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1 Abstract 
The importance of feedback analysis is stressed by SD the community, and the subject is 
taught at most SD classes. In the practice of business simulations, the identification and study 
of feedback loops is not so ubiquitous as it deserves. The weak technical support for dynamic 
analysis of model structures makes it difficult to apply feedback analysis on large models. In 
addition, the understanding of the dynamic nature of models seems to be quite rudimentary in 
many areas. 

Powersim has since 1995 developed new mathematical and technological solutions for 
analyzing and visualizing dynamic aspects of SD models. This paper concentrates on some 
technological results of this research. 

Our approach is based on modes of behavior, loops and links (influences) of a model, as well 
as extensions to the causal loop diagram (CLD) representation of models. The overall 
behavior mode of a model is determined by the sum of all the elementary modes at any time. 
Each mode describes growth, decay or linear development, and it can in addition have an 
element of oscillation. By sorting the elementary modes according to strength, the dominating 
behavior of the model is quickly identified. The paper also describes how loops of a system 
can be identified and sorted according to contribution to a given behavior mode. 
Diagrammatic display of contribution to behavior modes (and loops) is performed using line 
styles and colors of links in a CLD. This creates a visual link between the structures of a 
model and their relative contribution to selected loops as well as the overall behavior of the 
model. This special way of dynamic coloring creates a “heat map” that identifies the most 
active structural parts of a model at any time. 

2 Introduction 
Powersim has since 1995 dedicated resources to work related to improving the mathematical 
and the technological support for analyzing dynamic systems. Initially, the focus was on 
identifying needs and pointing out directions for research and development. Since the 
beginning of 1999 the work has been coordinated with the University of Bergen, through a 
PhD program. The effort around improving the mathematical and the technological support 



for dynamic analysis and visualization has been carried out in parallel. This paper 
concentrates on technological results, whereas another paper at this conference (Saleh and 
Davidsen 2000) covers the underlying mathematics in detail. 

3 The Challenge 
System Dynamics Models are used to capture and understand important aspect of real or 
imaginary systems. One important reason for using models is that a model can be kept 
simpler than the real system it portrays. However, once a model grows bigger than a few 
variables, it starts to possess the same characteristics that make the real world difficult to 
understand. One set of difficult questions relate to model behavior: 

• Prior to running the simulation: How will this model behave? 

• After running the simulation: Why did this particular behavior occur? 

• How can we change the model to improve its behavior (measured by certain 
objectives)? 

And as if these questions were not enough, there is also a range of difficulties concerning the 
structure of large models: 

• What does this model contain? Where are the boundaries? What is included? What is 
left out? 

• Which structures (among all the details) are the most important for the model 
behavior? 

This paper concentrates on the dynamic aspects of models, while Myrtveit (2000) puts the 
focus on the structural aspects. 

4 Visualizing Structure and Behavior Separately 
System dynamisists have developed various ways of helping us understand the structure and 
behavior of a model. The simplest solutions deal with model structure and model behavior 
separately. Time tables and time graphs are commonly used to display how variable values 
develop over time. Symbols representing model variables can be linked together in various 
ways to form Causal Loop Diagrams (CLD) or Accumulator Flow Diagrams (AFD) 
visualizing the structure of a model. 
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Figure 1: Structure and Behavior visualized separately 

The links that are connecting up variable symbols of a Causal Loop Diagram can be traced to 
form closed paths, or feedback loops. Feedback loops can be categorized as balancing or 
reinforcing, based on the polarities of the links involved in each loop. 
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Figure 2: Causal Loop Diagrams show structure and behavioral implications together 

In the above figure, the polarity of each link is visualized. The snowball symbol in the center 
indicates that the enclosing feedback loop is a reinforcing one. 

