To Main Proceedings Document

Options in Source Code Documentation

Authors: Donald Habib, Kevin A. Ryan, and Greg Love
Project Performance Corporation, McLean, Virginia, USA

ABSTRACT

Customers using system dynamics models for multipurpose applications require varying
degrees of documentation of a model's source code and design. A broad range of factors
can influence the customers’ documentation requirements. Because the model developer
plays an important role in determining a model’s functional requirements and has often
been exposed to a range of model applications and documentation requirements, the
developer is in an excellent position to understand and advise the customer on what level
and form of source code documentation may be appropriate for a specific application.

This paper will discuss the range of documentation alternatives considered by Raytheon
Company @ Systems, Project Performance Corporation, and U.S. Government customers
in documenting source code for various system dynamics models. The paper also
discusses the factors that were considered as potentially influencing the customer’s
documentation requirements. The most expeditious documentation is often developed
automatically when using commercially available off-the-shelf system dynamics software.
More rigorous documentation can also be developed manually, either during or after
development of the model. In addition, rules-of-thumb and informal professional practice
standards exist for documenting source code.

Source code documentation serves two primary purposes. First, it is a quality assurance
tool that helps to minimize the number of defects or bugs in the source code. Second, it
can lower the life-cycle cost of the model by reducing the learning curve and costs
associated with evaluating and modifying the source code. These two purposes are the
dimensions of the cost-risk decision that model owners face when making documentation
decisions. Factors considered in the decision include the model purpose, the expected
frequency and duration of model usage, the experience and knowledge of model users, the
potential costs associated with model misuse or failure, and the direct costs of preparing
and maintaining documentation.

May 5, 2000

Contact Information:

Donald Habib

Project Performance Corporation
7600 Colshire Drive, Suite 500
McLean, Virginia 22102 USA
Email: dhabib@ppc.com
703-748-7117




Options in Source Code Documentation

INTRODUCTION

Raytheon CompanyiCSystems and Project Performance Corporation (PPC) (the Team)
have developed a variety of system dynamics models for the U.S. Government to address a
broad range of systems and problems. At the end of the model development cycle when
the model is turned over to the government customer, the deliverable includes both a
model documentation package as well as an electronic copy of the model. The model's
source code is an important element of the documentation package, and also includes a
users manual, examples of model runs, information describing the conceptual model, and
model validation information.

The content of the source code documentation can vary depending on the ascribed purpose
of the model, as defined by the customer. Just as a model can be developed to meet a
broad range of customer needs, the content of source code documentation should also vary
depending on customer needs.

During recent modeling efforts, the Team received a requirement from their government
customers stating that models and simulations must be documented in a manner that are
sufficient to describe what each model does, what it contains, and how it works. However,
the customer did not provide specific guidance that outlined what constituted “sufficient
model documentation,” particularly with respect to source code documentation.
Consequently, the Team developed several source code documentation options arrayed
along a level of effort scale. This paper summarizes those options and describes the factors
considered in determining the most appropriate option for a given model.

DETERMINING FACTORS FOR SOURCE CODE DOCUMENTATION

In models that are used for multiple purposes or used repetitively to address several similar
applications over time, source code documentation serves two primary purposes. First, it
is a quality assurance tool that helps to minimize the number of defects or bugs in the
source code. Second, it can lower the life-cycle cost of the model by reducing the learning
curve and costs associated with evaluating the model for its applicability to a specific
problem and, if necessary, modifying the source code. These two purposes are the
dimensions of the cost-risk decision that model owners face when making documentation
decisions.

In making a documentation decision, the model owner must weigh the likelihood (and
cost) of incorrect model results against the investment needed to develop source code
documentation. The factors considered by both the model developer and the model owner
include the overall purpose of the model, the expected frequency and duration of model
usage, the profile of model users in terms of their experience and knowledge, the potential
costs associated with model misuse or failure, and the cost of preparing and maintaining
documentation. Each of these factors is described below.



Overall Purpose. Models can be developed for several purposes. A robust model may be
developed to address a range of problems, while a highly customized model may be
developed to solve a highly specific problem. The level of source code documentation
should shift accordingly.

A robust model may be developed, for example, to optimize the performance of a system
whose inputs change periodically but whose basic design remains essentially the same over
time. These types of models can also be used in training situations where a model can be
re-used many times to solve and learn about different problems. Each time, the model user
(or model designer) can customize the model by varying input data. For this reason it is
necessary to understand the model’s original purpose, the assumptions that went into its
design, and the limits under which the model can produce valid results. Much of this
information can be reliably stored in and retrieved from the stock-flow diagrams, model
code, or other forms of source code documentation.

