearly independent. As we have n distinct eigenvalues, we can 

conclude that rank(R)=n and that R− 1 always exist. 

 

Now equation (1) can be written as: 

α = R− 1 * x 

 

Since, there can be only unique inverse for a matrix, then for every real vector x there 

is a corresponding unique α  vector.   
 

Note that the term “complete right-eigenvectors” is used to describe the fact that the 

right-eigenvectors span the whole n-dimensional space. Incomplete right-eigenvectors 

can only occur where there are degenerate eigenvalues. But even in the case of 

degenerate eigenvalues, the right-eigenvectors will usually (but not always) be 

complete.  In the rare case of incomplete right-eigenvectors, matrix A is called a 

“defective matrix”.  

 

Theorem A.4: For any real square matrix A (nxn) with n distinct eigenvalues 

{λ1...λn}; its two sets of right-eigenvectors and left-eigenvectors form a bi-orthogonal 

system. That is, the left-eigenvector of one eigenvalue is orthogonal to the right-

eigenvector of the other, while the left and right eigenvectors of the same eigenvalue 

are not orthogonal to each other.  

 

Note: The two vectors x and y (each having n elements) are called orthogonal if the 

angle (θ) between them is 90 o. The formula of the angle θ is:  

||*||

.

yx

yx
Cos =θ  

 

It is clear that the two vectors x and y are orthogonal, only if their inner product  (i.e. 

x .y) is equal to zero. Another way to express the inner product is xT*y. Thus, 

mathematically the above theorem can be stated as: 

 

ljT * ri = 0 if i ≠  j 
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ljT * ri ≠ 0 if i = j 

for j = 1… n & i = 1… n 

 

Proof 

 
First, we are going to prove that: 

 

ljT * ri = 0 if i ≠  j 

 

Starting from the definition of the eigenvalue: 

 

A * ri= λi  * ri 

 

We are going to use the fact that the transpose of a product (of several matrices and 

vectors) equals the product of the transposed factors, taken in reverse order.  

Thus, transposing both sides of the above equation yields: 

 

 ri Τ *AΤ=λi *ri
Τ 

 

Post-Multiplying both sides by lj yields: 

 

 ri
Τ *AΤ * lj =λi * r i

Τ * lj … (1) 

 

Now, we will return back to the definition of the left eigenvector: 

 

lT * A = λ ∗ lT 

 

Transposing both sides of the equation yields: 

 

AΤ * lj =λj * lj  

 

Pre-multiplying both sides by ri
Τ yields: 
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 r i
Τ*AΤ* lj =λj * ri

Τ * l j … (2) 

 

Subtracting (1) from (2) yields: 

 

0 = (λj-λi) * ri
Τ * l j 

 

Since the eigenvalues are distinct, then:  

ri
Τ * l j = 0 

 

The second step is to prove that: 

ljT * ri ≠ 0 if i = j 

 

This proof is simpler than the previous one. In this proof, we are going to assume that 

li is orthogonal to ri, then we will falsify this hypothesis.  

 

If li was orthogonal to ri, then it would be orthogonal to r1, r2…  rn. Since r1, r2…  rn are 

linearly independent, then this would make li orthogonal to the whole n-space; which 

is something impossible, as the only n vector that is orthogonal to the whole n-space 

is the null-vector. 

 

Corollary A.5: For any real square matrix A (nxn) with n distinct eigenvalues 

{λ1...λn} the transpose of the matrix of left-eigenvectors is the inverse of the matrix of 

right-eigenvectors; i.e. LΤ=R− 1  

     
Where  

L= [ ]nlll .21  

 li is the left-eigenvector associated with the eigenvalue λi 

 

R = [ ]nrrr .21  

 ri is the right-eigenvector associated with the eigenvalue λi 
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Comment: One can consider the matrix of left-eigenvectors as a “mirror image” of the 

matrix of right-eigenvectors. 