The nature (balancing or reinforcing) of a loop will change if one of its links changes polarity 
(from negative to positive, or vise versa). But even when loop polarities stay the same 
throughout a simulation; their relative strengths normally vary over time in a non-linear 
model. Knowing the nature of loops is not enough to determine behavior. In Figure 2 there is 
only one loop, but all we can say, is that the behavior of this system will be diverging—either 
going up or going down. The signs of the Interest Rate and the Initial Deposit, will determine 
if the Account will grow upwards or downwards—two quite different scenarios for the owner 
of the account. 
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Figure 3: Loop polarities are not enough to predict behavior 



From the above figure, it becomes clear that there is a distinction between behavior and 
behavior mode. In a single-loop system, it is trivial to determine the behavior mode, as either 
diverging or converging. But, even then, we need to know the initial system state and precise 
model equations in order to determine the actual behavior over time. 
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Figure 4: State + Equations : %HKDYLRU 

The behavior mode of a simulation at any given time is determined by the strongest feedback 
loop(s). The overall pattern of behavior over time can be related to changing relative 
strengths of feedback loops. A system with one balancing and one reinforcing loop produces 
S-shaped development if the reinforcing loop dominates in the first phase, and the balancing 
loop dominates in the second phase. This is an example of an archetype. One way to define 
an archetype is to say that it is a given network of feedback loops, where the relative 
strengths of the loops change over time, causing a characteristic behavior. The structure, 
behavior and reasons for shifts in loop dominance are three important keys to learning from 
archetypes. The relationship between archetype and structure is not always easy to spot. The 
feedback loops that dominate during the various phases of a simulation can be part of a much 
larger network of links and loops, making the archetypal structure almost impossible to spot. 
It is also the case that the loops of an archetype can be modeled in many different ways. 
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Figure 5: Archetypes relate behavior patterns to shifts in loop dominance 

The above figure illustrates the “limits growth” archetype (Senge 1990). A model with this 
structure will among all its loops have two loops that will be dominant during different stages 
of the simulation. One loop is reinforcing, and it will be dominant in the first phase—the 
divergent phase. The other loop is balancing, and it will be dominant in the last phase—the 
converging phase. 

When it comes to model structure, it is quite common to subdivide a model it into sectors or 
subsystems. This way the topology of the model can be made clearer. Each part can be 
studied and understood independently at a detailed level, while the overall relationships 
between the parts can be described at a higher level. This approach is related to object-
oriented thinking, and provides a means of dealing with (structural) complexity through 
abstraction. 



Feedback loops (and archetypes) do normally not stay within subsystem boundaries. On the 
contrary, feedback is to a large extent a phenomenon that takes place between subsystems. As 
a consequence, it is not feasible to construct subsystems around archetypes. It is also the case 
that, while subsystems highlight topological structure, they obscure feedback structure, and 
vice versa. 

Within sectors or subsystems, models are typically described using accumulator flow 
diagrams. The advantage of this diagram type is that it has distinct symbols for representing 
the two fundamental building blocks of SD models, the levels (states) and the rates (flows). 
Accumulator flow diagrams are very well suited for visualizing (and building) the inner 
workings of a system or subsystem. The symbolic building blocks of variable symbols (levels 
and auxiliaries) and relationship symbols (links and flows) are too abstract, however, for 
capturing the conceptual structure of systems as composed from a hierarchy of subsystems 
(see Myrtveit 2000). 

Accumulator flow diagrams do not lend themselves well to a feedback perspective. First of 
all, accumulator flow diagrams have several different kinds of symbols for variables and 
dependencies. In particular, flow symbols can confuse the direction of influence between a 
flow variable and a level. As an example, it is not particularly clear from the AFD view 
below that B influences A, and not vice versa. 
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Figure 6: Flows do not represent direction of dependencies well 

The use of snapshots (aliases, ghost variables) in AFD also contributes to hiding influences 
and feedback structures. 
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Figure 7: Snapshots obscure feedback view 

The above discussion calls for multiple visualization of a model. 
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Figure 8: We need multiple views to capture different aspects of a model 

Both subsystems and feedback loops are useful in coping with model complexity. 
Subsystems allow the modeler to work with larger building blocks, while the dominant 
feedback loops isolate the parts of the model that are responsible for its (modes of) behavior. 
Therefore, the SD technology should be developed in a direction where the modeler can 
maintain views of the hierarchical structure, the major feedback loops, as well as the 
underlying levels and flows. The remainder of this paper concentrates on the feedback view 
of a model, and how this view can be used to understand the relationship between model 
structure, state, and behavior. 

