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1 Abstract 
This paper describes Object Oriented (OO) extensions that can be made to the System Dynamics 
(SD) modeling languages. A component is a model piece that can be used as a building block of 
another component. As such, the component corresponds to a class in the OO world. A 
component is very similar to a normal variable, except that it can hold other variables and that it 
has a customizable interface for communicating with the rest of the model. Polymorphism is 
achieved through the component interfaces, as components with equal interfaces are 
interchangeable. This can be used to define several alternative solutions (models) to a problem, 
and quickly change solutions to see their effects on the whole model. 

The basic SD modeling languages contain abstract building blocks (levels and non-levels) for 
creating models in any domain. The introduction of components makes it possible to create 
concrete building blocks within a specific domain. Domain specific building blocks create new 
and exciting opportunities for the system dynamics world, e.g. model re-use, industry specific 
component catalogs, quality control, standardization, and division of labor between component 
maker (fabrication) and component user (assembly). It can be expected that a market will 
develop around components, both within corporations and on the web. 

Links of basic SD can be connected freely between variables. To complete a connection, the 
definition of the variable at the head of a link must be edited by entering a mathematical 
expression. The proposed extensions to SD include sockets, plugs and wires. Sockets and plugs 
are typed interfaces. Wires can only be connected between a matching pair of sockets and plugs, 
and the mathematical definition of the model will be updated automatically to reflect the 
connection. This technology will make it possible for non-technical users to create models by 
inserting ready-made components into a diagram and connecting up components using wires. 
Models will be runnable at any stage of the development process. 

2 Overview 
The paper covers high-level concepts as well as detailed descriptions of features behind Object-
Oriented extensions to System Dynamics. There are also numerous examples. 

Chapter 3, Introduction, describes the main reasons for introducing object-oriented capabilities 
to SD modeling languages. For readers who are mainly interested in getting an overview of 
concepts, features and benefits of object-orientated SD, it should be enough to read chapter 3. 



Chapter 4 is about how Equations and diagrams represent models as text and symbols. The 
chapter is quite short, and aims at defining the rules for correct visualizations of models. The 
chapter can be skipped unless you are particularly interested in the symbolic languages for 
modeling. 

Chapter 5 is about Hierarchies. The main benefit of hierarchical models is better structuring 
through different levels of abstraction. The main feature that is introduced here is that any 
variable can contain other variables. This is the way model hierarchies are built in the SD would. 

The chapter also introduces our main example. The example is developed in seven complete 
steps through this and the following chapters. In §5.2 we start out by making a flat model into a 
hierarchical version. The text is quite detailed, but the equations can be skipped unless you are 
interested in understanding the subject down to the very detail. Many of the details will be 
handled automatically by software implementing these capabilities. 

Chapter 6 describes Components. Here we define SD support for the four key characteristics of 
object-orientation: 

 objects and classes 
 interfaces and implementations 

In the field of software engineering the use of these concepts has contributed to conceptual 
clarity, reduced development time, increased re-use, greater flexibility, and easier project 
management (evolutionary development). The reasons behind these benefits are also valid for the 
field of dynamic modeling: 

 Object architecture brings model structure closer to real-world system. 
 Components (classes) can be re-used within and between models. 
 Objects that communicate via interfaces create flexibility (polymorphism). 
 Interfaces, hierarchy and private substructures reduce conceptual complexity. 

The main feature that is introduced here is that any model is a component. Components can be 
re-used in creating other models. (In OO terms, a component is a class, and a model variable is 
an object.) 

In §6.3 our hierarchical example from §5.2 is used to create two re-usable components, a 
Retailer and a Market, which in turn are used to create a component based model. Section 6.4 
goes one step further, in that a component is used two times inside the same model. (In OO 
terms, this is called “multiple instances” of a class.) Section 6.5 is about polymorphism and 
component swapping. This section describes how one component can take the role of another, 
given that they support the same interface (imported and exported variables). (In OO terms, this 
is called polymorphism.) Components used as functions is described in §6.6. In §6.7 we show 
how components can be wrapped around other types of models, such as spreadsheets and 
databases. 

Chapter 7 about Connections describes an even higher level of modeling. Here, models are 
created by dragging components into a diagram and linking them together. The component 
wiring process is a guided process, where the system can hint about possible connections, and 
prevent many of the errors that can be done when connecting up variables at a lower level. With 
component wiring, there is also no need for typing in equations in order to complete a model. 
The main features that are introduced are the sockets and the plugs, which define type-safe 
interfaces for connecting up components. This chapter also describes wire flows, the object 



version of the normal flow symbols of accumulator-flow diagrams. Arrays are also discussed 
briefly as a means of defining relationships with a multiplicity other than one. Arrays can be 
used to create one to many relationships, for example between a single resource and many 
consumers. §7.3 shows how (average) attributes can be associated with levels and managed 
through co-flows. 

Chapter 7.3 is about Co-flows. Here it is described how causal-loop diagrams can be used 
together with accumulator-flow diagrams to visualize two different aspects of a model—the 
model’s topology and the feedback structure. The latter can also show the relative contribution of 
different substructures on overall behavior mode of the model (diverging or converging).  

Chapter 9 contains Acknowledgments. 

Chapter 10 contains References. 

Appendix A is about measurement units, an important variable property, used extensively by the 
examples in this paper. 

Appendix B describes the syntax used for model equations in this paper. 

Appendix C contains a brief summary of the presented extensions to the basic language of SD. 

Appendix D gives an overview of terminology used in this paper. 

3 Introduction 
If everything we built had to be done from the bottom and up, we would still live in the pre 
industrial age in terms of production. Imagine that one person would build an entire house, 
including the tools that he would need—hammer, saw, nails, glass, go to the forest and cut logs, 
etc. The fact that houses are built from components, and that labor is specialized into various 
occupations (plumber, electrician, carpenter, etc.) make houses faster and cheaper to build. 
Maintainability and reliability are also improved (less risk of water leakage, electrical short-
circuits, and walls falling down). And, in fact, components also make it possible for the end user 
to make significant repairs or extensions to his house. Who has not changed a light bulb or facet 
himself, or installed a fan in his home? 

The component technology described in this paper is about exactly the same, just in another 
domain—the domain of SD modeling instead of home improvement. The component technology 
makes it possible for specialists to create, verify and document new model building blocks that 
can be used in model construction. Model components behave like atomic building blocks, much 
like the variables of basic SD. A component can, however, be opened up for inspection and 
change. 

Components can be made such that they can be assembled together to form a model without ever 
seeing a basic SD variable or entering a definition for a variable. The assembly process is a 
guided process, in that the modeler will be hinted about potential meaningful component 
connections, and the system will also prevent certain connections to take place. Compare this to 
connectable components that we use in a house. Such components need to be plugged into some 
kind of outlet before use. Standards are defined for the different interfaces, such as phone sockets 
and electrical outlets. It takes just a brief look to determine if a socket can be used for plugging 
your computer or connecting your modem. You cannot connect into the wrong socket, since the 



“interfaces” do not match. In component-based modeling we use similar ideas to manifest 
possible connections, and prevent impossible connections. 

You do not have to open up the modem with a screwdriver in order to connect in to the modem 
line. The necessary connections are prepared in advance inside the modem and at the other end 
of the modem line. When the plug goes into the socket, the wires inside the plug automatically 
get connected to the corresponding wires of the socket. In the component world of modeling we 
also have sockets and plugs, but these are now variables that can be plugged together to form 
connections. Inside sockets and plugs we can put individual parameters that are going to carry 
information once a connection is made between a plug and a matching socket. The equations 
behind each parameter are pre-built into the model of each component, and become effective 
automatically when a connection is made. 

3.1 Characteristics of Basic SD 
Before going into the details of component based models, let us take a brief look at basic SD. 
The language of basic SD has only two building blocks, the state and the flow. Yet, basic SD is a 
very powerful language, which can be used to express almost any dynamic system. This is due to 
the general nature of states and flows. States represent the system at one moment in time, and 
flows represent the changes to the system state when time advances. 

States are represented as variables, and they are also called accumulators, levels, reservoirs and 
stocks. Flows are not variables, but they are normally controlled by variables. A flow expresses a 
rate of change, i.e., how quickly a change takes place to a state. Models can be built only from 
flows and states, but in practice it can be useful to introduce auxiliary variables for expressing 
some of the logic behind the computation of flows. 

• Flat structure is fine for small models—Hierarchy is needed for large models 

The power and beauty of basic SD lie in its simplicity and flexibility. A skilled modeler can 
capture the essential dynamics of a large system using only a few variables. In Forrester’s World 
Dynamics (Forrester 1973) a world model is presented. How big is the model—? It has five state 
variables! 

There are many reasons for keeping models small. One of them is that the main dynamics of a 
system is normally related to a few key (state) variables. Another reason is that SD models 
normally do not aim at producing quantitatively accurate results. The effect of adding another 
variable to a model soon becomes marginal once the main structures are in place. In fact, the 
growing complexity of the model structure soon outweighs the benefits of any extra accuracy 
that can be achieved by adding more variables. (Large models are difficult to create, understand, 
maintain and describe to others.) 
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Figure 1: Systems and subsystems 

There is, however, a need for dynamic modeling also in areas where detail and accuracy is of 
importance. Many organizations produce enormous spreadsheet models of highly dynamic 
business systems. The concepts of SD are better suited for modeling many of the strategic 
problems of the business world, and also within areas such as budgeting and forecasting. In these 
and similar areas models sometimes need to be large in order to capture the necessary detail.  

Basic SD supports only flat models. This is acceptable for small models, but with increasing 
model size it becomes more and more difficult to model without a hierarchical structure. This 
may be one of the main reasons why SD modeling is not more widely used in day-to-day 
business planning. 

“Structure exists in many layers or hierarchies. Within any structure there can be 
substructures.” (Forrester 1990, p-4-1) 

In order to cope with complexity, it should be possible to introduce different levels of abstraction 
into a model. At the highest level, the model represents some system. At the next level we have 
subsystems that can be further divided into smaller and smaller parts, all the way down to the 
basic building blocks (accumulators and flows) of basic SD. Some software vendors use various 
kinds of visual filtering mechanisms (e.g., sectors) in order to deal with complexity in large 
models. These solutions are not as powerful as a true hierarchical solution, however. 

• Abstract concepts are fine for experts—Everybody else asks for concreteness 

Large SD models typically belong to several problem domains. Within each domain, there are 
domain-specific concepts. These concepts are intuitively known and understood by domain 
experts. These people are typically also the problem owners—the primary customers for our 
models. 

The states and flows of basic SD are extremely general and flexible building blocks that can be 
used to model any dynamic system. At the same time this is a weakness, as it is in general hard 
to map the concrete concepts of a given problem domain to a set of abstract SD buildings blocks. 

This gap makes it difficult to involve the problem owners in the modeling process, and also to 
explain a model to others—even if they are experts in the problem domain. 



We therefore need to be able to create specific building blocks for given problem domains, 
functions, processes or systems. 

There are some partial solutions available to this problem. Molecule models (Eberlein and Hines 
1996) are pre-built model structures that can be inserted into a model. Molecules are not true 
building blocks, as they consist of several variables that reside on the same level as the 
remaining variables of the model (Tignor and Myrtveit 2000). Another approach is to increase 
the number of built-in variable types. Examples include ovens, conveyors and queues. The main 
drawback with this solution is that modelers cannot create their own building blocks. Another 
weakness is that specialized built-in variable types become “black box” components of a model, 
inaccessible for inspection and analysis. 

3.2 Benefits of Object Oriented Extensions to SD 
One of the main design goals for adding object-orientation to SD has been to make incremental 
extensions rather than fundamental changes to the concepts of basic SD. It has also been 
important to define the semantics of the extensions in terms of basic SD constructs. 

The extensions to SD include support for true hierarchical models and for user-defined building 
blocks. Object Oriented SD (OOSD) being a novel approach, it is hard to estimate the extent of 
its potential. What we do know, is that the much related field of software engineering has greatly 
benefited from Object Oriented technology since its beginning in Norway in the mid 1960s, 
when O.J. Dahl and K. Nygaard developed Simula. Simula introduced important object-oriented 
concepts such as objects, classes, inheritance and dynamic binding (Birtwistle, G.M et al 1973). 
One would expect that some, if not all, of these benefits can be made available to the field of 
dynamic modeling as well. A list of some of the potential benefits follows. 

• Components enhance conceptualization and visualization of structure 

Structure is a key both to building models and to communication models to others. 

“Without an organizing structure, knowledge is a mere collection of observations, 
practices, and conflicting incidents.” (Forrester 1990, p 1-2) 

The object-oriented concept of an object can be mapped to objects of the real world, such as 
markets, products, distribution channels, etc. Objects are intuitive representations of real-world 
phenomena, and make it easier to map real-world systems to models (modeling), and vise versa 
(communication). Objects are hierarchical, the way the world is composed from structures and 
substructures. Systems composed from objects, can be displayed at various level of detail, 
ranging from an overall system overview down to the individual basic building blocks of the 
lowest level objects. 

Compared to this, a normal accumulator-flow diagram of a medium size model looks like 
“spaghetti” to most people, and does not at all communicate the “organizing structure” of the 
system in a clear and meaningful way. 

• Components are easy to use, so more people can become modelers 

It is very hard for most people to create their own clip art gallery. But once a person gets access 
to existing pictures, he may be able to put together nice documents or presentations in very 
limited time. Similarly, it is much easier to put together ready-made model components than it is 



to build models from scratch. Assuming that the right components are available, it is quite easy 
to put them together and make the necessary connections in order to make it all work. 