 

We will denote the matrix [LΤ*R] by X. From the bi-orthogonal relationship between 

left-eigenvectors and right-eigenvectors (the above theorem), one can directly infer 

that X will be in the form: 



















=

nnx

x
x

X

000
0.00
000
000

22

11

 

 

As we stated before (section A.1), it is a general property that eigenvectors are 

defined only to within a scalar multiple. If v is an eigenvector, then so is αv for any 

nonzero scalar α. As xii equals liΤ* ri, then we can normalize xii to equal unity. This 

normalization process will not affect the other elements in matrix X.  

 

The common normalization for the eigenvectors is to make the length of ri equals 

unity, by multiplying ri with an appropriate scalar value.  Then to make the inner 

product of ri and li  (i.e. liΤ* ri) equals unity, by multiplying li with an appropriate 

scalar value. 

After normalizing all the diagonal elements in matrix X to unity, matrix X will b 

equal to: 



















=

1000
0100
0010
0001

X  = I 

 

As LΤ * R = X= I 

Thus, LΤ= R− 1 

 

Corollary A.6: Any real square matrix A (nxn) with n distinct eigenvalues 

{λ1...λn} can be put in the following diagonal form:  

Λ = LΤ∗A∗ R      
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Where 



















λ

λ
λ

=Λ

n000
0.00
000
000

2

1

 

 

Consider the matrix [A*R]. It is a nxn matrix.  

The ith column of this matrix is A*ri 

That is, the ith column of this matrix is λi*ri 

 

Now, consider this matrix [R*Λ].  It is a nxn matrix. 

The ith column of this matrix is λi*ri 

 

Thus we conclude that: 

A * R = R * Λ 
 

By arranging this equation we get: 

Λ = R− 1 ∗  A ∗  R 

 

Substituting LΤ for R− 1 we get: 

Λ = LΤ∗A∗ R 

 

Theorem A.7: For any real square matrix A (nxn) having a distinct eigenvalue λi 

(regardless of whether or not the rest of eigenvalues are distinct) the sensitivity 

matrix, Si, associated with this eigenvalue is equal to the product of the left-

eigenvector (associated with this eigenvalue), and the transpose of the right-

eigenvector (associated with this eigenvalue). 

 

That is: Si= li * ri
Τ 
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Where: 























∂
λ∂

∂
λ∂

∂
λ∂

∂
λ∂

=

),(..)1,(

....

....
),1(..)1,1(

nnAnA

nAA

S

ii

ii

i  

 

 

Proof 

The matrix equation: Si= li * ri
Τ   implies that for any element  Si(x,y):  

 

Si(x,y) = li(x)* ri(y) 

 

To simplify the proof, we will assume that A is a 2x2 matrix (generalizing to any nxn 

matrix after that, is not a problem), and we will be focusing on single element in the 

sensitivity matrix, say Si(1,1) (generalizing to any element in the matrix after that, is 

straightforward).  

 

Then, our goal will be to proof that: 

Si(1,1) = li(1)* ri(1). 

 

From corollary A.6, we know that: 

Λ = LΤ∗A∗ R 

 

By expanding this matrix equation to an ordinary algebraic equation for only one 

eigenvalue (i.e. one diagonal element in matrix Λ) , we get: 

 
λi= li(1)*ri(1)*A(1,1)+ li(1)* ri(2)* A (1,2)+ li(2)* ri(1)* A (2,1)+ li(2)* ri(2)* A (2,2) 

 

By differentiating the above equation with respect to A(1,1) we get: 
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Our aim is to proof that: 
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Thus, our focus will be to proof that: 
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Recall that the left-eigenvector (that is associated with eigenvalue λi ) is:  

 

li = [li (1), li (2)] 

 

And that right-eigenvector (that is associated with eigenvalue λi ) is:  

 

ri = [ri (1), ri (2)] 

 

From Corollary A.5, we know that the inner product of the left and right eigenvectors 

is always equal to unity: 

 

{ li (1)* ri (1) } + { li (2)* ri (2) }=1 

 

Now, to compute the sensitivity of λi to A(1,1),  we are going to introduce a small 

perturbation   to the value  of A(1,1): 
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A(1,1)|new = A(1,1) + ∆A (1,1) 

 

The new left-eigenvector will be:  

 

li |new  = [li (1) + ∆li (1), li (2)+∆li (2)] 

 

The new right-eigenvector will be:  