5 Mathematical Foundation 
During simulation, the behavior of a model can be compared to waves on the ocean. The 
wave pattern on the water surface is composed from many waves. Large waves can be caused 
by a storm in the ocean, other waves are reflections from the shore or caused by a ship 
passing by, and there can be ripples caused by a breeze sweeping over the surface. Each 
feedback loop of a model contributes to the behavior pattern of the model. Some loops 
contribute much, others less. 

 

Figure 9: Elementary waves combined into one composite wave 

The elementary modes of model behavior are not only the oscillating ones, like the ocean 
waves. In models we typically have amplification and dampening, growth and decay. This 
can cause even more interesting—and more complex—behavior patterns than those you can 
observe on water. 

5.1 Elementary Modes of Behavior 
For linear models eigenvalues are commonly used to describe the behavior modes of systems. 
In general, an eigenvalue is a complex number, where the real part is linked to growth and the 
imaginary part is linked to oscillation. A large real part represents rapid growth. 



An eigenvalue represents an elementary mode of behavior of a model, much like an 
elementary wave on the ocean, as illustrated in Figure 9. A given eigenvalue λ is related to 
(an element of) the model behavior like this: 

 tCemodeelementary λλ =)( ; where C is a constant and t is time. 

The unit of λ is 1/s (when time is measured in seconds). The doubling time of the elementary 
mode is defined like this: 

 λλλλ  ofpart  real  theis .re  where; ./2ln)( remedoublingti =   

A negative doubling time means that the model is converging, i.e., that we have to go back in 
time to find the doubling point. The negative value of the doubling time defines the half-life 
time. 

 remedoublingtimehalflifeti ./2ln)()( λλλ −=−=   

An elementary mode oscillates with the following frequency: 

 λλπλλ  ofpart imaginary   theis .im  where; 2/.)( imfrequency =   

5.2 Non-Linear versus Linear Models 
In a linear model, the eigenvalues stay constant during the course of the simulation. 

The mode of behavior for a state variable is defined as 
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Variables outside of loops only influence the constants iC . 

In the long run, the strongest eigenvalue will always become dominant in such models. 

SD models are typically non-linear models. The loop gains of such models depend on the 
actual system states at any given time. In turns, this leads to changing eigenvalues over time. 
Thus, in a dynamic non-linear model, we may never reach the mode indicated by the 
eigenvalues at any given time. 

For dynamic non-linear models, it is better to take and instantaneous view rather than a long-
term view, and identify the behavior mode that contributes the most to the current 
development of the system. This can be done by investigating the relative effect of each 
eigenvalue on the current rate of change in model state. It turns out that it is not necessarily 
the largest eigenvalue that dominates the behavior in the short-term. (If the largest eigenvalue 
were given the chance to work over time without loosing its dominant position, that 
eigenvalue would eventually take over the dominance over the behavior.) Saleh and Davidsen 
(2000) explain how eigenvalues can be sorted by their effect on the current behavior. 

For non-linear system dynamics models, the imaginary part of an eigenvalue cannot be used 
as a reliable measure for oscillation frequency. The reason for this is that eigenvalues change 
over time due to the feedback structures of the model, causing oscillation frequency, growth 
and decline to change from time step to time step. 

Since eigenvalues change over time for non-linear, dynamic models, the eigenvalues must be 
computed periodically, or in response to a request from the user. 