• Components are re-usable and can change the way models are built 

Custom made building blocks can make it much easier to re-use models or parts of models in 
several projects. Current solutions to this problem involve copying and pasting, and manual 
adjustments in order to obtain a running model. With true re-usable components, the picture 
becomes quite different. 

One way to construct a model is to start with an empty model and insert and connect building 
blocks until the model is finished. This approach is called bottom-up development. With 
components, the amount of work can be reduced, as the modeler does not have to create all the 
building blocks from scratch. 

Another way to construct a model is to start at the system level with a set of high-level 
components representing subsystems or sectors. The model is refined by customizing and 
refining subsystems to the degree that is necessary to capture the desired detail of the system that 
is being modeled. This is called top-down development. The top-down approach has similar 
advantages as starting with an outline when writing a paper or a presentation. Once the overall 
structure is in place, it is time to add details in each of the sections until the piece is finished. 

From a re-use perspective, it seems that many systems are organized in similar ways when we 
look at the topmost levels. But once you start looking into the details of how the business is run 
and how decisions are made, things looks differently. A top-down approach is ideal for this 
situation. It is conceivable that a relatively small set of high-level models can capture the most 
important structures of a large number of businesses. Such high-level models are called design 
patterns (Tignor and Myrtveit 2000) in the object-oriented world. When facing a specific 
modeling task, the availability of already existing design patterns can significantly reduce the 
time it takes to reach a finished model. 
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Figure 2: Interchangeable components make flexible models 

The component technology described in this paper has powerful mechanisms for top-down 
modeling. Models can be constructed as a hierarchy of submodels. Each submodel can be 
implemented by any component with a matching interface. Components with similar interfaces 
can be interchanged freely, with no effect on the rest of the model. As an example, a model of a 
company may have sales channel as a high-level building block. Various sales channel 
implementation can be tested out by swapping in out different sales channel components. Sales 
channel components could be found in a component catalog, or they can be created on demand. 
Possible alternatives could include direct mail, chain of retailers, e-commerce, door-to-door 
sales, etc. 



Using the object-oriented approach, it is possible to start out with a conceptual analysis of the 
system, identifying high-level objects and object relationships. At the next level, a system 
specification is created, with detailed definition of the object interfaces and connections. At the 
lowest level, the model is actually implemented through the use of components and/or built-in 
variable types. 

• Component level Quality Assurance 

The ability to create re-usable building blocks within a problem domain makes it easier to 
perform quality assurance. Components can be run as stand-alone models, as well as part of a 
larger model. Subject matter experts can validate that a given model component functions 
correctly, and write a component specification for use by modelers who want to use the 
component as part of a larger model. 

• Component Catalogs and a Market for Models 

The act of creating a set of coherent components that can be used for modeling within a certain 
problem domain is not trivial. It is necessary to have subject matter expertise within the problem 
domain. In addition, engineering skills are required in order to analyze the concepts of the 
problem domain and come up with an object-oriented design that identifies the components 
(classes and objects) that need to be made, and the interfaces of these components (how they 
communicate with each other). Sometimes it is straightforward to find the objects of a system 
and the boundaries for each object. This is normally the case when modeling physical systems, 
where we can make one model component for each physical component. When making models 
of soft systems, like markets and organizations, things become significantly harder. Finally, 
modeling skills are needed in order to map the characteristics of the objects into variables and 
equations of one of the SD modeling languages. 
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Figure 3: Component catalogs can capture domain knowledge 

The challenge of creating high-quality, re-usable component catalogs opens up a possibility for 
branding and selling such catalogs. Only a limited number of people have the desire, skills or 
resources it takes to create good components. This means that there is a potential for division of 
labor between the component makers and the components users. The first group fabricates 
components, while the second (and potentially much larger group) assembles components 
together to make models. 



• Components extend the modeling language 

The modeling languages come with a set of primitives that can be used to create models. The 
primitives include functions and variable types. In normal programming languages, new 
functions (also called procedures and subroutines) can be created by the user. Many 
programming languages also support user-defined types. This is in particular the case for object-
oriented languages, where types are defined as classes, and variables are objects of given classes. 

A model component has similar characteristics as a class in the object-oriented world. A 
component has a user-defined type, defining the interface of the component, e.g., what goes in 
and what goes out. It is possible to create multiple instances of a component in a model. As such, 
a component is similar to a variable type. The same way as you can create as many instances as 
you want of the level (state) variable type, you can create multiple instances of a user-defined 
model component. 

As an example, special variable types such as ovens, queues and conveyors can be built as user 
defined components. The advantage with components is that the new types are open for 
inspection and modification, and that the list of building blocks can be expanded when new 
needs occur. 

It is also possible to use components to define new functions. Some languages support macros 
for this purpose. When functions get implemented as components, each function can be tested 
and documented like a normal component. The modeler also has the freedom to choose from 
time to time if a component should be invoked as a function or inserted into the model as a 
composite variable structure.  

4 Equations and diagrams 
The models in this paper will be described both as equations and as diagrams. The syntax that is 
used for the equations language is described in detail in Appendix B. The syntax is chosen so 
that it becomes easy to describe hierarchical models as well as flat models. A model is looked 
upon as a collection of objects that can hold other objects. Each object is defined using the 
following schema: 

 <type> <name> { // Start definition of object of given <type> and with the given <name> 
  <body> // Properties and subobjects 
 }  // End definition 
 
Below is an example of how an auxiliary variable can be defined: 

 aux  Revenue { // Start of definition of auxiliary variable Revenue 
  def  = Sales * Price // Definition 
  doc  = “Product revenue” // Documentation 
  unit  = EUR // Unit of measure 
 }  // End of definition 
 
The diagramming language is an extension to accumulator-flow-diagramming. Such diagrams 
are also called stock-and-flow diagrams. In this paper we use the term Powersim Constructor 
diagram. 
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Figure 4: Multiple diagrams displaying different aspects of a model 

There is a close relationship between a diagram of a model and the underlying structure, as 
defined by the equations. For hierarchical models it is useful to have multiple diagrams, one per 
submodel. Even for flat models, multiple diagrams can be useful, for example in order to focus 
on different aspects of the model in separate diagrams. It is important, however, that every 
diagram must give a picture of the model that is consistent with the underlying equations. This 
leads to three fundamental rules for model diagrams: 

Table 1: General rules for diagrams 

1 A diagram needs not be a complete representation of the underlying model, i.e., 
there may be variables in the underlying model that are not visualized in any 
particular diagram, or in any diagram at all. 

2 Diagrams of the same model need not be disjoint, i.e., two or more diagrams may 
show the same variable. 

3 A diagram must be consistent with the underlying model. (A diagram is consistent if 
it contains symbols that are either consistent or marked as inconsistent.) 

Rule number 2 implies that diagrams are independent of each other. The fact that one diagram 
displays a variable does not prevent another diagram from showing the same variable. 

The above rules should hold for any symbolic representation of a model. For a given diagram 
type, we need to define what is meant by a consistent diagram. For Powersim Constructor 
diagrams consistency is connected to the symbol types for level, auxiliary, flow and link. The 
rules are like this: 

Table 2: Rules for consistent flat Powersim Constructor diagrams symbols 

3.1 For every symbol that represents a variable, there must exist a corresponding 
variable in the underlying model. 

3.2 For every variable symbol S in a diagram (excluding snapshots), the following must 
be fulfilled: 



3.2.1 If S is an auxiliary symbol, and there is a symbol T in the 
same diagram representing a variable V(T) that the variable 
V(S) depends on, there must be exactly one link from T or 
a snapshot of  T to S. 

S T
 

3.2.2 If S is a level symbol, and V(S) is well defined, and there is 
a symbol T in the same diagram representing a variable 
V(T) that the initialization of V(S) depends on, there must 
be exactly one link from T or a snapshot of  T to S. 

TS  

3.2.3 If S is a level symbol, for each well defined inflow of the 
corresponding variable V(S) that is controlled by a variable 
V(T) represented by a symbol T in the current diagram, 
there must be exactly one flow to S which flow valve is 
controlled by T or a snapshot of T. 

S

T  

3.2.4 If S is a level symbol, for each well defined outflow of the 
corresponding variable V(S) that depends on a variable 
V(T) represented by a symbol T in the current diagram, 
there must be exactly one flow from S which flow valve is 
controlled by T or a snapshot of T. 

S

T

The rules for levels and flows are made extra strict in order to avoid ambiguous diagrams. Take a 
look at the two diagrams below, which display the same model. 

Diagram 1

L

A

Diagram 2

L

A B
 

Figure 5: Two diagrams showing a level and some of its flows 

How many flows has the variable L? It is quite clear that B flows out of L, but does A flow into 
L one or two times? To be able to answer this question precisely, we need to ensure that a 
variable controls no more than one inflow and one outflow of a given level. Using this rule, we 
can conclude that A controls only one inflow into L. (From the above diagrams, we cannot 
determine if there are other flows connected to L, controlled by variables not displayed in either 
diagram.) 

When hierarchy and new variable types get introduced later in this paper, we need to extend the 
above rules. 

Disclaimer: Powersim’s implementation of object-oriented extensions to SD may depart from the 
description given in this paper. In particular, the graphical symbols and the syntax for equations 
may change. 



5 Hierarchies 
Purpose of solution: Dealing with complexity through multiple levels of abstraction 

Core of solution: All variables can hold other variables. All variables can have diagrams. 

The object-oriented extensions to SD include support for hierarchical models and re-usable 
components. The component concept is based on the mechanisms for hierarchy, so we will start 
with that. 

5.1 Variables that hold other variables 
It turns out that model hierarchy can be added relatively easily by allowing a variable to hold 
other variables. It is possible to introduce variable nesting without adding any new variable 
types, but it is convenient also to have a special submodel variable type for building model 
hierarchies. In the following sections we will use the new submodel variable type to create 
model hierarchies, although a similar result can be achieved using auxiliaries, for example. 

The variables inside another variable are called children, and the owning variable is called the 
parent. Children reside one level below their parent. 
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Figure 6: Parent, child, sibling relationships between variables 

Children can be parents of other variables, so a variable hierarchy can be nested to any depth. 

• Information hiding is controlled through private and public variables 

An important aspect of abstraction in general, and OO in particular, is that of information hiding. 
Child variables can be marked as public or private. Private variables can only be accessed by 
their parent and by sibling variables. Public variables, on the other hand, can be accessed outside 
the scope of the parent variable. 

$ %

3
�SXEOLF�

4
�SULYDWH�

0
,QIRUPDWLRQ KLGLQJ�
� 0 FDQ UHIHU WR $� % DQG 3�
� $ FDQ WR UHIHU WR 0 �SDUHQW�� WR % �VLEOLQJ�� DQG WR 3 DQG 4

�FKLOGUHQ��
� % FDQ UHIHU WR 0 �SDUHQW�� WR $ �VLEOLQJ�� DQG WR 3 �SXEOLF

FKLOG RI VLEOLQJ��
� 3 FDQ UHIHU WR 0 �JUDQG SDUHQW�� WR $ �SDUHQW�� WR % �VLEOLQJ

RI SDUHQW�� DQG WR 4 �VLEOLQJ��
� 4 FDQ UHIHU WR 0� $� % DQG 3�
� 3 DQG 4 FDQQRW UHIHU WR DQ\ SULYDWH FKLOGUHQ RI %�

 
Figure 7: Encapsulation through private variables 

Variables are by default marked as private. 



• Each variable has its own Powersim Constructor diagram 

For a flat model, the Powersim Constructor diagram shows all the variables of the model (or a 
subset thereof). The variables of a flat model can be looked upon as children of the model itself, 
which means that a flat model is really a hierarchy one level deep. When more levels are added 
to the hierarchy, we treat each parent variable as a submodel. Every variable has its own set of 
Powersim Constructor diagrams, displaying some or all of that variable’s children. 
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Figure 8: All variables can have diagrams 

The fact that a Powersim Constructor diagram only displays children of a given parent variable is 
a powerful visual filtering mechanism, contributing significantly to the information hiding 
capabilities of OO SD. 

The Powersim Constructor diagram symbol for a submodel variable is a rectangular shape with 
rounded corners. It is used for the variable A in the above example. The diagrams for P, Q and B 
will be empty as long as these variables have no children. 

The circle at the upper, right hand corner of P inside the diagram for M\A marks P as a public 
variable.  

• Public variables can be displayed along with their parent symbol 

Public variables are used for carrying information up and down the hierarchy. This means that 
public variables should be accessible both from the outside and from the inside of the parent 
variable. Since the parent resides in one Powersim Constructor diagram, and the children in 
another, we need to be able to display public variables in both places. Children are displayed in 
the parent’s diagram, whereas the parent is displayed inside the diagram of the children’s 
grandparent. Public children can be visualized along with the parent symbol inside a grandparent 
diagram. Child symbols can be displayed as resident or as satellites. In the resident position, 
children are placed along the border of the parent symbols. In the satellite position, children and 
displayed away from the parent, and are connected to the parent by a line. 

Any variable can have more than one diagram. In the figure below we have made three diagrams 
for M, each with a different way to display the public child of A. 
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Figure 9: Public children can be hidden or displayed in different ways 

Software supporting nested variables should include a command for including and excluding 
public children of a given variable from display. 