 

ri |new = [ri (1)+∆ri (1), ri (2)+∆ri (2)] 

 

Also the inner product of the new left and right eigenvectors is equal to unity: 

 

{ {li (1)+∆li (1)} * {ri (1)+∆ri (1)} }+ { {li (2)+∆li (2)} * {ri (2)+∆ri (2)} }=1 

 

Hence the inner product of the new left and right eigenvectors is equal to the inner 

product of the original left and right eigenvectors: 

 

{{li (1)+∆li (1)} * {ri (1)+∆ri (1)} }+ { {li (2)+∆li (2)} * {ri (2)+∆ri (2)} } = 

{ li (1)* ri (1) } +{ li (2)* ri (2) }   

 

By Simplifying this equation we get: 

 

0 = {∆li (1)* ri (1)}+{ ∆ri (1)* li (1)}+{ ∆li (1)* ∆ri (1)}+{ ∆li (2)* ri (2)}+ 

      { ∆ri (2)* li (2)}+{ ∆li (2)* ∆ri (2)} 

 

By dividing both sides by ∆A(1,1) , and by taking the limit as ∆A(1,1) à  0  we get: 

 

0)2(
)1,1(

)2()1(
)1,1(

)1()2(
)1,1(

)2()1(*
)1,1(

)1( =
∂
∂+

∂
∂+

∂
∂+

∂
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A
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A
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A
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A
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Multiplying both sides by λi yields: 
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Substituting 

{λi * ri(1) } by { ri(1) *A(1,1)+ri(2)*A(1,2) } 

{ λi * ri(2) } by { ri(1) *A(2,1)+ri(2)*A(2,2) } 

{ λi  * li(1) } by: { li (1)*A(1,1)+li (2)*A(2,1) } 

{ λi  * li(2) } by: { li (1)*A(1,2)+li (2)*A(2,2) } 

 

And then arranging the equation we get: 
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Corollary A.8: For any real square matrix A (nxn) having a distinct eigenvalue λi 

(regardless of whether or not the rest of eigenvalues are distinct): 

∑ ∑
= =

=λ
n

x

n

y
ii yxAyxS

1 1

),(*),(  

       

From corollary A.6, we know that: 

Λ = LΤ∗A∗ R 

 

By, focusing only on one eigenvalue (i.e. one diagonal element in matrix Λ), we get:  
 

liΤ* A* ri = λi 

 

Q Si(x,y)= li(x) * ri(y) 
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∴  liΤ* A* ri = ∑ ∑
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Corollary A.9: For any real square matrix A (nxn) having a distinct eigenvalue λi 

(regardless of whether or not the rest of eigenvalues are distinct):  

 

∑ ∑
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1 1
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Where Ei(x,y) is the λi elasticity to element A(x,y). 

Ei(x,y) is defined as 

i

i
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Theorem A.10: For any real square matrix A (nxn) having a distinct eigenvalue λi 

(regardless of whether or not the rest of eigenvalues are distinct):  

∑∑
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=
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n

y
i qyEyqE

11

),(),(  (q = 1… n) 

 

This theorem is a mathematical description of the system dynamics phenomenon: “the 

sum of the eigenvalue elasticities of all links coming into a variable equals the sum of 

the eigenvalue elasticities of all links leaving the variable”. This phenomenon was 

originally observed by N. Forrester. 

 

Proof 

Starting from the definition of the left-eigenvector: 
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liΤ *A=λi * liΤ 

 

Pre-multiplying both sides by ri yields: 

 

 ri* liΤ *A = λi * ri * liΤ 

  

Recalling that the transpose of a product equals the product of the transposed factors, 

taken in reverse order; then transposing both sides of the equation yields: 

 

AΤ* li* ri
Τ = λi * li * ri

Τ 

 

Substituting li*ri
Τ by Si yields: 

 

AΤ * Si = λi * Si  … (1) 

 

Now, from the definition of the right-eigenvector: 

 

A * r i = λi * r i 

 

Getting the transpose of both sides yields: 

 

r i
Τ * AΤ = λi * r i

Τ 

 

Pre-multiplying both sides by l i yields: 

 

li * r i
Τ  * AΤ = λi * l i * r i

Τ 

 

Substituting li*ri
Τ by Si yields: 

 

Si * AΤ = λi * Si  ...(2) 

 

From equations (1) and (2) we can conclude that: 
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AΤ * Si = Si * AΤ 
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Dividing both sides by λi yields: 
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A.11 Developing a mathematical function that relates the eigenvalue 

to the gains of feedback loops. 
 