5.3 Gain 
At the lowest level, model relationships are defined as links between variables. The gain of a 
link from A to B is defined as: 
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When B is a level, the gain of a link from A to B is 
defined as the gain of the link from A to the net 
flow of B. 

When B is not a level, the gain of a link from A to 
B is defined as the partial derivative ∂B/∂A. 
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Gains are not easily used in comparing strengths of different links, however, since the 
measurement unit of a gain depends on the measurement units of the variables at both ends of 
the link. Comparing the numerical values of two gains is like comparing applies to bananas. 
Gains are, however, important in computing some other measurements that can be used to 
compare and visualize the relative strengths of links, and their importance relative to a given 
mode of behavior.  

5.4 Polarity 
The sign of the gain defines the polarity of a link, and is used to decorate the link symbols of 
a CLD with +/- (or s/o) indicating direction of influence. 
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Positive polarity Negative polarity 

5.5 Contribution 

The sensitivity of a given elementary mode, or eigenvalue (λ) to a change in a given gain (g) 
is defined as: 

 
g

gysensitivit
∂
∂= λλ ),(  

The elasticity of a given elementary mode (λ) to a given gain (g) is defined as the percentage 
change in mode due to a percentage change in gain, like this: 

 
λ
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We define the contribution as the elasticity times lambda, like this: 



 
g

ggoncontributi
∂
∂= λλ ),(  

The contribution of a link is a measure of how much the link contributes to a given 
elementary mode. The sum of all link elasticities of a model is one, and the sum of all link 
contributions is lambda. 

Both elasticity and contribution can be explained using the electric current metaphor. In a 
closed circuit, the electric current I will be the same in all sections of the circuit. As an 
example, the currents of the circuit below are such that I3 = I1+I2 . 
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Figure 10: Elasticity and contribution can be explained using the electric current 
metaphor 

The above diagram has two loops. The bottom, inner loop has a current equal to I2, while the 
outer loop has a current equal to I1. The sum of the loops carries the total current, I3. 

The contribution attribute of a link serves as a good indication of how important that link is in 
creating a given elementary mode (as defined by the associated eigenvalue). 

Only links that are part of loops have contribution to the behavior modes. This corresponds to 
electric current, which exists only in closed circuits (loops). 

5.6 Simplified Solutions for States and Flows 
Any model can be simplified to consist of level variables (states) and their net flows. We use 
the following notation for net flows: 
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By investigating the relationships between the states of a model, it is possible to identify all 
loops. (All feedback loops have at least one level. Otherwise we would get circular 
definitions, which cannot be resolved mathematically.) Each loop will contribute a given 
amount to every eigenvalue of the model. This means that we, for a given eigenvalue can sort 
the loops of the model according to contribution to the behavior mode related to that 
eigenvalue. 

5.6.1 Links between states 
If a level A influences another level B, we can imagine that there is a link from A to B. The 
gain of this link is defined as the change in B’s flow due to a change in A. This can be 
expressed mathematically as AB ∂∂ /� , whereB� as a shorthand for B’s net flow, tB ∂∂ . 



5.6.2 Loops through states 
The gain of a loop is defined as the product of the gains of the individual links. As an 
example, if the levels A, B and C form a loop, the gain of that loop is defined as: 

C

A

B

C

A

B
CBAloop

∂
∂

∂
∂

∂
∂=

���

),,(  

$

%

&

A

B

∂
∂ �

B

C

∂
∂ �

C

A

∂
∂ �

/RRS

 

For a system with N levels, there is a potential link between each level and every other level 
(including itself). This means that there is a maximum of N2 links in a system (with only 
levels). Many of these links will have a gain of zero, and can be disregarded. The remaining 
links can be used to form all possible closed paths through the system. This will form the set 
of feedback loops. The strongest loop at any point in time, determines the mode of behavior 
for the system at that time. 