Because of hidden, public children of a variable, we need to extend the rules for consistent 
Constructor diagrams in Table 2. 

Table 3: Extra rule for hierarchical Constructor diagrams 

3.2 
.5 

Links and flows to and from a hidden public child of a 
variable symbol S, are connected to S. 

0 1
 

If we did not include rule 3.2.5, two submodels with hidden public children would always seem 
to be disconnected. This would be misleading if children of one submodel depended on children 
of the other submodel. 

• Path-like notation is used to refer to variables between scopes 

Each parent variable defines a new name space, and it is possible to use the same name in 
different scopes. It is, for example, possible for B to have a child called P in the above example. 

Naming is done according to the following rules. 



Table 4: Rules for variable path names 

Rule Example 
1. The backslash character is used to separate path elements. A\B 

2. A path that starts with a name is relative to the parent of the current 
variable. 

B\P 

3. A single dot is used to start a path relative to the current variable. .Q 

4. Two dots are used to start a path relative to the grandparent of the 
current variable. 

..M\C 

5. A backslash is used to start an absolute path, i.e., a path that starts at 
the topmost level. 

M\A\Q 

6. The reserved word parent is used to refer one level up the hierarchy. parent\parent 

 
The figure below illustrates how you can refer from one place to another in the variable 
hierarchy. 
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Figure 10: Path notation is used to refer to variables at different locations in the hierarchy 

Observe that the notation differs from what is normally used when naming files in a hierarchical 
structure. The reason for this is that we want to refer to a sibling variable without qualifying its  
name. If the hierarchical file naming scheme was used, we would have to write ..\A + ..\B instead 
of A + B in order to add together two variables A and B. This would clearly not be a good 
syntax. 

• Equations can be simplified using local variables 

Sometimes the definition of a variable gets very long, and hard to read. This is often the case 
when we have complex if statements or expressions with common subexpressions. In these 
situations it may enhance readability to introduce one or more local variables inside the target 
variable. Below is an example where an auxiliary variable A is defined in the normal way (left) 
and using a local variable T (right). 



Original definition of A Modified definition of A using local variable T 

aux  A { 
 def  = if (C, B + C/D, 1/(B + C/D)) 
} 

aux  A { 
 aux  T { 
  def  = ..B + ..C / ..D 
 } 
 def  = if (C, .T, 1/.T) 
} 

 
• Flows of a level can be displayed in different scopes (diagrams) 

A special situation can occur when making a level public. In this case, it will be possible to add 
flows to the level both from the outside and from the inside of the level’s parent variable. Below 
is an example. 
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Figure 11: Flows can be attached to a level both inside and outside of its parent variable 

The level variable L has one flow attached inside M\N and another one inside M. Note that the 
above diagrams obey the rules in Table 1 and Table 2. 

The equations look like this: 

 mainmodel  M { 
  submodel  N { 
   level  L { 
    flows  = +dt*R1 -dt*..R2 
   } 
   aux  R1 {…} 
  } 
  aux  R2 {…} 
 } 
 

• Reference definitions are used to share variables 

When one submodel passes information to another submodel, we get a situation where the same 
variable should actually be part of the public section of two submodels. Below is a diagram of a 
simple, flat model that we want to convert into a model with two submodels. Information is 
passed from the first submodel to the second submodel via the variable P. 

There are three solutions to this problem. 



1. We can leave the variable P outside both submodels. This has the disadvantage that the 
parent needs to hold a separate variable just for passing information on behalf of its child 
models. It also has the disadvantage that the second submodel needs to know about a 
variable in the scope of its parent. 

2. We can place the variable P inside one of the submodels. The disadvantage here is that 
then the submodels need to know about one another. This violates the principles of 
information hiding. 

3. We can put one copy of P in each of the submodels. This solution requires that we copy 
the value of the first submodel’s P to the second submodel’s P during simulation. 
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Figure 12: Situation where two submodels want to own the same variable 

The third solution is clearly the best from an object-oriented perspective. If P is an auxiliary, the 
copying of P can be done straight forward through a normal assignment. But, in general, P can 
also be a level with flows attached to it. Some flows can be inside the first submodel, and others 
in the second. In this case, assignment cannot be used. We need a solution where the P in the first 
submodel and the P in the second actually share the same memory. This can be done through the 
concept of a reference definition. 

A reference definition says that one variable shares the value with another variable. (References 
are similar to pointers in programming languages, and references in C++.) A variable defined as 
a reference variable does not have its own memory for storing values. Instead, the variable has a 
direct reference to the target variable’s memory. 

Below is an example, where two models M and N both have a parameter P sharing the same 
value. The value of P is defined inside M and used by N, so we define N\P as a reference to M\P. 



Diagram Equations 
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A reference link is displayed with two 
short lines parallel to the link, as shown 
above. The link and the short lines 
together indicate identity (A�� 

submodel  M { 
 aux  X {…} 
 aux  P { 
  public 
  def  = X 
 } 
} 
submodel  N { 
 aux  P { 
  public  
  ref  = ..M\P 
 } 
 aux  Y { 
  def  = P 
 } 
} 

If a variable is a reference it cannot have its own definition in addition. Therefore the ref 
property excludes the def property, and vise versa. A variable that is defined as a reference, is 
marked with the reference symbol . 

• Flows can be connected to submodels 

A submodel can be used to implement a special variable type like a conveyor. For such 
submodels, we want the Powersim Constructor diagram to indicate that there is a flow entering 
the conveyor at one side, and leaving it on the other side. 

It is also important to ensure that flows do not alter their direction on the outside of a submodel 
without also changing the inside. Below is an example where the intention is that there should be 
a flow from Src to Dest, but because of a wrong direction on the flow arrow connected to Src, 
the result is a model where both Src and Dest actually get filled. 

Main\Sub

Dest
R

Main

Src
Sub\R

Sub  
Figure 13: Parameter (R) controlling flow that is not connected to submodel (Sub) 

The above model is syntactically correct, and there are situations where the same variable should 
control more than one inflow. Our aim is that the submodel specifies the direction of any flows 
that enter or leave the submodel, reducing the possibility of erroneous connections when the 
submodel parameters are connected up to the enclosing system. 

A solution is to add the possibility of defining a parameter as an inflow or an outflow. Variables 
that are marked this way always get displayed with a flow symbol attached. Inside the diagram 
of the parent variable, inflow variables have a cloud symbol with a level inside at the tail end. 
The level indicates that the flow comes from a level that lies outside the submodel. It will not be 



possible to attach the tail of the flow to a level inside the submodel. On the outside of the 
submodel, the inflow parameter can be displayed either in satellite or resident positions. The 
attached flow symbol will have a normal tail end, but the flow arrow will be permanently 
connected to the parameter’s parent symbol. The flow symbol will replace the satellite line for 
inflow and outflow parameters. For outflows, the opposite will hold. Below is an example. 
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Figure 14: Inflows and outflows of a submodel 

Here Input is marked as an inflow and Output as an outflow. It is not possible to connect the tail 
end of Input to a level inside Sub. Similarly, the head end of Output cannot be connected to a 
level. Inside Main, Sub\Input will be permanently connected to Sub at the head end, and 
Sub\Output will be attached at the tail. It will be possible to connect the tail of Sub\Input to a 
level. In the case of Sub\Output, it is the head of the arrow that can be connected to a level. 

The inclusion of inflow and outflow attributes for parameters enables us to ensure consistent use 
of flows on the inside and on the outside of a submodel. We also achieve that flows into and out 
of submodels automatically get connected to the submodel symbols in the appropriate way. 

• Example of a conveyor belt submodel 

The flat model below shows a transport from a remote inventory to a local inventory. 
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Figure 15: Flat version of transport model 

As a first step, the transport can be modeled using a generic conveyer submodel, like this: 
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Figure 16: Hierarchical transport model with flows that end in cloud symbols 

The model has been changed to include a submodel Transport with three public variables. The 
diagram of the main model does not communicate the fact that there is a flow through the 
Transport submodel. There is also no control on the use of Transport\Input and 
Transport\Output inside the main model. 

As a final step, we therefore make Input an inflow and Output and outflow. The diagrams now 
become like this: 
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Figure 17: Hierarchical transport model with flows connected to submodel (Transport) 

In the above example, the flows are labeled using path notations inside the main diagram. If you 
want to change the names of the flows and get rid of the path naming, you can create extra flow 
variables and construct cascaded flows, as described next. 

• Flows can be chained 

Let us take a look at a situation where a flow goes from one submodel into another. In this case 
the first submodel will have an outflow parameter, and the second submodel an inflow. How do 
we connect the outflow of one submodel to the inflow of the next? 

The solution that we chose is to allow flows to be chained together. The cloud symbol at the 
head of one flow can be dropped on the cloud at the tail of another flow. The variables that are 
connected to different valves of the same flow must be identical. This is enforced by allowing 
only one flow variable of a flow chain to be defined using a normal definition. The other flow 
variables on each side of the controlling flow variable must be part of a reference chain that ends 
at the controlling variable. 

Below is an example where we have two transport submodels, one feeding the other. 
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Figure 18: The outflow of one submodel is chained to an inflow of another submodel 

It is possible to put more flow variables into the chain, and hide one or more parameters of the 
submodels Transport 1 and Transport 2. Here is an example where a Send variable is put in 
before Transport 1\Input and a Receive variable is added before the Local Inventory. All 
parameters are hidden. 
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Figure 19: Chained flows between hidden parameters 

5.2 Hierarchical Model Example 
In this paragraph we will illustrate the use of model hierarchy by making modifications to a 
simple example model. The example is about supplying products to a market. The market sector 
is totally driven by word-of-mouth, and there is no competition. A retailer receives products from 
a supplier, and ships the products to the market. 
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Figure 20: First Model 

The objective of the retailer is to fulfill customer Orders by making product Shipments. In order 
to be able to deliver promptly, an Inventory of products is maintained. When the inventory falls 



below the desired level, the retailer makes Orders For Supplies, which in turn leads to Supplies 
of new products. 

The models in this paper make use the following measurement units. (See Appendix A for a 
description of units.) 

 unit  Day { 
  doc  = “Time measured in days” 
  note  = “Predefined unit” 
 } 
 unit  Encounter { 
  def  = atomic *) 
  doc  = “Encounter between customer and non-customer” 
 } 
 unit  Person { 
  def  = atomic  
 } 
 unit  Product { 
  def  = atomic  
 } 
 
*) The keyword atomic is used to define a new unit, which is not compatible with any other unit. 

The equations for the First Model are displayed next. 

mainmodel  ‘First Model’ { 
 level  Backlog { 
  init  = 0 <<Product>> 
  flows  = -dt*Shipments +dt*Orders 
  doc  = “Orders not yet fulfilled.” 
  unit  = Product 
 } 
 level  Customers { 
  init  = 1 <<Person>> 
  flows  = -dt*Recruiting 
  doc  = “Number of actual customers.” 
  unit  = Person 
 } 
 aux  ‘Encounter Efficiency’ { 
  unit  = Product/Encounter 
  init  = 0.1 <<Person/Encounter>> 
  doc  = “Recruited customers per encounter” 
 } 
 aux  Encounters { 
  unit  = Person/Day 
  def  = Customers * ‘Potential Customers’ / (Customers + ‘Potential Customers’) 
  doc  = “Number of encounters between customer and non-customer in a day.” 
  unit  = Encounter/Day 
 } 
 level  ‘Installed Base’ { 
  init  = Customers * ‘Products per customer’ 
  flows  = +dt*Shipments 
  doc  = “Number of products in the market.” 
  unit  = Product 
 } 



 level  Inventory { 
  init  = 0 <<Product>> 
  flows  = -dt*Shipments +dt*Supplies 
  doc  = “Products ready to ship to customers.” 
  unit  = Product 
 } 
 aux  Orders { 
  def  = Recruiting * ‘Products per Customer’ 
  doc  = “Product orders. Each customer buys one product” 
  unit  = Product/Day 
 } 
 aux ‘ Orders For Supplies’ { 
  def  = MAX(0 <<Product/Day>>, Backlog - Inventory) 
  doc = “Orders for more supplies.” 
  unit Product/Day 
 } 
 level  ‘Potential Customers’ { 
  init  = 1000 <<Person>> 
  flows  = -dt*Recruiting 
  doc  “Number of potential customers.” 
  unit  = Person 
 } 
 aux ‘ Products per Customer’ { 
  init  = 1<<Product/Person>> 
  doc = “Average number of products per customer.” 
  unit Product/ Person 
 } 
 aux  Recruiting { 
  def  = Encounters * ’Encounter Efficiency’ 
  doc  = “Customer orders.” 
  unit = Person/Day 
 } 
 aux  Shipments { 
  def  = MIN(Inventory, Backlog) 
  doc  = “Product shipments to customers.” 
  unit  = Product/Day 
 } 
 aux  Supplies { 
  def  = DELAYMTR(‘Orders For Supples’, STARTTIME + 4 <<Day>>) 
  doc  = “Received products from supplier.” 
  unit  = Product/Day 
 } 
} 
 
In the diagram in Figure 20 the retailer and the market are implemented in one diagram. This 
makes it difficult to isolate one from the other. Let us make the retailer a submodel of the overall 
model. Software support for submodels should provide an Implode command that will convert a 
variable selection into a submodel in one step. The same effect can be achieved manually by 
following these steps. 