In contrast, it is also common for models to be used to solve narrowly defined
manufacturing or work process problems. In this case, the nature of the problem is often
unique. When a new problem arises, it is often--but not always--different enough from
preceding problems that a model used to address the new problem is most efficiently
developed from scratch rather than by revising a previous model. In these cases, the value
of source code documentation is to allow the user to more easily determine the
applicability of and, if ecessary, revise an existing model. If the purpose of the existing
model is well documented in the source code, the user can more easily determine whether
the existing model is applicable, with either no or limited revisions, to the new problem.
Without appropriate documentation, the cost of evaluating and adapting the existing model
may outweigh the cost of developing a new model from scratch.

Frequency and Duration of Model Usage.From a quality assurance standpoint, a key
benefit of source code documentation is to ensure that the model has not been adulterated
after the model developer delivers it to the user. As the time period between initial receipt
of the model and its use grows, there is an increasing risk that the model may include
inadvertent changes. This is particularly true for models stored electronically on erasable
media (e.g., hard disks, diskettes, zipdisks®, and tapes). For this reason, source code
documentation becomes very useful when the corresponding model is used over a long
time period. It can be used to illuminate the differences between the model in its present
state and the original version, or to simply verify that the model has not been changed.

Profile of Model Users. The single common factor to all model users is their stake in the
successful understanding of the system being modeled. An understanding of the model
user’s experience, training, and responsibilities is needed in model development and
should be reflected in model’s user interface and documentation. There exists a broad
spectrum of interests and responsibilities within the universe of model users.

» Users with Limited Knowledge of System Dynamics and the Modeled Syisteéeh.
developers inevitably encounter customers with limited knowledge of system dynamics
as a field. In addition, the user may be unfamiliar with the system being modeled
(newly hired employee, new to the project, etc.). These limitations can be addressed in



a model’s source code documentation. From the model developer’s standpoint, source
code documentation can be used to aid the user in understanding the functions,
capabilities, and limitations of the model.

Recognizing the potential involvement of new and inexperienced personnel is a critical
factor in decisions about model code documentation. In the normal evolution of many
organizations, new personnel arrive; existing personnel leave or acquire new
responsibilities; and the organization’s responsibility structure changes. As a result, the
individuals identified as key personnel responsible for a system can change, and new
personnel can replace the original users, owners, or developers of a model. New personnel
will typically have more limited knowledge than their peedssors of a system'’s history

and performance, including its problems and the use of system dynamics models to address
them. For these individuals, source code documentation is a useful asset in deciding
whether and how to use an existing model. Equally important, the documentation can be
structured to serve as a training tool to educate the user on the performance drivers and
limitations of the system and, in appropriate circumstances, in the teaching of system
dynamics theory and fundamentals.

» Users with system dynamics exposufg the other end of the spectrum, the model
developers might be the same as the model users. These individuals have knowledge
of the system; the problem being studied; the science of system dynamics; and the
purpose, limitations, and internal design of the model. Source code documentation for
these users, while still useful, may be different from that used by inexperienced users.
The documentation decision should consider that some aspects of the model are so
basic as to not require documentation. For example, if the model is stored on non-
erasable media (e.g., a CD) and the user has the appropriate software to access the
actual source code, separate paper copies of stock-flow diagrams and source code may
be unnecessary. In another example, a user knowledgeable about system dynamics,
software use, and the modeled system may not require source code information to be
incorporated into the model's user interface.

Because characteristics of the model user are important factors in several key areas of
model design, it is a good practice for a model developer to ask questions to find out as
much as possible about the primary model user. Information on model user characteristics
is generally useful in developing the model's user interface, which can be customized to
include elements of source code documentation appropriate for the user.

In the best situations, the customer has a detailed understanding of who will use the model
and what the user’s skills and knowledge will be. Conversely, it is possible for a customer
to be uncertain about who the model useitisb&. A situation where the model users are
poorly identified poses difficult challenges both in determining the content and format of
source code documentation, the user interface, and in developing other model
documentation. Comprehensive source code documentation can allow a user to evaluate a
system behavior problem, determine the applicability of the model, make appropriate
changes to the model, and effectively use the model to solve the problem. It can also
eliminate the need for the model user to enlist the services of an outside modeling



consultant or to track down the original model developer, neither of which may be
available (or within budgetary constraints). Determining the appropriate level of source
code documentation can be achieved by considering future user scenarios during the initial
model development period and the preparing a documentation package commensurate with
identified needs.

Cost of Model Misuse or Failure When deciding an appropriate level of source code
documentation, the risk and costs associated with the decisions a model recommends
should be considered. If a model is used to make decisions involving high-risk, high-cost
issues or irreversible consequences, such as the operation of safety-related systems or a
commitment of capital for a project, the justification is strong for thorough source code
documentation. In such instances, the source code documentation may provide an analysis
of every section of model code, discussing its purpose, applicability, functionality,
limitations, and relationship to other sections of code. More extensive source code
documentation functions to provide greater assurance the model is being used properly.