The set of feedback loops can become very large, but many of the loops will normally have a 
relatively small gain. Kampmann (1996) describes a method for focusing on the independent 
set of loops, which is typically much less than the total number of loops in a model. This 
means that we can identify the set of dominant loops even for large models. 

5.7 Computing gains of links and loops 
Based on the above definitions, gains can be computed either through equations or by means 
of numerical methods. Let us look at an example where A is defined as 2B*C^2. The gain of 
the link from B to A is defined as ( ) BBC ∂∂ 22 , which is the same as 2C2. Correspondingly, 
the gain of the link from C to A becomes 4BC. 

A
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def A = 2B*C^2 

gain(B,A) = 2C^2 

gain(C,A) = 4BC 

Figure 11: Example computation of link gains 

The approach using equations (generated by symbolic derivation) to define gains is not 
always possible, or at least, very difficult sometimes. The reason for this is that it is not 
always easy to find a good representation of BA ∂∂ / . In such situations, we can use the fact 
that 
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This means that we can compute two values of A, one where B is equal to its current value, 
and another where B is increased a little. An even better approximation is to compute the gain 
as 



 
∆

∆−−∆+
2

)()( BABA
 

The above approximation to differentiation is called finite difference approximation. The 
technique has two sources of error; the approximation error and the numerical round-off 
error. In order to reduce the approximation error, we can reduce the delta. This, however, will 
increase the round-off error, so there is a limit to how small delta can be. An implementation 
should consider using factorial base format for numbers. This format allows for operations on 
and representation of rational numbers without round-off error. (See Wayner 1988). 

Note also that the finite difference approximation is easiest to perform on a mini-model 
representation of a system (See Scott 1999). Here we have only levels and rates. In the 
accumulator flow view, the mini-model representation gives a clear picture of states (levels) 
and changes (flows) of a model. In the causal loop view of a mini-model, we avoid problems 
computing gains of links in situations where there are multiple paths (through non-levels) 
from one variable to another. Below is an example: 
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Figure 12: Example of model where some link gains cannot be computed directly 
through finite difference approximations 

For the above model, we cannot compute the gain of the link from A to C using the formula 
directly: 
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The reason is that there is also an influence from A to C that goes via B. An initial 
implementation should avoid the above problem by removing B from the causal loop view. 

Let us define a new function, LINK(A,B), where A and B are expressions. The 
implementation of LINK can use numerical derivation always, or it can choose to evaluate an 
expression whenever symbolic derivation is easy to perform. 

The new function can be used to define a variable representing the gain of each link. The gain 
variable for the link from A to B can be called A’B, and it will be defined as LINK(A,B). 
Note that if B is a level, the gain must be computed based on AB ∂∂ �  instead of AB ∂∂ . 

In order for the LINK function to work, we need to ensure that the expression LINK(A,B) 
identifies one and only one link in the model. This puts some minor constraints on the way 
models are formulated: 

1. We cannot allow more then one link from a variable A to 
another variable B. 

 X ZY
 



2. A flow (of a level) must be identified by one and only 
one variable. This means that flows cannot be composed 
from expressions involving more than one variable. 

 

 R 
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3. Because of the previous requirement, one variable cannot 
control two flows on the same level. 

 

B

A

 

Note: The above rules assume scalar variables. For arrays, the requirements concern 
individual array elements. 

As with links, we can define loops as special variables in the model. A loop trough the 
variables A, B and C, can be defined using the link variables A’B * B’C * C’A, or by means 
of the LINK function, like this: LINK(A,B)*LINK(B,C)*LINK(C,A). 

6 Visualization and User Interface 

6.1 Elementary modes 
The eigenvalues of the model are computed, sorted, and made available for the user to select 
from. The sorting of eigenvalues is not based on their numerical values, but on their relative 
contribution to the current development of the model. This can be done by stopping the 
effects of one eigenvalue at the time, and see how the development of the model is effected. 
The eigenvalue that has the greatest effect is defined as the dominant eigenvalue. 