1. Create a new submodel variable called Retailer inside our model. 

2. Open up the diagram for the Retailer submodel (using Retailer’s context menu). 



3. Drag the variables that belong to the retailer from the main diagram into Retailer’s 
diagram. 

Step 3 will make the following changes implicitly: 

4. Orders is made a public variable, since its definition uses information from the outside 
(Recruiting). 

5. The definition of Orders is adjusted to reflect the changed scope of the used variable 
Recruiting. 

6. Shipments is made a public outflow variable, since it is providing information (a flow) to 
the outside (Installed Base). 

The revised model looks like this: 
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Figure 21: Second Model 

Note how Retailer\Orders is connected to the Retailer submodel using a satellite line, while 
Retailer\Shipments is connected by a flow (since Shipments is an outflow of Retailer). The 
diagram for Retailer is displayed next. 
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Figure 22: Retailer Submodel 



Observe how the public variables Orders and Shipments are marked using filled circles. 

The equations for the Second Model are displayed next. The retailer related variables are located 
inside the Retailer variable. Note also the use of public on Orders and Shipments, and outflow 
on Shipments. (Modified lines are boxed.) 

mainmodel  ‘Second Model’ { 
 submodel  Retailer { 
  level  Backlog { 
   init  = 0 <<Product>> 
   flows  = -dt*Shipments +dt*Orders 
   doc  = “Orders not yet fulfilled.” 
   unit  = Product 
  } 
  level  Inventory { 
   init  = 0 <<Product>> 
   flows  = -dt*Shipments +dt*Supplies 
   doc  = “Products ready to ship to customers.” 
   unit  = Product 
  } 
  aux  Orders { 
   public  
   def  = ..Recruiting * ‘Products per Customer’ 
   doc  = “Product orders” 
   unit  = Product/Day 
  } 
  aux ‘ Orders For Supplies’ { 
   def  = MAX(0 <<Product/Day>>, Backlog - Inventory) 
   doc = “Orders for more supplies.” 
   unit Product/Day 
  } 
  aux  Shipments { 
   public  
   outflow  
   def  = MIN(Inventory, Backlog) 
   doc  = “Product shipments to customers.” 
   unit  = Product/Day 
  } 
  aux  Supplies { 
   def  = DELAYMTR(‘Orders For Supples’, STARTTIME + 4 <<Day>>) 
   doc  = “Received products from supplier.” 
   unit  = Product/Day 
  } 
 } 
 level  Customers { 
  init  = 1 <<Person>> 
  flows  = -dt*Recruiting 
  doc  = “Number of actual customers.” 
  unit  = Person 
 } 
 aux  ‘Encounter Efficiency’ { 
  unit  = Person/Encounter 
  init  = 0.1 <<Person/Encounter>> 
  doc  = “Recruited customers per encounter” 
 } 



 aux  Encounters { 
  unit  = Person/Day 
  def  = Customers * ‘Potential Customers’/(Customers + ‘Potential Customers’) 
  doc  = “Number of encounters between customer and non-customer in a day.” 
  unit  = Encounter/Day 
 } 
 level  ‘Installed Base’ { 
  init  = Customers * ‘Products per customer’ 
  flows  = +dt*Retailer\Shipments 
  doc  = “Number of products in the market.” 
  unit  = Product 
 } 
 level  ‘Potential Customers’ { 
  init  = 1000 <<Person>> 
  flows  = -dt*Recruiting 
  doc  “Number of potential customers.” 
  unit  = Person 
 } 
 aux ‘ Products per Customer’ { 
  init  = 1<<Product/Person>> 
  doc = “Average number of products per customer.” 
  unit Product/ Person 
 } 
 aux  Recruiting { 
  def  = Encounters*’Encounter Efficiency’ 
  doc  = “Customer orders.” 
  unit = Person/Day 
 } 
} 
 
The only changes to the equations, are that “..” is put in front of Recruiting inside the definition 
of Orders, and “Retailer\” is put in front of Shipments in the flow definition of Installed Base. 

As a natural next step, we can put the market sector into another submodel. We can do this 
manually, or simply by selecting the variables of the market sector and executing the Implode 
command. It seems natural to make Orders and Shipments part of the market as well as the 
Retailer. Since Retailer\Orders is actually the same as Market\Orders, we define the former as a 
reference to the latter. We do the same for Retailer\Shipments and Market\Shipments. In order to 
make use consistent naming, Shipments of the Market is renamed to Supplies, and Orders is 
renamed Orders for Supplies. 

The resulting model looks like this: 
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Figure 23: Third Model 

The diagram for the Market submodel is given next. 

Third Model\Market

Supplies

Orders for Supplies

Encounters

Customers

Encounter Efficiency

Recruiting

Potential
Customers

Installed
Base

Products
per customer

 
Figure 24: Market Submodel 

Note the circles that mark Orders for Supplies ad Supplies as public. The special cloud symbol 
on Supplies’ flow indicates that Supplies is an inflow to the Market. 

The top-level model in Figure 23 gives a clear picture of the structure of the system. By hiding 
the parameters, we can make things even simpler, like this: 
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Figure 25: Third Model with hidden parameters 

Links that are connected to a parameter will be connected to the parent variable when the 
parameter is hidden. 

The equations for the Third Model are given next. Changed parts are put inside boxes. 



mainmodel  ‘Third Model’ { 
 submodel  Retailer { 
  level  Backlog { 
   init  = 0 <<Product>> 
   flows  = -dt*Shipments +dt*Orders 
   doc  = “Orders not yet fulfilled.” 
   unit  = Product 
  } 
  level  Inventory { 
   init  = 0 <<Product>> 
   flows  = -dt*Shipments +dt*Supplies 
   doc  = “Products ready to ship to customers.” 
   unit  = Product 
  } 
  aux  Orders { 
   public  
   ref  = ..Market\’Orders for Supplies’ 
   doc  = “Orders from customers” 
   unit  = Product/Day 
  } 
  aux ‘ Orders For Supplies’ { 
   def  = MAX(0 <<Product/Day>>, Backlog - Inventory) 
   doc = “Orders for more supplies.” 
   unit Product/Day 
  } 
  aux  Shipments { 
   public 
   outflow  
   def  = MIN(Inventory, Backlog) 
   doc  = “Product shipments to customers.” 
   unit  = Product/Day 
  } 
  aux  Supplies { 
   def  = DELAYMTR(‘Orders For Supples’, STARTTIME + 4 <<Day>>) 
   doc  = “Received products from supplier.” 
   unit  = Product/Day 
  } 
 } 
 submodel  Market { 
  level  Customers { 
   init  = 1 <<Person>> 
   flows  = -dt*Recruiting 
   doc  = “Number of actual customers.” 
   unit  = Person 
  } 
  aux  ‘Encounter Efficiency’ { 
   unit  = Person/Encounter 
   init  = 0.1 <<Person/Encounter>> 
   doc  = “Recruited customers per encounter” 
  } 



  aux  Encounters { 
   unit  = Person/Day 
   def  = Customers * ‘Potential Customers’/(Customers + ‘Potential Customers’) 
   doc  = “Number of encounters between customer and non-customer in a day.” 
   unit  = Person/Day 
  } 
  level  ‘Installed Base’ { 
   init  = Customers * ‘Products per customer’ 
   flows  = +dt*Supplies 
   doc  = “Number of products in the market.” 
   unit  = Product 
  } 
  aux  ‘Orders for Supplies’ { 
   public  
   def  = Recruiting * ‘Products per Customer’ 
   doc  = “Product orders” 
   unit  = Product/Day 
  } 
  level  ‘Potential Customers’ { 
   init  = 1000 <<Person>> 
   flows  = -dt*Recruiting 
   doc  “Number of potential customers.” 
   unit  = Person 
  } 
  aux ‘ Products per Customer’ { 
   init  = 1<<Product/Person>> 
   doc = “Average number of products per customer.” 
   unit Product/Person 
  } 
  aux  Recruiting { 
   def  = Encounters*’Encounter Efficiency’ 
   doc  = “Customer orders.” 
   unit = Person/Day 
  } 
  aux  Supplies { 
   public  
   inflow  
   ref  = ..Retailer\Shipments 
   doc  = “Products received.” 
   unit  = Product/Day 
  } 
 } 
} 
 
The variable hierarchy for the Third Model looks like this: 
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Figure 26: Variable hierarchy of Third Model 

6 Components 
Purpose of solution: Conceptual concreteness through objects. Coping with complexity through 
encapsulation. Re-use. Flexibility. Maintainability. 

Core of solution: Simulation models are components that can be re-used in creating other simulation 
models. Division between specification (interface) and implementation (class) of objects. Interchangeable 
implementations of objects. 

Object-oriented concepts: class, object, interface/type, implementation, message, method, event, 
polymorphism 

The introduction of hierarchical models contributes significantly to abstraction through 
information hiding. But hierarchy does not give direct support for re-usable objects and 
polymorphism, two of the core characteristics of object-orientation. 

6.1 Background 
So long as there are only abstract data types and no concrete ones, there is nothing to 
play the role that nature plays for physical science, or that catalogs of standard raw 
materials play for the engineer. So long as everything we encounter in software is truly 
new, how can we possibly hope to benefit from anything the manufacturing age might 
have to offer? 

Cox 1996, p. 67. 

How can OO capabilities be added to System Dynamics? To find a good answer to this question, 
it is important to understand the difference between object-oriented concepts and object-oriented 
techniques. The concepts define the nature of object-orientation, and can be implemented in 
many different ways. Languages such as Simula, Smalltalk, Object Pascal, C++, and Java use 
different approaches to object-orientation. When we choose an approach for SD modeling, it is 
important to do this within the spirit of SD. 

It is a design objective to keep the number of extensions to basic SD as small as 
possible. We don’t want to end up with an elaborate object-oriented system where 
SD in the traditional sense only remains as a small part. SD the way we are used to it 
should still be at the heart of the extended language. 



• In SD models, there are no sequence of operation, other than the advancing of time 

SD is very different from procedural programming languages. There is no sequence in a SD 
model. SD models define influences that work concurrently, and take effect on all object states 
simultaneously when time advances. This is very different from a sequential program, where 
statements are executed one at the time, updating object states along the way. In sequential and 
parallel processes it makes sense to pass events between objects. In SD influences are active all 
the time, and change is done only through accumulation or draining processes that take place 
through flows connected to levels. Therefore, the terms event, message and method makes little 
sense in the context of SD models. In a discrete event simulator, however, these techniques make 
perfectly good sense. 

• SD models have two built-in messages; “time change” and “value changed” 

There are only two “messages” in a traditional SD simulation (Tignor and Myrtveit 2000). Both 
the messages and their responses are built into the run-time system for running simulations. The 
first message type goes to all variables when time is advanced. The second message type goes to 
dependent variables, when a variable gets a new value. Only level variables perform an action in 
response to the “time advanced” message, adjusting their states based on the values of associated 
flows. This causes levels to get new values, which is an “event” that is sent to dependent 
variables. A non-level responds to “value changed” by re-evaluating its equation, updating its 
value, and sending a value changed message to its own dependants. This is one way to describe 
how the variables of a model get updated (from a conceptual point of view). 

• SD models work on aggregated values instead of individual items 

In SD models, we normally do not study individual objects. Instead, we work with masses of 
objects and their average attributes. This approach means that SD models operate on a higher 
level of aggregation than most discrete event models. SD models can typically be made 
significantly smaller than their discrete counterparts, but the aggregation of items into groups, 
takes away the object-oriented message passing metaphor used by most object-oriented systems. 

• Inheritance 

It can also be useful to realize that inheritance is a technique, and not a core part of object-
orientation. Inheritance is primarily a way to share code between different object 
implementations. One of the disadvantages of inheritance is that it adds conceptual complexity 
and leads into difficult areas such as multiple inheritance. 

6.2 The SD counterparts of objects, classes, interfaces and implementation 
Object-oriented technologies depend heavily on the separation between interface and 
implementation. An interface describes a protocol without implementing it. The implementation 
of an interface is often called a class. Interfaces are sometimes also called types or abstract 
classes. Interfaces, types and classes are meta objects that describe real objects. Real objects are 
instances of classes, and all the object instances of a class share the same implementation. 

If we let objects communicate via interfaces without making use of the way a particular object 
class implements an interface, it becomes easy to exchange one object with another object that 
supports the same interface. This is called polymorphism, and can be used to create very flexible 
systems. 



In the SD world objects are variables. The built-in variable types are classes that implement the 
basic functionality of levels and auxiliaries. Let us extend the functionality of submodels to 
include an interface definition and an implementation. The interface will define a set of 
variables, and the way information is transferred to and from the submodel. We use components 
to implement submodel interfaces. This means that any component becomes a class in the object-
oriented world. The component implements an interface that can be used to access the 
component, or any compatible component from another model. 
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Figure 27: Components can be used as submodels of other components 

The above figure illustrates a component A that has a submodel variable with an interface that is 
implemented in two different ways by component B and component C. The submodel of A can 
be connected to either of the components B or C, since their interfaces are the same. In the 
figure, B’s implementation is used. 

User-defined components and variables of the type submodel play together in a way that allows 
a submodel variable to be implemented by a component. Each time a component is used to 
implement a submodel, a new instance of the component is created. Any component can also be 
simulated as a strand-alone model. In this case a modeling environment such as POWERSIM® 
STUDIO creates and runs an implicit instance of the component. 

This means that a component is the SD counterpart of the OO class. 

Components can be used to create instances of SD variables, the counterparts of OO 
objects. 