The idea is to develop a function that has the eigenvalue as the dependent parameter, 

and the gains of loops as the independent parameters. Such a function can aid in 

illustrating the key role that the loop elasticities play in determining the significance 

of a loop to an eigenvalue. 

 

 We are going to develop this function step by step with the help of the yeast cells 

generation example (section 5).  We will start by recapping the gain information of 

the model. 

 

In the mini model form, the link gains are G11_inflow (effect of cells on births), 

G11_outflow (effect of cells on deaths), G12_inflow (effect of alcohol on births), and 

G12_outflow (effect of alcohol on deaths); in addition to G21 (effect of cells on 

alcohol generation). Recall that G22 (effect of alcohol on alcohol generation) is 

always zero, thus we can easily ignore it. The mini-model link elasticities associated 

with those gains are E11_inflow, E11_outflow, E12_inflow, E12_outflow, and E21 

respectively. We are going to use the shortcut notations e1, e2, e3, e4, and e5 for 

E11_inflow, E11_outflow, E12_inflow, E12_outflow, and E21 respectively; and the 
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shortcut notations g1, g2, g3, g4, and g5, for G11_inflow, G11_outflow, G12_inflow, 

G12_outflow, and G21 respectively. 

 

This model has four loops (mini model form): L1 – L4. L1 is the cells-births-cells 

loop. L2 is the cells-deaths-cells loop. L3 is the cells-alcohol (through the 

AlcoholGeneration rate) – births-cells loop. L4 is the cells-alcohol-deaths-cells loop. 

The gain of L1, g (L1), is equal to g1. The gain of L2, g(L2), is equal to (-1* g2). The 

gain of L3, g(L3), is equal to (g3* g5). The gain of L4, g(L4), is equal to (-1* g4* g5). 

 

Now, we will start developing our desired function; our point of departure is the fact 

that sum of all compact link elasticities equals unity (recall Corollary A.9). As the 

elasticity of a compact link equals the sum of elasticities of mini-model links that 

constitute that compact link, then one can directly infer that the sum of all mini-model 

link elasticities must also equal unity.  

 

Thus:  

∑
=

=
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1

1
x

xe  

 

Multiplying both sides by the eigenvalue λi yields: 

 

x
x x

i
i gg∑

=
∂
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1
    (Recall the definition of elasticity) 

 

The above equation is a homogenous linear partial differential equation of the first 

order. 

 

Its solution is:  

54321
54321
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x
i gggggcgc x ==λ ∏

=
  

Where c is a constant. 
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This solution is only valid in the infinitesimal circular neighborhood of the operating 

point, as the elasticities are treated as constants in the solution.  

 

Now, recall that the elasticity of a link equals to the sum of elasticities of all the loops 

that contain the link. Then from the causal-loop diagram of the model (fig. 24), one 

can easily conclude that: 

e1 = e(L1)  

e2 = e(L2)  

e3= e(L3) 

e4= e(L4) 

e5= e(L3) + e(L4) 

 

Substituting the link elasticities by the loop elasticities yields: 

 

}e(L4)  e(L3){
5

e(L4)
4

e(L3)
3

e(L2)
2

e(L1)
1 ..... +=λ gggggci  

 

By arranging this equation we get: 
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Recall that g (L1) is equal to g1, g(L2) is equal to (-1* g2), g(L3) is equal to (g3* g5), 

and g(L4) is equal to (-1* g4* g5); then: 
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Where g(Lx) is the gain of loop x; and e(Lx) is the elasticity of loop x. 

 

From the above formula, one can directly infer that the only parameter that determines 

the significance of a loop to an eigenvalue, is the elasticity associated with that loop. 

 

Note: the above formula can be generalized to any model; i.e. it represents a 

“universal relationship” between any eigenvalue and the feedback loops in a model. 
 

 

 

 