For a given eigenvalue, the elementary mode is described as either diverging, converging or 
linear. The following icons can be used as a direct representation of the current dominant 
mode: 

Diverging Converging Linear 

   

The linear mode normally appears at the transition between diverging and converging mode, 
or vice versa. 

In a converging mode, the rate of change in system state will become smaller and smaller. 
This means that a convergent mode will be approaching equilibrium, i.e., a phase where the 
levels of the model do not change. 

6.2 Loops 
The CLD diagram can contain a vast number of loops, and there is no direct representation of 
a loop, other than the sequence of links that connect the variables of the loop. In general, it 



has no meaning to represent all the loops of a model. But the main loops can be important to 
identify. 

Traditionally, modelers place loop symbols inside a CLD as placeholders for the most 
important loops. The same icons that apply for model behavior can be used for loops. Other 
commonly used symbols are shown below: 

Diverging Converging Linear 

R B L 

   

�

 
�

 

[

 

It is not common to draw links from the link “variables” to the loop “variables”, as this can 
obscure the diagram. 

In a computerized diagram, the changes in polarity can be displayed dynamically during 
simulation. A software with possibilities for global analysis of the loops of a model during a 
simulation should allow the user to identify the dominating loops, and highlight the 
corresponding sections of the model. It should also be possible to use this information to 
create loop “variables” in the model. 

6.3 Links 
Link gains (and consequently also link polarities) are dynamic attributes of a model. When 
people put plus-es and minus-es in their diagrams that is because polarity tends not to shift 
during a simulation, but this is not always the case. Similarly, the polarity of a loop can 
change during a simulation. 

The dynamically calculated polarity of a link can be used to place a + or - (s or o) symbol 
near the arrow head of the associated link symbol: 

Negative Gain Positive Gain Neutral Gain 
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In addition, color and line width can be used to display contribution to the selected behavior. 
The user can make a global selection of elementary mode, and in addition a selection of zero 
or more loops. If no loops are selected, the contribution to the behavior of the entire model is 
visualized by the links. Otherwise, the contribution to the selected loops will be shown. 

A color of red is used for reinforcing (diverging) behavior, and blue is used for balancing 
(converging) behavior. Grey is used for neutral contribution to the selected mode. 
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Figure 13: Color-coding for link contribution 

6.4 Heat-map and other visualizations 
The coloring and line width of links in a CLD diagram allows for rapid and direct 
identification of the active parts of a model, i.e., the parts that contribute the most to a given 
behavior mode. The essential structures of a model can be isolated like this: 

1. Run the model and determine which loops are dominant at different times. (Ideally, 
the loop identification takes place every time step, but a larger analysis time step can 
be picked by the user). 

2. Display all variables and links that are part of a loop that has been dominant in one of 
the phases identified above. 

By simulating the model again, and animating in the diagram how each link contributes to the 
dominant loop, we can get an interesting picture of the changing dynamic forces of the 
model. 

The identification of the structures contributing to a given behavior is important in 
understanding a model, and in knowing where to make changes in order to alter model 
behavior. 

It is possible to divide a simulation run into phases, where each phase is dominated by a 
single loop. This set captures the most active structure of the model. 

As an idea for future research, it would be interesting to see to what extent it is possible to 
identify archetypes from the transitions between dominant loops during a simulation. 

An implementation of the techniques described here, should include a set of indicators for 
behavior, including eigenvalues and qualitative indicators such diverging or converging 
mode. 

7 An Example 
Let us take a look at a population model with one level and two flows, representing births and 
deaths. The growth in the population is controlled by a birth rate, an average lifetime, and a 
capacity (maximum population) of the environment where the population lives. The model 
looks like this, in AFD view. 