• Variable import and export 

Each variable that is part of the interface can be imported or exported by the component. It is 
also possible to create certain combinations of import and export, where the initial value is 
transferred one way and the simulated results the opposite way. This can be used to initialize a 
level from one side of the interface, and receive the simulated results back. 

When a submodel is implemented by a component, both the submodel and the component 
contain an interface section. Each variable of the submodel interface is matched with a variable 
of the component. During simulation values are transferred between the two sides according to 
the import/export settings. We call the interface variables of the component for formal 
parameters, and the interface variables of the submodel actual parameters. 
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Figure 28: Components and submodels communicate via interfaces 

The transfer settings of an interface are defined from the formal parameter’s point of view. Full 
import, for example, means that the formal parameter gets its value from the actual parameter 
throughout the simulation. 

A parameter can be set to one of the following transfers. 

Table 5: Variable import and export settings 

Type Symbol Explanation 

Full Import  

Full import is used to import a value to a component or submodel. 
The formal parameter becomes a reference to the actual 
parameter. If the formal parameter is a level, the actual parameter 
must be a level as well. 

Init Import  

When only the initial value is to be imported, init import can be 
used. The formal parameter keeps its own memory, and copies the 
initial value from the actual parameter. The formal parameter 
cannot be an auxiliary. 

Tail Import, 
Init Export  

This is a special two-way transfer, which is most useful for levels. 
The formal parameter becomes a reference to the actual 
parameter, but in addition to that the actual parameter gets its 
initial value from the formal parameter. The actual parameter 
cannot be an auxiliary 

Full Export  
This setting has the same effect as Full Import, only that the roles 
of the formal and the actual parameters are reversed. 

Init Export  
This setting has the same effect as Init Import, only that the roles 
of the formal and the actual parameters are reversed. 

Tail Export, 
Init Import  

This setting has the same effect as Tail Import, only that the roles 
of the formal and the actual parameters are reversed. 

The semantics of the various parameter transfer settings can be modeled. Below is one example 
of each of the import transfers, assuming that the actual parameter is A and the formal parameter 
is F. (The export transfers can be found by reversing the roles of A and F.) 



Table 6: Semantics of import settings 

Full Import 
A F  

aux  F { 
 ref  = A  
} 

Init Import 
A F  

level  F { 
 init  = A 
} 

Tail Import, 
Init Export 

A F  

level  A { 
 init  = F 
} 
level  F { 
 init  = <…> 
 ref  = A 
} 

 
From the above, it can be seen that in the cases of full import and tail import, the formal and the 
actual parameter will actually share the memory of the actual parameter. For full export and tail 
export, the parameters will share the memory of the formal parameter. This means that it is only 
initial import and initial export that actually will copy values between the two sides, and the 
copying takes place only during initialization of a simulation run. 

Passing parameters by reference instead of by value is necessary in order to allow for import and 
export of levels. As an additional bonus, memory requirements are reduced (shared memory) and 
execution speed increased (no copying of values). 

• A conveyor belt component 

Let us use the mechanisms described above to convert our previous conveyor model example 
into a component that is used as a submodel of another component. In the figure below, we have 
created a component called Conveyor, based on the Transport submodel in Figure 17. 

mainmodel  Conveyor { 
 unit  Rate { 
  def  = external  
 } 
 aux  Input { 
  public  
  import  = full 
  inflow 
  unit  = .Rate 
 } 
 aux  Duration { 
  public  
  import  = full 
  unit = __time  
 } 
 aux  Output { 
  public  
  export  = full 
  outflow 
  def  = DELAYMTR(Input, Duration) 

In Transit
Input Output

Duration

Conveyor

 
Figure 29: Conveyor component 

Input and Duration are imported to the 
component from the outside, while Output is 
computed by the component, and exported. 

The level In Transit is strictly not necessary for 
the implementation, but helps readability. 



  unit  = .Rate 
 } 
 level  ‘In Transit’ { 
  init  = Input * Duration 
  flows  = +dt*Input – dt*Output 
  unit  = Rate*__time  
 } 
} 

A general component like this should be possible 
to use with any measurement unit for the actual 
parameters Input and Output. This is achieved 
through the local unit Rate, which is defined to be 
external, i.e., determined outside the component. 

 
The Conveyor component can be used by another component by following these steps. 

1. Create a new component (Main). 

2. Drag the Conveyor component from the component catalog and drop its symbol into 
Main’s diagram. A submodel named Conveyor 1 will be created inside Main, with 
interface settings copied from Conveyor. 

3. Rename Conveyor 1 to Transport. 

4. Create the levels Remote Inventory and Local Inventory, and connect up the flows as 
illustrated in the figure below. 

Main

Remote
Inventory

Transport\Duration

Local
InventoryTransport\

Output

Transport
Transport\

Input
Input

Output
Duration

Main\Transport (Conveyor)

 
Figure 30: Hierarchical transport model using conveyor component 

Note that the diagram of Transport contains only the interface variables, and nothing from the 
implementation of Conveyor. The fact that Transport is implemented using Conveyor is reflected 
in the title bar of Transport’s diagram. The actual connection between Transport and Conveyor 
is a property of the Transport variable, and can be set either via a property page or the equations 
view of the model. 

• Components can deduce measurement units from actual parameters 

The measurement units of component variables can be selected either from the set of global units 
or from local units defined inside the component. If we make a general component, like the 
conveyor, it is impossible to know the measurement units of the actual parameters at the time of 
component construction. We could, of course, avoid specifying units altogether, but this is not a 
good solution, as explicit units can significantly improve the quality of a model as well as input 
and output of values. For this reason, we have introduced the special unit expression external, 
which can be used when defining local units inside a component. An external unit is treated like 
an atomic unit when the component is run as a stand-alone model. When a new instance of the 
component is created inside another model, the definitions of the external units are deduced from 
the units of the actual parameters to the component. 



Let us assign the unit Product to the level variables Remote Inventory and Local Inventory in the 
previous example. This will imply that the variables Transport\Input and Transport\Output get 
the unit Product/__time. (The reserved unit name __time denotes the time unit of the 
simulation.) Inside the Transport instance of Conveyor, the external unit Rate will be mapped to 
Product/__time. The unit of In Transit will be mapped to Product, using the following equation: 

 unit  ‘In Transit’ = .Rate*__time = (Product/__time)*__time = Product 

A period (.) in front of a unit name selects the local unit scope. See Appendix A for more details 
about measurement units. 

• Default definitions and optional parameters 

When the actual and the formal parameters of a component are paired together, there may be 
situations where some parameters end up without a counterpart. This could be treated as an error, 
but instead we will use this situation to allow for default definitions and optional parameters. 

If an actual parameter is not connected to a formal parameter, the definition of the actual 
parameter will be used as a default definition for that parameter. Correspondingly, a formal 
parameter that is not matched with a corresponding actual parameter will use its own definition. 

One consequence of this is that a component can export optional values. In the conveyor 
example, for example, the value of the In Transit level can be made available. It is up to the 
submodel that instantiates the conveyor to use the exported value or not. 

When a component is run as a stand-alone model, it has no actual parameters. In this case, 
definitions for imported variables can serve as test definitions. 

If an imported formal parameter does not have a definition, it must be connected to a 
corresponding actual parameter in order to complete the connection. Correspondingly, if an 
exported actual parameter does not have a definition, it must be connected to a formal parameter. 

6.3 Component Model Example 
In this paragraph we will create a component version of the Market and the Retailer of the 
example in chapter 5.2. We start out with the market, and create a component named Market 
inside the component catalog of our simulation project file. The diagram for the Market 
submodel in Figure 24 can be copied directly into the Market component, and edited like this: 

1. Set the component interface property to Market. 

2. Make Supplies full import and Orders for Supplies full export. 

3. In order to make the component more flexible, we expose more of the parameters for 
optional initialization and inspection from the outside. Potential Customers, Customers, 
Products per Customer and Encounter Efficiency should be possible to initialized from 
the outside. 

The resulting diagram looks like this: 
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Figure 31: Market component 

The equations for the above component are given below. Modified lines are boxed. 

mainmodel  Market { 
 level  Customers { 
  public; import=init; export=tail; readonly  
  init  = 1 <<Person>> // Default definition 
  flows  = -dt*Recruiting 
  doc  = “Number of actual customers.” 
  unit  = Person 
 } 
 aux  ‘Encounter Efficiency’ { 
  public; import = init; export = tail 
  init  = 0.1 <<Person/Encounter>> // Default definition 
  doc  = “Recruited customers per encounter” 
  unit  = Person/Encounter 
 } 
 aux  Encounters { 
  unit  = Person/Day 
  def  = Customers * ‘Potential Customers’/(Customers + ‘Potential Customers’) 
  doc  = “Number of encounters between customer and non-customer in a day.” 
  unit  = Person/Day 
 } 
 level  ‘Installed Base’ { 
  public; export  = full; readonly  
  init  = Customers * ‘Products per customer’ 
  flows  = +dt*Supplies 
  doc  = “Number of products in the market.” 
  unit  = Product 
 } 
 aux  ‘Orders for Supplies’ { 
  public; export = full  
  def  = Recruiting * ‘Products per Customer’ 
  doc  = “Product orders” 
  unit  = Product/Day 
 } 



 level  ‘Potential Customers’ { 
  public; import = init; export = tail; readonly  
  init  = 1000 <<Person>> // Default definition 
  flows  = -dt*Recruiting 
  doc  “Number of potential customers.” 
  unit  = Person 
 } 
 aux ‘ Products per Customer’ { 
  public; import  = init; export = tail  
  init  = 1<<Product/Person>> /7 Default definition 
  doc = “Average number of products per customer.” 
  unit Product/ Person 
 } 
 aux  Recruiting { 
  def  = Encounters*’Encounter Efficiency’ 
  doc  = “Customer orders.” 
  unit = Person/Day 
 } 
 aux  Supplies { 
  publi;, import = full; inflow  
  def  = DELAYPPL(Orders, 1<<Day>>) // Test equation 
  doc  = “Products received.” 
  unit  = Product/Day 
 } 
} 
 
An even more general version of the component would define Product as an external unit of the 
Market. 

In a similar way as for the Market, we can create a component version of the Retailer. In 
preparing the component for re-use, we call it Provider instead of Retailer. This way the 
component can be used also to create a Wholesaler, for example. We copy the diagram for the 
Retailer submodel in Figure 22 into a new component called Provider, and make the following 
changes to the component: 

1. Set the component interface property to Provider. 

2. Make Orders and Supplies full import and Shipments full export. 

The diagram for Provider now looks like this: 
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Figure 32: Provider component 

The corresponding equations are given next: 

mainmodel  Retailer { 
 level  Backlog { 
  init  = 0 <<Product>> 
  flows  = -dt*Shipments +dt*Orders 
  doc  = “Orders not yet fulfilled.” 
  unit  = Product 
 } 
 level  Inventory { 
  init  = 0 <<Product>> 
  flows  = -dt*Shipments +dt*Supplies 
  doc  = “Products ready to ship to customers.” 
  unit  = Product 
 } 
 aux  Orders { 
  public; import=full  
  doc  = “Product orders” 
  unit  = Product/Day 
 } 
 aux ‘ Orders For Supplies’ { 
  public ; export =full  
  def  = MAX(0 <<Product/Day>>, Backlog - Inventory)  
  doc = “Orders for more supplies.” 
  unit Product/Day 
 } 
 aux  Shipments { 
  public, export=full, outflow  
  def  = MIN(Inventory, Backlog) 
  doc  = “Product shipments to customers.” 
  unit  = Product/Day 
 } 



 aux  Supplies { 
  public ; import =full ; inflow  
  def  = DELAYMTR(‘Orders For Supples’, STARTTIME + 4 <<Day>>) 
  doc  = “Received products from supplier.” 
  unit  = Product/Day 
 } 
} 

The two models can now be connected together, forming our Fourth Model, which looks exactly 
like the Third Model in Figure 23. 

Fourth Model

Retailer Market

 
Figure 33: Fourth Model 

The equations for the Fourth Model are significantly simpler than for Third Model, which does 
not use components. In the equations listing below we have omitted documentation and interface 
variables that are not used. 

mainmodel  ‘Fourth Model’ { 
 submodel  Retailer { 
  interface  = Provider 
  implementation  = Provider // Component that implements the retailer 
  aux  Orders { 
   public; import=full  
   ref  = ..Market\’Orders for Supplies’ 
   unit  = Product/Day 
  } 
  aux  Shipments { 
   public; outflow; export=full  
   unit  = Product/Day 
  } 
 } 
 submodel  Market { 
  interface  = Market 
  implementation  = Market // Component that implements the market 
  aux  ‘Orders for Supplies’ { 
   public; export=full  
   unit  = Product/Day 
  } 
  aux  Supplies { 
   public; inflow; import=full  
   ref  = ..Retailer\Shipments 
   unit  = Product/Day 
  } 
 } 
} 
 



The finished model has only six variables; two submodels with two parameters each for 
exchanging information. Below the surface, there is a much richer structure, as depicted by the 
full variable hierarchy below: 
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Figure 34: Variable Hiearchy of Fourth Model 

6.4 Multiple Instances of a Component 
In the previous chapter we created two re-usable components, the Market and the Provider. We 
can use these two components to create a model of a wholesaler that delivers products to a 
Retailer, which in turn sells to a market. The steps in creating such a model are given below: 

Step Resulting diagram 
0. Create a new component and call it Fifth Model. 

1. Drag an instance of the Provider component into the diagram and call it Wholesaler. 

2. Drag another instance of Provider into the diagram and call it Retailer. 

3. Drag an instance of the Market component into 
the diagram. 

Retailer MarketWholesaler  

4. Select the flow tool and drag a flow from 
Wholesaler to Retailer. The system will ask you 
to confirm that you want to create a flow from 
Wholesaler\Shipments to Retailer\Supplies. 

Retailer MarketWholesaler
Wholesaler\Shipments to

Retailer\Supplies

Cancel
 

5. Select the flow tool again, and drag a flow from 
Retailer to Market. The system will ask you to 
confirm the creation of a flow from 

Retailer MarketWholesaler  



Retailer\Shipments to Market\Supplies. 

6. Select the link tool, and drag a link from Market 
to Retailer. In the pop-up that appears, pick the 
entry that links Market\Orders for Supplies to 
Retailer\Orders. 

Retailer MarketWholesaler  

7. Again, select the link tool, and drag a link from Retailer to Wholesaler. Pick the link from 
Retailer\Orders for Supplies to Wholesaler\Orders. The final result is displayed below.  

Fifth Model

Retailer MarketWholesaler
 

Figure 35: Fifth Model 

In these seven steps we have created a model with three interconnected sub-models. Two of the 
sub-models are instances of the same component, the Provider. The third instance is of the 
Market component. Altogether, we have created a system with 21 basic variables (2 x 6 from the 
Provider and 9 from the market), all fully defined, documented and equipped with the correct 
measurement units. The variable hierarchy for this example is like this (details inside the 
Provider and Market components are omitted): 
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Figure 36: Variable hierarchy of Fifth Model 

The inventory management policy of the Provider component is quite simple. If we make 
improvements to Provider, they will immediately take effect on the Wholesaler and the Retailer 
of the above example. 

But, instead of doing that, let us see how the inner workings of the Retailer can be changed 
without changing the behavior of the Wholesaler, or any other part of the model. The solution 
builds on the concept of polymorphism, and is described in the following chapter. 



6.5 Polymorphism and component swapping 
As long as components communicate via interfaces and do not make use of the implementation 
of one another, a component can be exchanged for another component with the same interface. 
This is called component swapping. Let us create a more advanced Provider component, with an 
inventory management policy that takes into account the number of products that are on order 
from the supplier, and the expected demand. The easiest way to do this is to make a copy of the 
Provider component, and make the modifications that are described below. 

Advanced Provider

Shipments
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Ordered Supplies
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Orders For Supplies

Inventory Coverage

Inventory

 
Figure 37: Provider component with improved ordering policy 

The equations that are added or modified from the original Provider version are given below: 

 level  ‘Ordered Supplies’ { 
  init  = 0<<Product>> 
  flows  = +dt  *’Orders for Supplies’ – dt*Supplies 
  unit  = Product 
 } 
 aux  ‘Inventory Coverage’ { 
  public; import =init; export  =tail 
  init  = 3 <<Day>> 
  unit Day 
 } 
 aux  ‘Demand’ { 
  def  = DELAYINF(Orders, 10<<Day>>) 
  unit Product/Day 
 } 
 aux  ‘Orders for Supplies’ { 
  public ; export =full  
  def  = MAX(0 <<Product/Day>>, 
   ‘Inventory Coverage’ * Demand - (Inventory + ‘Ordered Supplies’ - Backlog)) 
  unit Product/Day 
 } 
 



It takes only one small change to Fifth Model of the previous chapter in order to create the Sixth 
Model, where the Wholesaler is a normal Provider and the Retailer an Advanced Provider. 

1. Open up the property page of Retailer, and change the implementation property from 
Provider to Advanced Provider. 

Since Provider and Advanced Provider have the same interfaces, the above is the only step that 
needs to be taken. In response to this command, the system will do the following steps 
automatically: 

2. Disconnect Retailer from its instance of Provider and destroy that instance. 

3. Connect Retailer to a newly created instance of Advanced Provider. 

The resulting variable hierarchy is given below: 
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Figure 38: Variable hierarchy of Sixth Model 

6.6 Components as User-defined Functions 
A component can be used as a function by marking one of its parameters with the return 
attribute. Here is an example where SUMOF is defined as a component that computes the sum of 
its arguments. 

 mainmodel  SUMOF { 
  aux  A { import =full  } 
  aux  B  { import =full  } 
  aux  C { export =full ; return ; def=A + B } 
 } 
 
The SUMOF model can be used as a submodel, but it can also be used as a user-defined 
function, for example like this: 

 aux  X { def=SUMOF(P, Q) } 
 
When using a component as a function, the compiler will generate an instance inside the current 
basic variable. The instance name will be the same as the function name, which is the same as 



the component name. If the same component is used twice in the same definition, sequence 
numbers will be added to the implicitly defined components. 

The above definition of X is equivalent to: 

 aux  X { 
  submodel  SUMOF { 
   private 
   aux  A { import=full; ref =..P; } 
   aux B { import =full ; ref=..Q; } 
   aux C { export =full; return  } 
   implemenat ion SUMOF; 
  } 
  def  = .SUMOF\C; // Set value equal to return  parameter of component 
 } 
 
The above solution has the advantage over macros that code will be re-used for all instances of 
the function. The solution also allows for browsing into the implementation of the function in the 
same way as for normal submodels. 

6.7 Foreign Components 
The encapsulation mechanisms implied by the separation between interface and implementation 
of a component, opens up the possibility to create special types of components that are 
implemented as non-SD models. 
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Figure 39: The component concept can be expanded to Include other modeling technologies 

In the above scenario we have included spreadsheets, databases and Visual Basic models in 
addition to the simulation models as ways of implementing components. Conceptually, any 
software object that can import and export values for variables can be included in this 
framework. Potential uses of this approach are listed below: 

• Existing spreadsheet models can be embedded into simulation models 

• The macro language of the spreadsheet software can be used to create custom functions 
to be used by the simulation 



• Analysis and presentation features of a spreadsheet can be accessed from a simulation 

• Simulations can be initialized from databases, scenarios can be read and simulated results 
written to the database. 

• Visual Basic can be used to create user-defined functions. 

• Visual Basic can be used to access any other resource that is available from the computer 
that hosts a running simulation. 

7 Connections 
Purpose of solution: Coping with complexity of object relationships through bundling of parameters. 
Type-safe and guided connection process for components. 

Core of solution: Objects can have sockets and plugs that define possible connection points for model 
objects. 

Object-oriented concepts: interface, object relationship 

Any system can be described from a set of objects and object relationships. In the previous 
chapters we have dealt with object-oriented definitions for defining objects, interfaces (types), 
and implementations (classes). We have seen how typed interfaces can be used to introduce a 
type-safe swapping of components in order to customize a model or test out the consequences of 
alternative solutions. 

This chapter deals with the object relationship part. The same way typed interfaces serve as 
bridges between objects having interfaces and classes implementing interfaces, it should be 
possible to define type-safe connections between objects. The idea is that if one component 
supports one end of a given connection type, and another component supports the other, the two 
can be connected. 

• Weaknesses of low-level variable connections 

This far we have worked with parameters that are basic variables, i.e., levels, auxiliaries or 
constants. Such parameters are connected up using basic link and flow symbols, or the special 
reference link that we have introduced. When two basic variables are connected (either explicitly 
or implicitly via a connection to a component), it is possible to make low-level tests to verify a 
connection. Such tests include the following: 

• Data type check (the data type of the actual and formal parameters must match) 

• Unit check (the unit of measure of the actual and formal parameters must match) 

• Dimension check (the array dimensions of the actual and formal parameters must match) 

• Import and export settings check (the actual and formal parameters must have the same 
import and export settings) 

• Variable type check (the variable type of the actual and formal parameters must be valid 
for the given import and export settings) 

The above checks will identify invalid parameter combinations at a technical level. But, even if a 
connection is mathematically possible to do, the connection may not make sense in the context 



where it is used. As an example, there is nothing that prevents us from rerouting the orders for 
supplies in Figure 35 to the following, erroneous version: 

Retailer MarketWholesaler
 

Figure 40: Example of erroneous Connections that will be silently accepted by the system 

When connecting sub-models, there will normally be more than one basic parameter involved. In 
the above example, there are two parameters involved in the connection between Market and 
Retailer, and another pair of parameters is involved between Retailer and Wholesaler. 

• A socket-wire-plug solution to variable connections 

What we need is a way to bundle parameters together into a connector that can be plugged into a 
compatible connector of another component. Two new structured variable types are introduced 
for this purpose, the sockets and the plugs. Sockets and plugs can hold parameters, and they also 
have an interface type. A plug can be connected to socket if the plug has the reverse interface of 
the plug. When a plug and a socket are connected, the parameters on each side are connected up 
in the same way as when a submodel variable is connected to a component. 
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Figure 41: Connections can use interfaces, the way variables relate to components via interfaces 

In both cases the connection can only be made if the interfaces match. Also, when a connection 
takes place, the implications for the underlying model equations are determined automatically. (It 
is not necessary to edit any equations for the connection to take place). 

The socket symbol looks like this  and the plug symbol like this . 

Let us start by making a wired version of the Provider component. To do this, we create a copy 
of Provider, and call it Wired Provider. Then we create a socket Supplier for connecting to the 
Wholesaler. We call the connector interface Supply Connector, and it includes two parameters, 
one for sending out orders, and one for receiving products. The equations for the Supplier socket 
looks like this: 



 socket  Supplier { 
  interface  = ‘Supply Connector’ 
  aux  Orders { 
   public ; export  = full  
   doc  = “Orders for more supplies.” 
   unit  = Product/Day 
  } 
  aux  Shipments { 
   public ; import  = full  
   doc  = “Received products from supplier.” 
   unit  = Product/Day 
  } 
 } 
 
Copy the Supplier socket and transform it into a plug and call it Market. When a socket is 
transformed into a plug, the interface is automatically reversed by reversing import  and export 
settings (and exchanging inflows and outflows). The Market plug becomes like this (after editing 
of the doc properties): 

 plug  Market { 
  interface  = ‘Supply Connector’ 
  aux  Orders { 
   public ; import  = full  
   doc  = “Orders from customer.” 
   unit  = Product/Day 
  } 
  aux  Shipments { 
   public ; export  = full  
   doc  = “Shipments to customer.” 
   unit  = Product/Day 
  } 
 } 
 
The Wired Provider component looks like this after the modifications are complete:  

Wired Provider

Market\
Shipments

Supplier\
Shipments Inventory

Supplier\Orders

Market\Orders
Backlog

Supplier Market

 
Figure 42: Provider component with socket and plug connectors 

The component now has only two parameters, the Supplier socket and the Market plug. This 
makes the interface simpler, and connections easier. Let us do similar changes to the Market 



component. The Supply Connector interface can be used again, and we simply put a Retailer 
socket into the Wired Market component: 

Wired Market

Retailer\Shipments

Retailer\Orders

Encounters

Customers

Encounter Efficiency

Recruiting

Potential
Customers

Installed
Base

Products
per Customer

Retailer

 
Figure 43: Market component with socket connector 

With the above component in place, we can create our final example, the Seventh Model. The 
model will be a wired version of the model in Figure 35. The steps in creating the full model 
from the two components are given below. 

Step Resulting diagram 
0. Create a new component and call it Seventh Model. 

1. Drag an instance of the Wired Provider component into the diagram and call it Wholesaler. 

2. Drag another instance of the Wired Provider into the diagram and call it Retailer. 

3. Drag an instance of the Wired Market component into the 
diagram and call it Market. 

Retailer MarketWholesaler  
4. Select the link tool and drag a link from 

Wholesaler to Retailer. The system will ask you 
to confirm that you want to connect 
Wholesaler\Retailer to Retailer\Supplier. 

Retailer MarketWholesaler
Wholesaler\Retailer to

Retailer\Supplier

Cancel

Wholesaler\Retailer to
Retailer\Supplier

Cancel

Wholesaler\Retailer to
Retailer\Supplier

Cancel
 

5. Select the link tool again, and drag a wire from Retailer to Market. The system will ask you to 
confirm the creation of a wire link from Retailer\Market to Market\Retailer. The model is 
now finished, and looks like the diagram below. 

Retailer MarketWholesaler

Seventh Model

 
Figure 44: Seventh Model 

A link from a plug to a socket is called a wire link, and it is displayed using a solid line. Since 
sockets and plugs can hold more than one parameter, wire links normally carry several values at 



the time, some in one direction, and other is the opposite direction. The direction of the wire link 
is somewhat arbitrarily chosen to point from the plug to the socket (the plug is inserted into the 
socket). 

A plug is connected to a socked using the def statement of the plug, as illustrated by the 
equations for the Seventh Model, below: 

mainmodel  ‘Seventh Model’ { 
 submodel  Market { 
  interface  = ‘Wired Market’ 
  implementation  = ‘Wired Market’ 
  socket  Retailer { 
   public , import , export  
   interface  = ‘Supply Connector’ 
   def  = ..Retailer\Market 
   … parameters of socket omitted 
  } 
 } 
 submodel  Retailer { 
  interface  = ‘Wired Provider’ 
  implementation  = ‘Wired Provider’ 
  socket  Supplier { 
   public , import , export  
   interface  = ‘Supply Connector’ 
   def  = ..Wholesaler\Retailer 
   … parameters of connector omitted 
  } 
  plug  Market { 
   public , import , export  
   interface  = ‘Supply Connector’ 
   … parameters of connector omitted 
  } 
 } 
 submodel  Wholesaler { 
  interface  = ‘Wired Provider’ 
  implemenation  = ‘Wired Provider 
  plug  Retailer { 
   public , import , export  
   interface  = ‘Supply Connector’ 
   … parameters of connector omitted 
  } 
 } 
} 
 
The above model consists of only three variables and two (wire) links at the topmost level. These 
three variables are (sub) models, and they can only be connected in ways that obey the types and 
polarities of the connector parameters (sockets and plugs). The wiring process is done without 
every entering any equations in order to connect the components together. This significantly 
reduces the complexity of model building and the risk of making wrong connections. It is a 
requirement however, that an appropriate set of components is available. Around the need for 
ready-made building blocks we may experience a growing market, and a further expansion of the 
field of SD into communities that find traditional SD modeling too difficult. 



7.1 Wire Flows 
Links between a socket and a plug are called wire links, and they are displayed using a thick line. 
It turns out that there are places where wire flows come in naturally. As an example, let us look 
at a resource that has multiple consumers. At the resource end, we can make a connector with 
one import parameter for receiving requests and one output parameter for delivering the 
requested amount of the resource. Similarly, the consumers will have a connector with one 
export parameter for making requests and one import parameter for receiving resources that are 
granted. A diagram for this model looks like this: 

Resource Consumer  
Figure 45: Resource and Consumer Model 

Now, if there are multiple consumers, and the number of requests gets larger than the available 
resource, we need to prioritize the requests. The prioritizing may deny some requests, or grant a 
smaller amount than requested if the sum of the requests exceed the capacity of the resource. 

Prioritization is not a natural part of a resource, and not a part of the consumer either. Instead, we 
want a resource manager component to take care of resolving conflicting requests. The resource 
management may have opinions about the relative importance of consumers, the availability of 
other resources that are also needed, etc. 

What we need is a prioritization component that can receive multiple requests for a resource, 
adjust the requests as needed in order to stay within the capacity of the resource, and channel 
granted resources to consumers. As a first version, let us create a resource manager component 
with two connectors, one for connecting to the consumer and one for connecting to the resource. 
The model can now be expanded like this: 

Resource Resource
Manager

Consumer

 
Figure 46: Resource and Consumer Model with Resource Manager 

Relate the above to the definition of a regular flow between two levels, as displayed below. 

Resource
Manager

Resource Consumer

 
Figure 47: Resource and Consumer model using basic variables, links and a flow 

The variable controlling the flow has been pulled away from the flow valve in order to stress the 
fact that the flow actually represents two links departing from the rate in the middle. One link 
goes to the level at the tail of the flow, and the other one goes to the level at the head. 

The diagram below is equivalent to the flow version, given that Resource and Consumer are 
defined using the INTEGRATE function, which essentially puts a level inside an auxiliary: 



Resource
Manager

Resource Consumer

 
Figure 48: Resource and Consumer model using basic variables and only links 

The above observations lead naturally to the definition of a wire flow as a connection of four 
connectors: one at each end, and two at the valve. We can now create a flow version of the 
model in Figure 46. 

Resource Consumer

Resource
Manager  

Figure 49: Resource and Consumer connected by wire flow 

As always, the connectors can be hidden from view, and the controlling variable snapped on to 
the flow valve, like this: 

Resource Consumer
Resource
Manager  

Figure 50: Hidden connector view of Resource and Consumer connected by wire flow 

Wire flows can be used only if the socket at the tail matches the plug at the valve, and the socket 
at the valve matches the socket at the head. 

7.2 Arrayed Components and Connectors 
The use of arrays is not the main focus of this paper. But, in the context of the above example, 
the question comes to mind: How do we model a system where multiple consumers make use of 
a shared resource? 

• Arrayed Components 

A simple solution is to make the Consumer into an array. This can be done by opening up 
Consumer’s property page and editing the dimensions field. The equations will be adjusted 
automatically, like this: 

submodel  Consumer { 
 dim  = 1..3   // Three customers 
 … // rest omitted 
} 
 



The component implementing Consumer does not need to be an arrayed component. When a 
submodel variable specifies dimensions, all variables of this instance of the associated 
component will get extra (initial) dimensions. 

• Arrayed Connectors 

Another solution is to make the plug at the Resource Manager into a dynamic array. A dynamic 
array is much like an external unit, in that it gets specified from the context. This feature makes it 
possible to create a diagram like the one below: 

Resource Resource
Manager

Consumer 1

Consumer 2

 
Figure 51: Managing a resource with multiple consumers 

The following list compares the single-consumer model in Figure 46 (and in Figure 49) to the 
above multi-consumer version: 

Variable or Component Comment 
Resource Component and Variable Unchanged 

Consumer Component and Variable Unchanged 

Resource Manager Interface Plug changed from scalar to dynamic array. 

Resource Manager Component Implementation changed to deal with multiple 
consumers. 

7.3 Co-flows 
Objects have attributes. As an example, a worker can have a given level of experience. The OO 
term for an attribute is an object property. The value of a property is part of an object’s state. 
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Figure 52: Attributes of individual objects versus average attributes of object groups 

In SD models, we normally do not represent objects one-by-one. Instead, object counts are stored 
in level variables. When there is a need to keep track of object properties, this is done by having 



separate levels. Typically, an attribute level stores the average attribute value (or the sum of the 
attribute values) of the objects in a corresponding level variable. 

In order to work with attributes of groups of objects (like the experience level of a workforce), 
we need to add extra levels to hold the attributes. In addition we need to update the attribute 
levels to match the changes that take place in the group. The updating of group attributes can be 
done through a technique that is called co-flows. A co-flow is a parallel flow that carries 
attributes for the items that flow in the main flow. 

Working with co-flows in basic SD diagrams is not straightforward. The number of extra 
variables tends to grow rapidly, increasing the complexity of the diagram. In addition, the logic 
for co-flows can be quite complicated. 

Diagrams and equations for modeling groups of objects and their (average) attributes can be 
simplified through the use of submodels, sockets, plugs, and wire flows. A single submodel 
variable can hold the object count and any number of attribute variables. Sockets and plugs can 
define connection points for incoming and outgoing object flows and their associated (average) 
attributes. Wire flows can transfer objects and attributes together. 

Worker s
Hiring Leaving

Training

 
Figure 53: Flows and levels workforce with attributes 

The above diagram indicates how to create a model of a workforce with one or more attributes, 
such as experience. People are hired with a given (average) set of attributes, and enter the 
workforce. While in the workforce, people get experience through training and other activities 
(practice). When leaving, workers bring along their experience, influencing the attributes and the 
count of remaining workers.  

8 Additional Model Views 
A hierarchical view of a model is good for presenting the structure at different levels of 
abstraction. The division of models into submodels matches naturally the way we organize 
systems into subsystems. The hierarchical view is not good for showing feedback relationships, 
however. Feedback typically follows paths of influences that cross the borders of sub systems. 
When we look at a model of a subsystem alone, the sections of feedback loops that extend 
beyond the boundary of the submodel gets cut away. When a loop is cut, it is not a loop any 
longer, and the feedback path vanishes out of view. 

The model-view metaphor displayed in Figure 4 calls for diagrams of more than one type. The 
variable relationships of a model in the extended SD language can be mapped to relationships 
between individual, basic variables. The semantics of the structured variables is expressed in 
terms of basic variables, so a model can still be looked upon as a model with levels and rates 
only. 



This means that we can introduce a causal-loop view of any model that is made in the extended 
SD language. In this view, a diagram is not constrained to displaying variables that are siblings. 
In the causal-loop diagram view, variable dependencies can be traced up, down and across inside 
the variable hierarchy, forming the paths that constitute the feedback loops that, together with 
system state, generate the behavior mode of the model at any given point in time. Rule three in 
Table 1 needs to be specified differently for causal-loop diagrams than for accumulator-flow 
diagrams (see Table 2). This task is left as an exercise for the interested reader. In  Myrtveit and 
Saleh (2000) it is described how the dominant behavior mode and the contributing structural 
links can be superimposed on a causal-loop diagram. The figure below illustrates this for a 
simple population model.  
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Figure 54: Diagram showing relative contribution of substructures to the dominant behavior of a model 

The above diagram shows the simulation in a state where the population is approaching the 
maximum capacity of the environment. The balancing loop (B) is contributing the most to the 
current mode of behavior, which is a convergent mode, illustrated by the icon in the lower right-
hand corner of the figure. 

9 Acknowledgments 
The ideas in Appendix A about measurement units have been jointly developed by Arne 
Kråkenes and myself, mainly during a two-day stay at the old mining town of Røros in 1998. 
The object-oriented solutions described in the rest of this paper were conceived during three 
summer weeks together with my family at Dewey Beach (Pennsylvania). Arne and the rest of the 
Powersim team have given valuable feedback on the initial drafts. I am very impressed and 
pleased by the time, effort and dedication that Powerim’s R&D team under the leadership of 
Bjørn Arild W. Baugstø is putting behind the implementation of the new SD technology, 
including the many challenging specification, design and coding tasks that need to be done 
before this technology can be taken into use. I also want to thank Powerim’s partners and key 
customers for a fruitful cooperation. In particular, I want to mention the people at Statoil, who 
have supported the project both financially and through their joint visions for an easy-to-use 
object-oriented modeling tool. 



10 References 
Cox, B. (1996). Superdistribution, Addison-Wesley Publishing Company, Inc., ISBN 0-201-

50208-9. 

Eberlein, R., Hines, J. (1996). Molecules for modelers.  Proceedings of the International System 
Dynamics Society. Cambridge: System Dynamics Society. 

Forrester, Jay (1973). World Model. Wright-Allen Press, Inc. 

Forrester, J. (1990).  Principles of systems.  Productivity Press, Portland 

Myrtveit, M., Saleh, M. (2000). Superimposing Dynamic Behavior on Causal Loop Diagrams of 
System Dynamic Models. Proceedings of the International System Dynamics Society, 
Bergen: System Dynamics Society 

Tignor, W., Myrtveit, M. (2000) Object Oriented Design Patterns and System Dynamics 
Components, Proceedings of the International System Dynamics Society, Bergen: System 
Dynamics Society 

Pollack, Andrew. Two Teams, Two Measures Equaled One Lost Spacecraft. New York Times, 
October 1, 1999 

Birtwistle, G.M., Dahl, O.-J., Myhrhaug, B., Nygaard, K. (1973) Simula Begin. Chartwell-Bratt 
Ltd., Bromley, England. 

Appendix A—Measurement Units 
Simple confusion over whether measurements were metric or not led to the loss of a 
$125 million spacecraft last week as it approached Mars, the National Aeronautics 
and Space Administration said on Thursday. (Pollack 1999) 

Variable values are either implicitly or explicitly measured in a unit. Adding explicit units to 
variables has many advantages. First of all, it becomes easier to detect mistakes like the one that 
caused the Mars Climate Orbiter to crash. In addition to quality assurance on the model 
equations, the system can make use of the measurement units when formatting values for output 
to the user, and also when parsing values from text that has been input by the user. 

As an example, the text “10 mph” is an unambiguous specification of a speed, whereas the 
number 10 alone can be easily misinterpreted when used to express speed. 

Measurement units can be divided into two classes, normal units and point units. Point units are 
used for measurements that are relative to some origin. The most obvious examples are points in 
time and points on a temperature scale. Obviously, there is a big difference between 3 am and a 
three hours delay, for example. A delay says nothing about when the delay takes place, only how 
long it is. Together with a point in time, the delay can be used to find the point in time for the 
delayed event. Point in time is normally specified as date and time of day. Durations are 
specified as a number of time intervals, for example years, months, weeks, days, hours, minutes 
or seconds. The example with temperature is quite similar. What does 2°C mean? Is it a 
temperature or a temperature difference? If the shower is too cold, we can increase the 
temperature by 2 degrees, relative to the original temperature. We do not specify the actual 
temperature—only the incremental change that we want to take place. A particular day it can be 



2 degrees outside. In this case we implicitly assume that we talk about a point on the temperature 
scale, and not a difference between the temperatures of yesterday and today, for example. 

Humans are good at implicit interpretations. In a computer model, however, we must be explicit 
in order to avoid errors. We will use the symbol @ (° can be used as an alternative) to make it 
explicit when we work with point units. When the point unit indicator (@ or °) is omitted, the 
normal unit is assumed. 

A point unit has an origin, and values are measured as distances from this origin. Values that are 
measured using point units, behave peculiarly when they appear in mathematical expressions. 

Rule Example 
A point value cannot be added to another point 
value. 

DATE(1999, 1, 1)+DATE(2000,1,1) produces 
an error. 

A point value minus a normal value produces a 
point value 

DATE(2000, 1, 3) – 1*DAY() produces a point 
value (point in time) of January 2, 2000. 

A point value plus a normal value produces a 
point value. 

100°C + 10C produces a point value of 110°C. 

A point value minus a point value produces a 
normal value. 

DATE(2000,1,4)-DATE(2000,1,1) produces a 
normal value (time span) of three days. 

Modeling software should verify that the above rules are obeyed. In order to do this, we need to 
be able to define normal units and point units, and assign units to variables. 

The format of a unit definition is like this: 

 unit  <name> { 
  def  = <unit expression> 
 } 
 
The unit expression can either be a normal unit expression or a point unit expression. 

