
1

Recent Results in Software Process Modeling

Ray Madachy, Ph.D.
C-bridge Internet Solutions

University of Southern California Center for Software Engineering
rmadachy@c-bridge.com, madachy@usc.edu

1 Introduction

Understanding software process interactions
and feedback is increasingly important given changing
software development and evolution paradigms.
Towards this end, a new graduate course in Software
Process Modeling was developed by this author at the
University of Southern California Center for Software
Engineering (USC-CSE) [1]. It was first offered in the
Fall of 1999, and the term projects were original
investigations into critical process issues.
 This abstract summarizes the student research
projects, and highlights some results in terms of
identifying important feedback in software processes.
Rather than focus on previous contributions [2], [3], only
new and previously unreported student work is described
herein. The in-process book Software Process Dynamics
[4] was the primary text for the class. Some of the
student work incorporates new concepts in the book,
such as inter-phase iterative feedback, process
concurrence, personnel factors, learning feedback and
model calibration techniques.

2 Course Summary

 The course overviews the field of software
process modeling, and addresses current research issues
with student simulation projects. It is designed for
students and software engineering professionals who are
interested in understanding the dynamics of software
development and assessing process strategies. Process
modeling techniques for both continuous systems and
discrete systems are covered, with a concentration in
system dynamics modeling (continuous systems).

Examples of process and project dynamics
covered are Rapid Application Development (RAD), the
effects of schedule pressure, experience, global feedback
and evolution, work methods such as reviews and quality
assurance activities, task underestimation, bureaucratic
delays, demotivating events, process concurrence, other

socio-technical phenomena and the feedback therein.
These complex and interacting process effects are
modeled with system dynamics using continuous
quantities interconnected in loops of information
feedback and circular causality.

The course demonstrates how knowledge of the
interrelated technical and social factors coupled with
simulation tools can provide a means for software
process improvement. More information can be found in
[1].

3 Simulation Term Projects

Students were instructed in a fairly rigorous
process for developing their models, starting with
definitive statements of modeling goals and identifying
reference behavior. Students were also asked to
interview seasoned experts in their respective areas,
develop surveys as appropriate, and pointers to real
world data were provided. Group reviews and extensive
validation tests were performed, and a standard format
was used for the reports.

Students were allowed to do individual projects
or have teams of two. Several of the projects employed
teams. The five term projects investigated the following
issues:
• the dynamics of architecture development in the
inception and elaboration phases of the Model-Based
Architecting and Software Engineering (MBASE)
process
• COTS glue code development and integration
dynamics
• reuse and language-level effects in software
development
• CMM-based Software Process Improvement (SPI)
strategies
• application of RAD techniques to pre-IPO Internet

companies.

2

Table 1 categorizes the projects in terms of their high-
level scope and purpose.

Table 1: Project Characterizations

Scope /
Purpose

Portion of
lifecycle

Development
project

Long-term
organization

Planning and
control
Process
improvement
and
technology
adoption

MBASE
Architecting

Reuse and
High Level
Languages

Internet RAD

COTS Glue
Code

CMM
Software
Process
Improvement

Subsequent sections provide more highlights on the
projects. The more in-depth studies performed by two-
person teams are described first. Very few figures are
included here due to limited space. In order to best
visualize the feedback loops in the models, the reader is
encouraged to read the original reports at [1].

3.1 MBASE Architecting

MBASE is an integrated software development approach
developed at USC-CSE. It is used in departmental
Software Engineering courses. The overall goals of the
MBASE architecting study were to:
• investigate the dynamics of architecture

development during early MBASE lifecyle phases
• identify the nature of process concurrence in early

MBASE phases
• understand the impact of collaboration and

prototyping on lifecycle parameters.

Some features of the model include:
• schedule as independent variable
• iterative process structures
• sequentiality and concurrency of activities
• phases - requirements and architecture/design
• activities - initial completion, coordination, quality

assurance, iteration
• demand-based resource allocation
• external and internal precedence constraints
• calibration to CS577A project data (CS577A is a

graduate course in Software Engineering taught by Dr.
Barry Boehm where teams develop multimedia
applications for internal USC library usage).