Diagram Equations (Powersim Constructor 2.51) 
Pop

DeathsBirths

LifeTimeMaxPopBirthRate  

init Pop = 2 {Individuals} 
flow Pop = -dt*Deaths +dt*Births 
aux Births = Pop*BirthRate 
aux Deaths = Pop/(LifeTime*(MaxPop-

Pop)/MaxPop) 
const BirthRate = 0.2 {1/Year} 
const LifeTime = 20 {Years} 
const MaxPop = 100 {Individuals} 

Figure 14: Accumulator flow diagram and equations 

The model has two simple feedback loops, as displayed in the CLD below. 
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Figure 15:Causal loop diagram without link and loop polarities 

The gains of the links can be evaluated like this: 

Link Definition of link gains Initial Gain Polarity 
Births’Pop BirthRate 0.2 year-1 S 

Pop’Births +1 1.0 S 

Deaths’Pop 1/LifeTime*MaxPop^2/(MaxPop-Pop)^2 0.0521 year-1 S 

Pop’Deaths -1 -1.0 O 

The gains of the two loops can be computed by multiplying together the gains of their links, 
like this: 

Loop Definition of loop gains Initial Gain Polarity 
Births’Pop’Births Births’Pop*Pop’Births 0.2 year-1 R 

Deaths’Pop’Deaths Deaths’Pop*Pop’Deaths -0.0521 year-1 B 

Note the unit of measure for the gains. In a simple loop, the gain can be expressed as: 

 NXtloopgain −=  

where N is the order of the loop (the number of levels) and t is the time unit of the simulation. 
For composite loops (see 8.4) there are several sub loops involved, so we get a summation as 
the way to express the gain of a composite loop: 

 i
N

i
i

N
N tXtXtXtXloopgain −

=

−−− ∑=+++=
0

2
2

1
1 ...  

The (initial) polarities can be used to put the (initial) polarity indicators on the link and the 
loop symbols of the diagram, like this. 
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Figure 16: Causal loop diagram with dynamically calculated link and loop polarities 

The polarities of the links that are outside of any loop can be computed the same way. This is 
left as an exercise for the interested reader. 

As described earlier, the links and loops in the above diagram can be treated as variables. 
This means that their values can be displayed over time the same way as for regular variables. 
The time graph below shows the development of the link gains of the above model. 
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Figure 17: Link Gains 

Note how the link from Population to Deaths (labeled 1) is strengthened as the population 
grows towards its capacity limit. Below, we have put the gains of the loops into a similar 
graph. In the graph to the left, the loop gains are shown unaltered, while their absolute values 
are displayed to the right. Note how the reinforcing loop (2) dominates until around time 25, 
where the balancing loop takes over. 
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Figure 18: Loop Gains 

The expression DERIVN(Pop, 2) can be used to compute the second time derivative Pop’’(t) 
of the variable Pop. We see that the value of Pop’’(t) is positive until time 25, when it goes 



negative. The positive section overlaps with the period where the reinforcing loop dominates, 
while the negative section corresponds to the part of the simulation where the balancing loop 
is strongest. The figure below shows the first and second time derivative of Pop. 
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Figure 19: First and second order rate of change to the population state 

Around time 25 Pop’’(t) is zero. At this point the population is still growing, as can be seen 
from the value of Pop’(t), which denotes the net flow of the population. In fact, the growth 
rate is at its highest at the inflection point of Pop’’(t). 

For this simple model, with only one level, we have a single eigenvalue, λ, with the following 
definition: 

 Lambda = Births’Pop’Births + Deaths’Pop’Deaths 

The figure below shows the development of Lambda over time. 
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Figure 20: Development of eigenvalue 

Based on the sign of the eigenvalue, we can see that the model is diverging (positive lambda) 
until around time 25, and diverging (negative lambda) thereafter. 

7.1 Contribution of Links 
As described in chapter 5.5, we can determine how much each link contributes to a given 
eigenvalue (and thereby a given elementary mode of behavior). Contribution is related to 
Lambda, Gains, Sensitivity and Elasticity. The table below gives the definitions of sensitivity, 
elasticity and contribution for the links of our example model. 