In contrast, other situations call for a more restrained approach in developing
documentation. For example, less documentation may be necessary when a model is being
used to make a decision that is easily reversible or has limited consequences. For example,
if a model is being used to determine what settings of a continuously monitored
manufacturing process will result in the most efficient performance, evidence of an
incorrect setting will be apparent from system monitoring, and the setting can be adjusted
without experiencing additional costs, then there is a limited penalty for misusing the
model. Similarly, less rigorous documentation may be appropriate if a model is being used
as only one element in a management analysis toolkit, and its results will be further
scrutinized before a decision is implemented. In these situations, a large investment in
source code documentation may not prove to be cost-effective.

Cost of Preparing Documentation. In examining the different ways that the source code

of a model can be documented, an obvious observation is that some types of
documentation can be produced at minimal cost while others require a considerable
investment. In between these two extremes, there exists a spectrum of documentation
options with a variety of costs. The experience of the Team has found that customers are
more willing to require—and pay for—extensive source code documentation in situations
where the need for extensive documentation is suggested by the factors discussed above.
The Team has encountered various customers that require models that are versatile enough
to address a wide range of problems, usable for several years, designed for a potentially
inexperienced user group, and can be relied upon to make critically important decisions.
These conditions argue in favor of a larger investment in source code documentation.

Options for Source Code Documentation

This paper identifies a series of five options for documenting source code that have been
developed in consultations between the Team and its customers. These options are not the
only options available, but they are representative of the broad range of available options.
The documentation options vary in several ways: by their cost to develop, their level of



rigor and thoroughness, and their user-friendliness (Figure 1). The options presented are
cumulative. That is, each successive option builds upon the previous option by adding
more detail and rigor. However, any single option or combination of options may be
appropriate for a given modeling project.



Option 1: _

¢ Conceptual model diagram OPUO” 3
+ Stock flow diagram + Model docum entation fields
« Source code printout

Option 5:
« Expanded source code listing
¢« Model Map

Increasin g Level of e

Option 2: :
* Key archetype descriptions OptIOI? 4
* Enhanced user interface

FIGURE 1. INCREASING LEVEL OF EFFORT OF SOURCE CODE
DOCUMENTATION OPTIONS

Option 1 — Automated and Existing Documentation

This option includes those materials that the modeling software (Powersim® and ithink®
are the primary software packages used by the Team) can produce automatically or that are
prepared for other purposes during model development. These materials include:

» A brief introductory narrative describing what the model does and how it works.

* A printout of the conceptual model in the form of block flow or causal loop
diagrams.

* A printout of the model stock-flow diagrams.
* A printout the source code associated with the model.

These materials can be prepared in paper and electronic formats and provided to the model
owner either separately or as an addendum to other model documentation, for example, a
users’ manual or verification and validation plan. For purposes of source code
documentation, the electronic versions of the materials accessible through the modeling
software are copied, where possible, into more commonly used business management
software (i.e., word processing and graphics presentation software), so that the information
is more broadly available. That is, system dynamics software would not be needed to
access the documentation.

The advantage of Option 1 is that it can be completed with the least level of effort. This
option entails little additional model documentation effort beyond what is normally
invested in a typical modeling project. The chief disadvantage of this option is that it
provides the least complete package of information. It does not list, define, nor provide
any explanatory text for the specific source code variables, constants, and equations or
provide any description of the high-level architecture of the model.



Option 2 — Add Narratives and Diagrams of Key Model Archetypes

Option 2 encompasses the features of Option 1, but adds narrative descriptions and stock-
flow diagrams of the key archetypes used in the model. Key archetypes include those used
repetitively in the model and those involving a key area of the model. This may include,

for example, the ordering and delivery of different raw materials from off-site (used
repetitively for different types of raw materials) or processing bottlenecks of the existing
system.

The narrative typically defines and explains—in plain English—the structure and
functionality of each node (i.e., the reservoirs, flows, queues, ovens, conveyors, and
converters, etc.) comprising the selected archetype. In this way, the model user is provided
with direction in how to interpret these sections of the model. The narrative explains the
relationship between the source code and model structure for the selected archetypes and
allows the user to understand the thought behind the model. Besides its value from a
source code documentation standpoint, the narratives and diagrams form an excellent
training tool to educate new model users on the internal logic and functionality of the
model.

Option 3 — Add Explanatory Text to Selected Documentation Fields

Most simulation software applications have accessible documentation fields for each node
into which it is possible to insert an unlimited amount of explanatory text. This
explanatory text can be used to describe the interrelationships between model nodes or to
define each corresponding variable, constant, or formula. Whatever text is placed in each
documentation field appears where the node is defined in a printout of the source code.

Depending on the nature of the model, this option may include populating the
documentation fields for either all or some of the nodes. The Team has found that this
information is most valuable for documenting converters and flows, and less important for
documenting stocks. In populating the fields, a standardized protocol for presenting the
information helps make the text easier to understand when reading it in the source code.
Effective protocols attempt to reduce repetitive information, identify key functional and
defining information, and present information in a consistent format. By populating the
node documentation fields in this fashion, the model source code listing (which contains
this information) becomes a more effective documentation tool.

The advantage of this option over Options 1 and 2 is that the user is provided with
definitions of the equations, variables, and constants used in each equation associated with
the converters and the flows. The principal disadvantage is that the information is not
provided in a particularly user-friendly format in that there is no “map” identifying all the
instances in which a particular variable or constant might is used.



Option 4 — Add Conceptual Diagrams and Node Documentation Electronically
Linked to the Model’s User Interface

This option includes enhancing the model’'s user interface, known as the management
flight simulator, by including diagrams of the conceptual model. Further, the conceptual
model and the stock-flow diagram are electronically linked to each other and to text boxes
at key points. The content of the text boxes would be similar to the node documentation
text, but would address high level model design issues, for example, the function of and
relationships between various sectors or sub-modules within the model.

The primary advantage of this option is that it delivers information to the user in a highly
user-friendly manner. That is, it is delivered graphically at the point of use. In addition,
the type of information conveyed in this option addresses high-level model architecture
issues not captured in documenting individual nodes.

Option 5 — Add Expanded and Formatted Source Code Listing and Model Map

This option builds upon Options 3 and 4 by expanding and enhancing the source code
listing by presenting the node documentation information in a more user-friendly way and
include high-level model architecture information within the source code listing. As a rule
of thumb, approximately 20 percent of the lines of code should be documentation/comment
lines! The source code listing would be edited and formatted either by using the modeling
software or in a word processing program in order to create a document that is better
organized and easier to follow. For example, variables may be introduced and defined in a
tabular format rather than in a sequential line-by-line listing of text. The Team has found
that using macros (in a word processing program) simplifies the formatting effort,
particularly when the source code may run for several thousand lines of code. For
example, macros can be effectively used to more easily separating formulas from
documentation/comment text and formatting the documentation/comment text where
appropriate. When created in a word processing program, the source code document can
be organized with a table of contents and indexed with dynamic links.

This option also would include a Model Map in the enhanced source code listing that
cross-references each variable in the model to all the instances where it appears in the
source code. Creating a “Model Map” would involve assigning reference numbers to each
equation in the source code. This reference number could be sequential or could be
prefixed with a “sector” letter linking it to a particular sector or sub-module of the model.
The variable dictionary would then be amended to include the corresponding equation
reference number(s) where each variable appears.

CASE STUDY IN SOURCE CODE DOCUMENTATION

A large manufacturing company that operates several similar plants is developing a system
dynamics model. It has a particular interest in analyzing the productivity limitations and

! System Dynamics Modeling, A Practical Approach. R. G. Coyle. 1996. Page 145.



operational vulnerabilities at its plants. In particular, it wants to analyze the impacts on
overall production related to the potential failure of key systems at each plant. The
company has no existing standard for model documentation and is looking to the model
developer to make a recommendation on the most appropriate level of source code
documentation in which they should invest. The customer is not all that familiar with the
field of system dynamics (almost a bit skeptical), but would like to publish the model on

the company’s Intranet as part of a manager education program. In addition, the customer
has a concerns about the turnover rate and likely future re-organization of the management.
As in every real-life situation, the customer has a tight budget, with needs that outweigh
the available funds.

A relatively extensive source code documentation package would be appropriate in this
example. Issues include the multiple uses of the model (it would be used to model several
plants), the turnover and inexperience of the model users, and the high cost associated with
model failure (not being able to predict a plant shutdown).

CONCLUSIONS

Source code documentation decisions should be simple rather than complex. However,
making the best decision involves consideration of several key pieces of information about
the nature of the model and the environment in which it will be used. This information
involves the model purpose, the frequency and duration of model usage, the profile of
model users, the potential risks of misusing the model, and the cost of preparing
documentation. Once this information is evaluated, an informed documentation decision
can be more effectively made. A range of source code documentation options are available
to the modeler, including materials that can be automatically prepared by the modeling
software, interactive materials incorporated into the user interface, and extensive manually
prepared documentation. These materials can address the line-by-line modeling code,
information on variables and nodes, as well as the high-level architecture of the model.

References

System Dynamics Modelling, A Practical Approad¢h G. Coyle. 1996.

10



	Return to Main: 