A high-level overview of the lifecycle artifact flows and
feedback is shown in Figure 1, and the major causal
loops are shown in Figure 2.

Requirements Architecture &
Design

Prototype

LEGEND

Products of phase

LEGENDReturn Errors

Development phase

Figure 1: MBASE Lifecycle Artifact Relationships

Reso urce
Con straint

Basework
Rate

M in im um
Basework

Duration

Id entified
Un its

Un its avl. for

basework

Un its
co mpleted in

p hase

Fraction o f u nits
available (in-

p hase)

In-p hase un it
co ncurren ce

co nstraint

Fraction o f u nits releas ed

from upstream phases

Inter-p hase un it
concu rrence
constrain t

F raction of units av ailable
(inter-ph ase)

Units in
iteration

Iteration
Rate

Prototyp ing
Rate

Un its
n eedin g
p ro totype

Resource
Constraint

Figure 2: MBASE Architecting Causal Loop Diagram

This study fleshed out various prototyping feedback
effects, inter-phase iteration feedback, and the model
was calibrated to actual MBASE project data.

3.2 COTS Glue Code

This study investigated the overall lifecycle of
incorporating COTS into a product, with a primary focus
on the integration dynamics. Overall goals were to:
• understand glue code development, the COTS
integration process and their correlation
• determine efficient starting points of glue code
development and COTS integration
• calibrate the component parameters from COCOTS
• analyze the impact of new parameters such as ratio
of new and updated COTS component and number of
COTS component.

Figure 3 shows some of the feedback interactions in the

model.

3

Figure 3: COT Glue Code Causal Loop Diagram

This study produced valuable results in terms of COTS
and glue code integration planning.

3.3 Reuse and High Level Language

This study looked at dynamics of reuse as well as the
effects of employing high-level languages. Goals for the
project included:
• investigating project reuse dynamics
• productivity and effort of individual phases
• understand the effects of different language levels.

Some features of the model are
• rework is included
• learning curve formulations
• increased training for higher level languages.

See Figure 4 for the primary effects in the model. This
work produced a validated model containing reuse and
language effects, including a rate-based representation of
reuse impact on project size that can serve as an
archetype structure.

Figure 4: Reuse and High Level Language Causal Loop

Diagram

3.4 CMM-Based Software Process Improvement

This work investigated software process improvement
based on the CMM. Subgoals included the following:
• provide insight into complex process behavior
• help evaluate different approaches for improvement
• support planning, tracking and prediction
• reduce costs
• reduce cycle time
• reduce defects

An existing model [5] was adapted for use at Xerox. It
was based on the scenario of a Xerox development group
working from just assessed as a Level 2 organization
moving towards achieving Level 3. Figure 5 shows the
model at a high level, including feedback loops.

4

Figure 5: SPI Model Feedback Relationships

Referring to the figure, the Lifecycle process

models how software size, effort, quality, and schedule
relate to each other in order to produce a product. SPI
benefits are modeled as percent reductions in either size,
effort, error rate or schedule.

In People, three attitudes of staff that affected
the potential benefit of process improvement: pro-SPI
people, con-SPI people, and no-care people. The
attitudinal mix and the pro/con ratio can affect the
overall potential benefit realized by a SPI effort.

KPA Processing models the timing of the flow
of process improvements into the lifecycle and people
subsystems.

The following causal loop description is the basis of the
simulation model.
1. Major software process improvement (SPI) efforts

are piloted and deployed based on project cycle time
(i.e., pilot on one project, tailor and deploy on the
subsequent project).

2. Major SPIs increase maturity (the probability of
successfully achieving your goals).

3. Increased maturity attracts new hires and retains
experienced staff that are “pro SPI” (i.e., they
support and participate in SPI activities and are
attracted to success and innovation).