Link Sensitivity Elasticity Contribution 
Births:3RS Pop’Births Births’Pop*Pop’Births/Lambda Births’Pop*Pop’Births 

Pop:%LUWKV Births’Pop  - “ -  - “ - 

Deaths:3RS Pop’Deaths Deaths’Pop*Pop’Deaths/Lambda Deaths’Pop*Pop’Deaths 

Pop:'HDWKV Deaths’Pop  - “ -  - “ - 

Figure 21: Link sensitivity, elasticity and contribution 

The graphs below show the development in link sensitivity, elasticity and contribution over 
time. Only the contribution will actually be used in the visualization of the links, as shown in 
the diagrams in chapter 7.2. 
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Figure 22: Link Sensitivities 

The elasticity is the sensitivity times gain divided by lambda: 
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Figure 23: Link Elasticities 

The contribution is the elasticity times lambda, which is the same as the gain times the 
sensitivity: 
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Figure 24: Link Contributions 

Remember that the sum of the link contributions at any point in time is equal to lambda at 
that point. Compare the contributions of Figure 24 to the value of lambda in Figure 20. 

7.2 Putting it all into play 
In the diagrams below, we have used the contribution of the links to determine color and line 
with for the link symbols. The dominant mode is displayed in the lower, right hand corner of 
the diagram. 

In the initial phase (time=10) the reinforcing loop is dominant, causing a diverging mode. 
The loop involving Births and Pop is drawn using red, thick lines. The balancing loop is 
actually counteracting, but it is much weaker than the first loop at this point in time. 
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Figure 25: Initial Phase 

Around time 25 the picture looks like this: 
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Figure 26: Transition Phase 

The mode is now linear, and the two loops are equally strong, one pulling in each direction. 

Towards the end of the simulation, the balancing loop takes over the dominance, and we get a 
picture like this one: 
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Figure 27: Final Phase 

Here the balancing loop between Pop and Deaths has taken over the behavior, and put the 
simulation into a converging mode, as indicated in the lower, right-hand corner of the above 
diagram.  

8 Modeling Constructs that Need Special Handling 
Some modeling and diagramming constructs put special challenges on the analysis and 
visualization described above. 

8.1 Dealing with arrays 
In analyzing a model for eigenvalues, gains, etc. each array element must be treated as an 
independent scalar variable. For arrays, the following AFD diagram is possible, for example: 



Aging

Populaiton

! !

 

Here a population is an array, dividing the population into age groups. People flow out of one 
group, and into the next. (Births and deaths are omitted.) 

A causal loop variant of this diagram can look like this: 
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8.2 Partial Diagrams 
In a partial causal loop diagram we must ensure that missing variables do not break the 
feedback paths through the model. This leads to the following rule: 

If there is a dependency (in the equations of the model) between two variables A and B that 
are displayed in a causal loop diagram, there must be a path of links from A to B in the 
diagram. 

As an example, let us assume that the underlying model has a loop that involves the variables 
A, B, C, D and back to A. The following diagram is valid (since C is not displayed, the 
diagram shows a link directly from B to D). 

$
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8.3 Internal Levels 
Internal levels of functions, such as DELAY, must be taken into account when computing 
eigenvalues, etc. of a model. 

8.4 Composite loops 
If we include auxiliary variables other than rates in our causal loop diagrams, we can get 
paths that split into sub-paths on the way around a feedback loop. In order to compute the 
gains of each of the links, we can make use of the following rules: 

1. The gain of two parallel paths (starting and ending in the same variable) is equal to 
the sum of the gains of each path. 

2. The gain of two sequential paths (one starts where the other ends) is equal to the 
product of the gains of each path. 

The gain of the loop below is ((pq*qr*rs)+(pt*ts))*sp. (Letter-pairs represent link gains) 
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