• Defining point units 

Point unit expressions are formed using the following syntax: 

 @<unit reference> 
 °<unit reference> 
 @(<normal value>, <point value>) 
 
A unit reference is either atomic , external , the name of a predefined unit, the name of a global unit or a 
dot (.) followed by the name of a local unit: 
 

 atomic  // Used to create a new unit, not compatible with any other unit 
 external  // Used to create a new local unit to be used for formal parameters in 

order to map to the units of actual paramters when the component is 
instantiated inside another model 

 <global unit name> // Definition of named global unit 
 .<local unit name> // Definition of named local unit 
 __time  // Time 
 __meter  // Length 
 __kelvin  // Temperature 
 __radian  // Angle 
 __candela  // Light 



 __kilogram  // Weight 
 

A value is a number with unit. A point value has a point unit, and a normal value has a normal 
unit. In order to define degrees Celsius, we can make the following unit definition, for example: 

 unit  C { 
  def  = @(1__kelvin, 273.15@__kelvin) 
 } 
 
The above definition says that C is a point unit that is measured in multiples of one Kelvin from 
the point 273.15 on the Kelvin scale. Similarly, Fahrenheit can be defined in terms of C, like 
this: 

 unit  F { 
  def  = @(5/9C, -(32*5/9)@C) 
 } 
 
Here F is measured in increments of 5/9 centigrade relative to the temperature –17,78°C. An 
equivalent way to define F is given below: 

 unit  F { 
  def  = @(5/9__kelvin, 255.37@__kelvin)  
 } 
 
The time unit is somewhat special. We could of course use the SI unit second to represent time 
always, but many models count time in other increments, such as years or days. This is why we 
have introduced the predefined unit __time, which is a point unit. A modeling system should 
define the SI unit second (s) based on the time unit settings for the simulation project. Below is 
an example, where the TIME variable of the simulation is actually measured in seconds: 

 unit  s { def  = @(__time , 0@__time ) } // Second 
 unit  min { def  = @(60s, 0@s) } // Minute 
 unit  hr { def  = @(60min, 0@min) } // Hour 
 unit  dy { def  = @(24hr,0@hr) } // Day 
 unit  wk { def  = @(7dy,0@dy) } // Week 
 

• Defining normal units 

A normal unit expression is defined recursively like this: 

 <unit reference> 
 <real> 
 (<normal unit expression>) 
 <normal unit expression> * <normal unit expression> 
 <normal unit expression> / <normal unit expression> 
 <normal unit expression> ^ <integer> 
 
(The multiplication symbol can be omitted from expressions. Per can be used as a substitute for 
the division operator /.) 

Below are some examples: 

 unit  m { def  = __meter  } // Meter 
 unit  km { def  = 1000__meter  } // Kilometer 
 unit  kmh { def  = km/hr } // Kilometers per hour 
 unit  % { def  = 0.01 } // Per cent 



 unit  Acceleration { def  = m/s^2 } 

Appendix B—Syntax Used in Equations 
The following is a brief description of the syntax used in the equations of this paper. We use 
braces ({}) to enclose the body of each definition, as this makes it easier to represent hierarchy. 
As a convention, each level of nesting is indented one position relative to the enclosing level.  

• Object definition syntax 

The general format of an object definition and its properties is the following: 

<objecttype> <objectname> { 
 <list of properties> 
} 
 
Each entry of the list of properties is either another object definition or a property definition in 
one of these formats: 

 <property name> = <value> 
 <property name> 
 
Multiple properties on one line must be separated by semicolons (;). 

The following shorthand notation can be used for describing a single property: 

 <property name> <objectname> = <value> 
 <property name> <objectname> 
 
Here are two equivalent ways to say that A is equal to B*C: 

Object-block syntax Key-word syntax 

aux  A { 
 def  = B*C 
} 

def  A = B*C 

 
A simulation project has a set of global units and components. 

• Common properties for all objects 

All objects can have one or both of the following common object properties: 

 doc  = <text> // Documentation 
 note  = <text> // Note 
 
A <text> is a string enclosed in quotes, like this “This is a text”. 

• Units 

A unit is defined like this: 

unit  <name> { // Unit definition 
 <common object properties> // Documentation and/or note 
 def  = <unit expression> // Definition of unit 
} 
 
Unit expressions are explained in Appendix A. 



• Variables 

All variables can have any of the following common variable properties: 

 <common object properties> // Documentation and/or note 
 <variable definition list> // List of local variables 
 public  // Used if variable is public (excludes private ) 
 private  // Used if variable is private (exclused public ) 
 import  = <transfer> // Defines import type 
 export  = <transfer> // Defines export type 
 return  // Return value when invoked as a function 
 unit  = <unit expression> // Defines unit of measure 
 dim  = <dimensions> // Defines array dimensions 
 type  = <data type> // Defines data type (default is real ) 
 
The import or export <transfer> can be either init , tail  or full . Init means that the initial value is 
transferred. Tail means that all values, except the initial are transferred. Full means that all values 
are transferred. 

Dimensions and data type are not used in this paper. 

A variable can be a reference to another variable. This means that the variable shares the 
memory with the referenced variable. The ref property is used to define a reference. 

A <path name> is used to refer to another variable. A path follows the following rules: 

 <tail of path> // Path relative to parent of current variable 
 .<tail of path> // Path relative to current variable 
 ..<tail of path> // Path relative to grandparent of current variable 
 \<tail of path> // Path relative to toplevel (component) 
 
The definition of <tail of path> is defined recursively like this: 

 <name> 
 <name>\<tail of path> 
 
A variable <expression> follows the normal syntax for mathematical expressions, with the 
addition of the unit specification that can be added within double angular brackets after a literal 
value. Here is an example: 10<<miles per hour>>. 

A component holds a model and its visualizations (diagrams). The variables of the model are 
stored inside the root variable, which is of the mainmodel variable type. 

mainmodel  <name> { 
 <common variable properties> // Zero or more of the common property types 
 <unit definition list> // Local units 
} 
 
A mainmodel cannot be a child of other variables. 

The unit definition list contains zero or more unit definitions, and the variable definition list 
consists of any number of variable definitions. 

A mainmodel also holds properties for defining time and integration settings for the model. 
These settings are omitted from this overview. 

We have the following variable definitions, for the other variable types: 



level  <name> { // Level defintion 
 <common variable properties> // Zero or more of the common property types 
 readonly  // Used to prevent additional flows on level parameters 
 ref  = <path name> // Used if the level is a reference to another level 
 init = <expression> // Initial value of level (can be omitted if ref ) 
 flows  = <flow list> // Flows of level (can be omitted if there are no flows) 
} 
 
aux  <name> { // Auxiliary and constant definition 
 <common variable properties> // Zero or more of the common property types 
 ref  = <path name> // Used if variable is a reference to another variable 
 def  = <expression> // Definition of auxiliary (excludes init ) 
 init = <expression> // Definition of constant (excludes def ) 
} 
 
socket  <name> { // Socket definition 
 <common variable properties> // Zero or more of the common property types 
 interface  = <name> // Name of interface*) 
 ref  = <path name> // Used if reference to other socket 
} 
 
plug  <name> { // Plug definition 
 <common variable properties> // Zero or more of the common property types 
 interface  = <name> // Name of interface*) 

 ref  = <path name> // Used if reference to other plug 
 def  = <path name> // Connected socket 
} 
 
submodel  <name> { // Submodel definition 
 <common variable properties> // Zero or more of the common property types 
 interface = <name> // Name of interface 
 implementation  = <name> // Used if submodel is implemented by a component 
} 
 
*) Inside a plug, the import /export settings for variables should be the reverse of what is defined for a socket with 
the same interface name. This way the socket and the plug can be connected (import on one side goes to export on 
the other, and vice versa). 

Ref and def are exclusive. 

Def and init  are exclusive. 

Appendix C—Summary of Extensions 
This paper describes extensions to the modeling language (equations) and the accumulator-flow 
diagramming language for SD. The number of new and extended features is relatively small. The 
three main object-oriented features are listed first. The remaining entries are introduced in order 
to support the introduction of hierarchy, components and wire connections. 

The extensions are summarized in the table below. The purposes of each extension are listed as 
bullet points. 



All variable types can hold other variables. 

• The main purpose is to be able to create hierarchical models. 

• Ability to create local variables to simplify complex definitions. 

• Enable components to be called as functions. 

• Ability to bundle parameters together inside sockets and plugs for safe and easy component 
wiring. 

All top-level models are components. 

• Ability to create building blocks that can be re-used by other components (models). 

New interface attribute on models, components, sockets and plugs. 

• Type-safe and guided connection of and swapping of components without the need to edit 
equations. (The term swapping describes the process of exchanging one component for 
another, compatible component. As an example, one provider component can be swapped for 
another provider implementation, given that they have the same interface.) 

New variable type submodel.  

• Ability to create hierarchical models. 

• Ability to create instances of components. 

New submodel 
variable symbol:  

New socket 
variable symbol:  

New plug 
variable symbol:  

New variable types socket and plug. 

• Bundling of parameters that belong together into one 
connection point. 

• To provide guidance to the user when connecting components 
together. 

• To ensure consistent component connections. 

• Remove the need to enter equations as part of the component 
connection process. 

Wire look on 
links and flows 
that connect 
sockets and plugs 
together: 

 

 

Reference look 
on links:  New reference (ref) definition. 

• Enable import and export of level variables. 

• Increase efficiency of parameter passing (speed and memory). 

Reference 
indicator on 
variables:  

New variable attributes public and private. 

• Information hiding (between levels of the model hierarchy) 

Indicator for 
public variables:  

New variable attributes import  and export. 

• Define value transfer between submodel and component (when 
using components as building blocks of other components). 

Indicator for 
import and 
export. Example:  



New variable attributes inflow  and outflow. 

• Allow flows into and out of submodels. 

• Prevent flows to be attached to submodels the wrong way. 

Indicator for 
inflow and 
outflow inside 
cloud symbol. 

 

Chained flows. 

• Passing of flows between sub-models. 
 

New variable attribute readonly for levels. 

• Control the ability to add new flows to level parameter of submodel. 

Various extensions around measurement units. 

• Unit consistency checking. 

• Automatic unit conversion, for example between meter and inch. 

• Flexible component interfaces (through external units). 

• Formatting of values as text. As an example, an inventory of ten products can be displayed as 
“10 products” instead of just “10”. Similarly, a value that is a point in time can be shown as 
”February 2000” instead of “2000.08”. 

• Parsing (and conversion) of text input using units and special formats. As an example, a time 
span can be entered as “1:30:00” and a length can be typed in as “1 inch” or “1/3m”, for 
example. 

Appendix D—Terminology 
AFD—Accumulator-Flow Diagram 

Accumulator-Flow Diagram—Symbolic language for visualizing models. The language uses a 
set of symbols for visualizing variables (such as levels and auxiliaries) and another set for 
visualizing relationships (links and flows) 

Auxiliary Variable—Built-in variable type for non-states. 

Basic SD—System Dynamics language using only basic variables. 

Basic Variable—Variable of a built-in type, such as a level or an auxiliary. 

Causal-Loop Diagram—Symbolic language for visualizing models. The language uses texts to 
represent variables and links to visualize influences between variables. 

Child Variable—Variable that exists within a parent. 

Class—OO term for implementation of an interface. 

CLD—Causal-Loop Diagram 

Component—Named entity of a component catalog. A component consists of a model and its 
visualizations (diagrams). A component can be run both as a stand-alone simulation model 
and as a submodel of another component. Corresponds to an OO class. 

Connector—Common name for socket and plug. Used to connect components using wires. 



Constant Variable—Auxiliary that does not change its value during simulation. 

Constructor™ Diagram—Powersim’s version of AFD. 

Encapsulation—OO term for information filtering though private variables and idden 
implementations that can be accessed only via interfaces. 

Extended SD—Basic SD with the addition of hierarchy and user-defined variable types, such as 
mainmodels, submodels, sockets, and plugs. 

Flow Symbol—Symbol used by AFD to visualize flow into our out of level. 

Implementation—OO term for the sections of a class that behaves according to the specifications 
of an interface. 

Interface—OO term for protocol supported by an object. 

Level Variable—Variable that holds a state. Changed over time through flows. 

Link Symbol—Symbol used to visualize relationship between two variables. 

Mainmodel Variable—Root variable of simulation model. Holds other variables. 

Model—Simulation model. Contains a mainmodel variable with child variables. 

Object—OO term for variable. Objects are of a given class. 

OO—Object Oriented 

Parameter—1) Public child of a parent variable. 2) Imported or exported child of a mainmodel, 
submodel, socket, or plug. 

Parent Variable—Variable that has children. In Extended SD all variable types can have 
children. 

Polymorphism—OO term for the fact that one object can take the role of another object, as long 
as they have the same interface. This can be used, for example, to change a distribution 
channel variable from direct mail to e-commerce without influencing the structures of the 
rest of the system. 

SD—System Dynamics 

Sibling Variables—Variables that have the same parent. 

Socket Variable—Connector for passing parameters between submodels or other variables. A 
socket can be connected to a plug with the same interface. 

State Variable—Synonym for level variable. 

Stock—Synonym for level variable. 

Structured Variable—Variable that has a user defined type. Includes mainmodel, submodel, 
socket and plug. 

Submodel Variable—Variable type of Extended SD for creating hierarchical models and 
connecting to components. 

Thinker™ Diagram—Powersim’s version of CLD. 

Variable—Corresponds to an OO object. 



Wire Flow—Name of flow between socket and plug. 

Wire Link—Name of link between socket and plug. 
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