4. Pro-SPI staff make minor SPI suggestions.
5. Major and minor SPIs decrease cycle time.
6. Decreased cycle time enables more major and minor

SPIs to be accomplished.
7. Go back to 1 and repeat the cycle.

This model was calibrated for the Xerox environment,
and the results are being used for internal SPI planning.

3.5 Internet RAD

The goals for this project included:
• investigating the dynamics of pre-IPO Internet
companies
• contrasting the dynamics to non-Internet software
development
• surveying companies and determine major impact
factors.

Some features of the Internet RAD model are:
• a modified evolutionary delivery lifecycle with
small teams
• schedule minimization
• outsourcing considerations
• defect detection and elimination
• short term and long-term feedback
• Internet preview and web-site personalization
• model sectors - Specification and Design,
Outsourcing, Development, Integration and
Personalization, Human Resources.

Short-term and long-term feedback to the web site
integration can be seen in the Integration and
Personalization sector in Figure 6.

Figure 6: Internet RAD Integration and Personalization

Sector

PRO

CON

NO CA RE

MIX
EFFECT

LEA RN
CURVE

PEOPLE

LI FECYCLE

KPA
PROCESSI NG

SIZE

ERROR
RA TE

EFFORT

SCHED
(CT)

MINOR
SPIs

MA JOR
SPIs

TOTA L
MA TURITY

Maturi ty
Determines
New Hire
A tti tudinal
Type and Retains
Experienced
Pros

Pros Make Minor SPI
Suggestions

CT Controls
Learning
Curve Time

CT Controls
Sug Freq.

SPI Helps
Li fecycle

CT
Controls
Pi lot &

Deploy

SPI
Helps
Li fecycle

Mix Effects
SPI
Benefi t

5

Contributions of this study include the lifecycle
definition for Internet-unique instant software delivery,
and identification of the two inherent types of feedback.

4 Feedback Summary

A summary of the most important feedback

effects from these studies are shown in Table 2. Refer to
the original papers for specific attributes of the feedback.

Table 2: Summary of Major Feedback

Project Major Feedback Effects
MBASE
Architecting

Feedback from prototype
evaluation that impacts the
requirements and architecture.

Inter-phase iterative feedback
from approval activities, reviews
and testing.

Reinforcing feedback from
initially completed items.

Reinforcing feedback from
prototyping to iteration rate.

COTS Glue Code Connected feedback loops
between application
development, glue code
development and system
integration.

Reuse and High
Level Languages

Learning feedback effects on
development and reuse rates.

Professor's note: Not included is
the important feedback between
the newly developed and
reusable software, and changing
specifications which contribute
to reuse growth and decay

Software Process
Improvement (SPI)

Major feedback loops between
process improvements, process
maturity, personnel mix and
project cycle time.

Internet RAD Early error detection and rework.

Short-term "instant" feedback on
bugs from the internet site.

Long-term customer feedback on
desired changes and capabilities
after "personalization" of the
site.

References

[1] CS599 Software Process Modeling main web page
(includes full project reports and other system dynamics links),
http://sunset.usc.edu/classes/cs599_99

[2] Madachy R, A Software Project Dynamics Model for
Process Cost, Schedule and Risk Assessment, Ph.D.
Dissertation, Dept. of Industrial and Systems Engineering,
University of Southern California, December 1994

[3] Madachy R, Tutorial: Cost/Schedule/Process Modeling via
System Dynamics, Proceedings of the 14th International Forum
on COCOMO and Software Cost Modeling, Los Angeles, CA,
October 1999

[4] Forthcoming book: Madachy R, Boehm B, Software
Process Dynamics, IEEE Computer Society Press,
Washington, D.C., 2001,
http://sunset.usc.edu/Research_Group/ray/spd

[5] Burke S, Radical Improvements Require Radical Actions:
Simulating a High-Maturity Software Organization, CMU/SEI-
96-TR-024, 1997

6

	Return to Main:

