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Abstract: The purpose of this study is to understand the dynamics of architeettgi®pinent
processes. The MBASE (Model-Based Architecting and Software Engineering) approach establishe
four distinct phases, each separated by a milestone or an anchor point. During each distinct phase, th
architecture of a system is successively refined to cover a larger system scope. Our model focuses
the dynamics of architecting processes in MBASE during its early phases i.e. Inception and
Elaboration. The model also considers the impact of RAD (Rapid Applicagwaldpment) factors

such as collaboration and prototyping on the process of architecting. The models described show the
initial completion rates for the requirements identificatiand architecture dvelopment activities
significantly impact the number dapproved items. Prototyping factors such adWkSI and
collaboration also sigificantly affect the rates of completiand approval. The model also produces a
declining curve for staffing analysts and a linear growth for architecting and design personnel. The
architecture development process model developed successfully models the activities during the initic
phases of MBASE. This model is able to replicate the effortilgzrofor requirementsand
architecture/design activities based on a concurrent development randed dynamic resource
allocation scheme.



Introduction

Many models of software processes focus on issues concerning specific aspects of a software
development life cycle. In this report, we describe a process model for architecture development
in the Model-Based Architecting and Software Engineering (MBASE) approach. This approach
involves creation of four kinds of models i.e. product, process, property apessunodels, and

their integration in an ongoing fashion. The architecture of a system forms the blue print for
building the system and consists of the most important abstractions that address global concerns.
Architecture is centric to many modern life cycles such as Rational Unified Process (RUP) and
MBASE. (Kruchten 1998).

The MBASE approach comprises four distinct phases, each delimited by a milestone or an
anchor point. Early phases of MBASE consist of identifying the requirements for the system and
defining the system architecture. During each phase the architecture of a system is successively
refined to cover a larger system scope. These anchor points involve consensus building among
the system stakeholders for commitment to move forward. (Boehm and Port 1999)

Our model studies the dynamics of architecting processes in MBASE during its early phases i.e.
Inception and Elaboration. The model also studies the impact of RAD factors such as
collaboration and prototyping on the process of architecting. The models described here show
that initial completion rates for the requirements identification and architecture development
activities significantly impact the number of approved items. Prototyping factors such as
IKIWISI and collaboration also significantly affect the rates of completion and approval. The
model also describes a declining curve for staffing analysts and a linear growth for architecting
and design personnel. The model behavior is similar to Rational Unified Process in terms of the
effort distribution curves of the process.

The purpose of this study is to understand the dynamics of architecture development processes.
This understanding will help for better planning of future projects. The model would be useful
for the designers of CSCI 577 and similar courses at USC that use the MBASE approach for
developing software. The model has been calibrated for the CSCI 577 projects using effort data
reported by the student team members. It is possible to extend the calibration to non-CSCI 577
projects by appropriately calibrating the model for resource factors such as productivity and
completion durations of various tasks.

Background

Software process modeling involves studying various aspects of a software development life
cycle. These life cycle models can be broadly categorized as sequential and concurrent. Various
models of sequential life cycles have been created that study various issues such as hiring
policies, effects of inspection and effects of staff learning. Modern software development life
cycles have focused on concurrent activities and involve parallel execution of various software
development tasks. The Spiral model (Boehm and Bose 94) of software development is an
example of such a life cycle and involves successive refinements of the software models through
incremental growth. MBASE (Model-Based Architecting and Software Engineering) is a hybrid



life cycle approach, which involves four phases each with a possibly different growth mode i.e.
sequential or evolutionary.

The MBASE approach involves creation and integration of product, process, property and
success models. MBASE is also an architecture centric approach and the architecture is
constantly integrated with other models as describe before. The architecture of a system is a blue
print that identifies the most important abstractions of the system that address global system
concerns. An architecture proves to be a starting point for the process models and supports the
required property models. (Boehm et al 1999).

The process of architecting is still not a very well undedtone and involves varying degrees

of method, theft and intuition. However, it is possible to model the concurrence relations among

requirements and architecture activities. The process involves constant integration of the various
models and requires that QA and coordination with other activities be performed on an ongoing

rather than discrete basis.

The Product development model by Ford and Sterman provides a model for concurrent product
development that considers the effect of inter-phase and intra-phase concurrency. (Ford and
Sterman 1998). Appendix D shows the model we have produced. Appendix E shows the source
code for our model.

The Architecture Development Process Model

Our model simulates the two major activities of the front end of a software development project
namely requirements elicitation and architecture design. It also models the prototyping tasks in
the development process as a supporting activity. The two activities are modeled separately in
the model and a generic process structure is chosen to describe the internal dynamics of each
activity with customizations performed to accommodate each activity's characteristics. The
resource allocation in a concurrent model cannot be described by a static relationship with
progress. Instead the required resources are often dictated by resource availability. Once hired,
these resources are dynamically allocated to various tasks based on the backlog of tasks of that
kind. The performance of this system model is measured in effort levels and the number of items
produced. The three sub systems of this model are process structure, resources and performance.

Top-level subsystem interactions are described in the Figure 1. The flow of products between
project activities is described in the project network diagram in Figure 2.
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Figure 1 Subsystem interactions

Links between activities of the project are distinguished as carrying products of an activity or
returning errors from the following activity. The inter-activity interactions arise from the
following:

* Requirements activity produces requirement descriptions that are available to the architecture
activity

» Architecture activity produces artifacts that are used in downstream activities but these
downstream activities are not modeled.

» Architecture design reveals errors in the requirements definition which cause rework in the
previous phase

* Prototyping activity is driven by both requirements and architecture activities and serves as a
fast track route for discovering the details that would otherwise require more effort and time.

* Once prototyping is performed, it uncovers information that is required to better describe and
understand the products each of the two principal activities. Prototyping isugsorting
activity and does not by itself consume or produce any artifacts.
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The table below shows the average hours spent in each activity for each of the corresponding
activities in the LCO, LCA, and RLCA phases.

Table 1. CSCI 577 data for effort distribution and completions

LCO
Management 230.8
Environment 110.1
Requirements 173.9
Architecture & Design 101
Implementation 35.52
Assessment 34.76
Total 686

The following assumptions

below.

%
40%
60%
53%
45%
36%
35%

45%

LCA
235.3
17.76
103.3
63.7
30.13
40.61

490.8

%
41%
10%
32%
28%
30%
40%

32%

RLCA
112.2
54.6
48.2
61.4
33.3
25

334.7

%
19%
30%
15%
27%
34%
25%

22%

Total LCA

347.525
72.36

151.505
125.1
63.43
65.61

825.53

%

60%
40%
47%
55%
64%
65%

55%

Overall

578.33
182.44
325.39
226.07
98.95
100.37

1511.6

of the classification of activities and examples

%  Adjusted
38%
12%
22% 50%
15% 34%
7% 16%
7%

100% 100%

of each are given

1. Management: Client Interaction, Team meetings, E-mail, Telephone and Other Interactions;
Planning and Control as well as Product Review; Transition Planning; Training; User
Documentation; Customer Deliverables.

2. Environment: Tools Training, Quality Assurance, and other types of tasks not defined

3. Requirements: Updates to the Operational Concept Description or System and Software

Requirements Definition;



4. Architecture & Design: Design Creation and Design Development; COTS Assessment,
Tailoring and Integration

5. Implementation: Prototyping; Code Generation and Code Development

6. Assessment: Updates to the Feasibility Rationale; Unit Testing and Integration Testing; Test
Specification

The columns for percentages (%) represent the percentages spent in that corresponding activity
for the given activity for a given phase(LCO, LCA, or RLCA). The Adjusted column represents
the adjusted percentages given that our model only addresses Requirements, Architecture &
Design as well as Implementation. The adjusted value for Requirements was computed using the
formula below.

(Overall[Requirements] + 0.5*Overall[Assessment])

Overall[Requirements] + Overall[Architecture & Design] + Overall[lImplementation] +
Overall[Assessment]

The adjusted value for Architecture & Design was computed using the formula below.

(Overall[Architecture & Design] + 0.3*Overall[Assessment])

Overall[Requirements] + Overall[Architecture & Design] + Overall[lImplementation] +
Overall[Assessment]

The adjusted value for Implementation was computed using the formula below.

(Overall[Implementation] + 0.2*Overall[Assessment])

Overall[Requirements] + Overall[Architecture & Design] + Overall[lImplementation] +
Overall[Assessment]

MBASE and RUP profiles

The model is based on the assumptions that the projects are completed in a fixed time frame and
that schedule is an independent variable. This assumption is necessary so that the model can be
calibrated against a set of projects from the CSCI 577 courses. However, the assumption does
not prevent calibration to another project that has other preset schedule conditions.



Size parameters used in the model are relative to the overall project size. Thus, it is possible to
calibrate the model with different projects that have had distinct staffing characteristics. For
example, it is possible to have 4 very hard working people, which produce more artifacts than
those produced by members of a slow paced 5-member team. This assumption makes it possible
to calibrate a model for process improvement from an external point of view.

Model Development

Modeling a concurrent process requires a good understanding the relations of the various
concurrent activities of the project. Our model is based on the product development project
model by Ford and Sterman, which describes the concurrency relationships that constrain the
sequencing of tasks as the effects of and interactions with resources. (Ford and Sterman 1998).
This model identifies a generic process structure that can be used to describe the iteration and
completion of artifacts and the generation and correction of errors in each activity. A generic
structure used for the various activities simplifies the construction of the model as well as help in
understanding it. This model is also extensible and in future other activities such as coding can
also be integrated into the system.

This model was already calibrated for the hardware development and some understanding of the
domain is required to model the process using this model. Many concepts such as concurrency
constraints and average completion duration have to be mapped to the software process domain.
Such mappings were created on the basis of analogies between software and hardware. The
initial completion duration is equivalent to the time required to complete the first version of an
artifact. Similarly the iteration duration is the time required for completing the next minor
version of an artifact. QA activities involve removal of found defects from within the same
phase. Coordination ensures that there is coordination among the two phases. Accordingly, task
productivity was determined on an empirical basis in terms of the percentage of work in an
activity that is completed in a week per person. This quantity is fairly easily estimated for the
CSCI 577 projects. Similarly average completion durationefach task is identified for the
various tasks in both activities. The dynamic concurrence relations were modeled based on the
authors understanding of the MBASE approach.

Another challenge was the accurate allocation of resources to the tasks to be performed. Many
projects that use MBASE are RAD in nature. This means that resources are scarce and are
usually capable of performing a variety of tasks. It is important to allocate the available resources
in such a way that dead time and dead effort are minimized. This can only be performed by
designing a closed loop system that allocates resources based on the number of pending tasks.

This was achieved by creating a model with only one activity and using the arraying feature in
iThink to create a multi-phase model. The single dimension model can be used to analyze and
debug the flows within one phase. The inter-phase relations can then be modeled through a
calibration of the two activities together.

The calibration of a life cycle model is quite sensitive to the project size. However, the early
phases of the life cycle do not reveal precise size numbers. That makes it difficult to apply the



available measures available from CSCI 577 data besides also increasing the number of input
variables to the system. It is also very difficult to normalize for size in the UML terms as well as
MBASE artifacts. Hence, we decided to calibrate the model as a function of the relative size of
the project. Every project is considered to be 100 units in size with the performance calibration
done in terms of the percentage completion. This also allows us to calibrate the model for
comparison with the RUP effort profile.

The data for our model was acquired from the CSCI 577a (Fall 1998) and CSCI 577b (Spring
1999)Weekly Effort Reports. The data is listed as follows:

» Effort
* Size (documentation)
* Use Cases

* Requirements

For the size of the documents, nhumber of pages was recorded in addition to the number of Use
Cases in the documents. For requirements, the number of Nominal, Off-Nominal and Quality
Attributes were collected for teams. The teams considered were those that had completed
through Transition. The data collected is shown in the Appendix.

The problems encountered were that the data was not sufficiently specific enough in helping us
to calibrate our model correctly. Much of the data needed was not collected for each team. For
instance, there was no defect data collected for the classes during the LCO, LCA, and RLCA
times. Also, the data for CSCI 577a (Fall 1999) waisbgting formed at the time of our study.

This makes the task of validating the model a future activity for research.

We adjusted the parameters of our model such that our output would match the percentages for
Requirements, Architecture & Design, and Implementation. Appendix A shows the complete
percentages for all of the activities in CSCI 577a and 577b.

Model Description

The architecture development process model is based on the Ford-Sterman product development
model. Process elements are organized in the form of a phase activity dichotomy, so that both
activities namely requirements elicitation and architecture design are based on the tasks
involving initial completion, coordination, QA and iteration. All the rates and levels of the
generic process structure are arrayed in two dimensions i.e. activity and tasks.

There are two applicable activities namely requirements and architecture. Tasks are initial
completion, quality assurance, coordination and iteration. More details on this model can be
obtained from the Ford-Sterman model.



One of the additions of our model is the lentified This level represents the mental models

of the involved stakeholders and a growth based on certain process characteristic patterns. Figure
5 shows how the mental model continues to grow during the project. An example of the mental
model is how requirements come to the minds of customers. As the project progresses, the
number of ideas reduces gradually. On the other hand number of new ideas in architecture

increases gradually.
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Figure 3 Identification Rate for (a) Requirements Elicitation and (b) Architecture Design

Internal concurrence constraint models the dynamic concurrence relations within individual
activity whereas external concurrence constraint models the inter-activity dependencies. Internal
concurrency for the two activities is modeled as shown in Figure 4.

Internal Concurrence Relations for (a) Requirements Elicitation (b)
Architecture Design

The concurrence for requirements elicitation indicates that it experiences a fairly high rate of
independence on its state of completion. The large y-intercept implies that a large number of
requirements are initially available for completion. At the same time all requirements are

available for completion once 80% of the requirements are identified.

Figure 4



The architecture concurrence is in the form of an S-shape curve. This indicates that there is a
significant dependence of architecture on the requirements. An initial completion level of 20%
indicates that to some extent the architecture is known in advance before the project is begun.
Most RAD projects are of this nature and the higher the stability of the RAD methodology in that
project, the higher is the y-intercept. For example, a project that involves generation of new
forms of reports from a standard SQL database that provides standard report design tools would
have an extremely high y-intercept.

The external concurrence constraint relationship describes the inter-phase dependencies. In this
model, the only inter-activity dependency is that between the requirements and architecture
activity. It is modeled as shown in Figure 5. The S-shaped curve starting at the origin indicates
that the architecture design can start only after some requirements elicitation is performed.
However, the steep incline of the curve indicates that once some information is available about
the requirements, the rest of the architecture can be designed quickly.

IEI.EIEIEI

Figure 5 External Concurrence Constraint for Architecture Design Activity

The rate of iteration is determined by both the resource constraints on this rate as well as the
minimum activity duration for iteration. One of our additions to this model is to study the effect
of prototyping on thelter_Rate The rate is increased by the amount of time saved by
prototyping which is given by:

Iter_Rate = min(Resource_Constraint[Activity,Iteration],
to_be_Ilterated[Activity]/Average_ Duration[Activity,ltera
tion]- Reduction_due_to_Proto_Rate[Activity])

Reduction_due_to_Proto_Rats controlled by Prototyping_Rateand Prototyping Gain.
Prototyping_Gainis an emprical constant, which affects requirements and the architecture
activities differently. The reduction is calculated as:



Reduction_due_to_Proto_Rate = Prototyping_Gain[Activity] *
Prototyping_Rate

A separate prototyping chain is created to handle the demand for prototyping and create the
prototypes based on resource and process constraiate. Need Ratmodels the demand for
prototyping as determined by project specific criteria sudPrastyping_Risk _FactordNot all

the items in the main loop are to be prototyped, only a fraction is required. This produces the
following equation

Proto_Need_Rate = to_be_Iterated[Req] * frac_Prototypable[Req] *
(Prototyping_Risk_Factors[IKIWISI] +
Prototyping_Risk_Factors[Collaboration]) +
to_be_lterated[Arch_Des] *
frac_Prototypable[Arch_Des] *
(Prototyping_Risk _Factors[Precedentedness])

As seen from the equation only a few risk factors such as IKIWISI, Collaboration and
Precedentedness are modeled. The risk factors are used in the same way as COCOMO cost
drivers so that lower risk would reduce the need for prototyping whereas higher risks would
increase the prototyping need rate.

The Prototyping_raterepresents the rate at which prototypes are developed and provide the
supply side of the prototyping chain. Resource constraints and prototyping period determine this
rate. The equation fdPrototyping_rate is given as:

Prototyping_rate = min(Prototyping_Resource_Constraint,
Prototyping_required/Prototyping_Period)

The average prototyping duration is affectedPbgtotyping_Factorsvhich model how quickly
prototypes can be created and behave similarly as COCOMO cost drivers. Currently only Tools,
Assets and Experience of the prototyping personnel are employed as schedule drivers for
prototyping so that lower factors would increase the prototyping period whereas higher factors
would decrease the prototyping period. The equatioPfototyping_Periods given by:

Prototyping_Period = Average_Prototyping_Period /
(Prototyping_Factors[Tools] *
Prototyping_Factors[Experience] *
Prototyping_Factors[Assets])

Resource allocation is performed dynamically from among the available resources on the basis
of the demand from the various project tasks. All the tasks that require resources are identified
and the backlog is calculated using productivity of those individual tasks. Now the work required
in each task as a fraction of total backlog provides a measure of the fraction of resources required
for that task. This information is updated at every unit of tlpgarovedandto_be_ Coordinated

items both are counted towards QA work. For the sake of calibrating the model for CSCI 577
scenario, a constant staffing level is assumed, since no hiring is usually done during the semester.
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The feedback loop diagram for the model is shown in the Figure 6. It shows the reinforcement
feedback loop caused by initial basework when more items are completed as some items get
completed. Another reinforcement loop is created due to prototyping where as more initial work
is completed, need for prototyping increases and thus the iteration rate increases as a result.

+. Unitsin
//-"’_’_'——_> iteration

Units

. ot
Constraint Cﬂmpleted in needing
phase + prototype
Iteration
- +

Rate

Basework Fraction of units — +
> Rate available (in- ‘\

hase
+ P ) Prototyping

Rate

Minimum . -
Basework In-phase unit & Resource

Duration

- concurrence Constraint
Units avl. for constraint
+ basework

dentified & Fraction of units available-
Units (interphas@ \
+
Inter-phase unit
Fraction of units released / concurrence

from upstreamphases constraint

Figure 6 Main Causal Loop

The approach for verification and validation is to accurately set the parameters of the model
using the data collected from CSCI 577.

Model Verification and Validation

The complete testing matrix is shown in the table from Appendix C. In that table, the values
were changed one by one holding the rest of them the same. Using sensitivity analysis, the
Prototyping Factor could be adjusted to increase/decrease the Prototyping Effort percentage.
The next step would be a more extensive approach to model verification and validation with
expert review.

Model Application and Transition

It was found that the model was most sensitive to changes in the Task Productivity
corresponding to the Initial Completion of Architecture & Design. By using higher values, the
percentages for Requirements and Architecture & Design could be reversed. Appendix F shows
the model runs.



As we have seen above, the model behavior is predicated on the data collected from CSCI 577
projects. The data available for the project was not sufficient for complete modeling. The model

is based on our understanding of MBASE and relies heavily on our judgement, as some of the
data required for our model has not been collected from the CSCI 577 projects so far. As a
further measure, these judgements can be validated against expert opinion and other estimates
can be predicated on better data collection efforts.

Some other issues pertaining to transfer of this model to other projects and applications of
MBASE and RUP would require model recalibration. This is because the model assumes a 16
week project with 4 personnel and uses productivity measures that come from the application of
MBASE to CSCI 577 projects. Certain extensions to the model can also help applying other
CORADMO opportunity tree factors to study the effect of prototyping. It is also possible to
extend the model so that resource allocations are somewhat more controllable.

Conclusions and Recommendations for future work

The architecture development process model successfully models the activities during the initial
phases of MBASE. This model is able to replicate the effort profiles for requirements and
architecture/design activities based on a concurrent development model and a dynamic resource
allocation scheme. It is our understanding that initial completion rates have a significant bearing
on the rate of completion of the project artifacts. We also demonstrate the possibility of modeling
a project in relative size terms instead of requiring a SLOC or FP size.

Our model also provides a starting point to model many of the RAD opportunity factors to
understanding the effects of RAD techniques on software life cycles. In essence, this model can
be a nice test bed for designing the CORADMO model. It can also be used to study staffing
patterns for RAD projects.

Some extensions of this model would make it extensible to non-CSCI 577 projects by a proper
calibration for the new process or approach. As future work, it is possible to study the creation
and removal of defects in the model. Currently these are statically chosen and no probabilistic
approach has been taken. The effect of peer-reviews and walkthroughs on the defect rates can
also serve as a major addition to the model.

We have learned some lessons learned from the use of iThink Analyst for this continuous
process model. Its support for arrays is a little difficult to use, for example its uniform treatment
of array elements makes special cases difficult to specify. Marshalling information into arrays
and connecting one dimension to another also pose a problem.

Other lessons have been learned in terms of the data collection and analysis effort. We find that
more the variables being modeled more is the data needed; it easily takes off into a combinatorial
explosion. Besides, not all data can be collected in advance. Often it is the case that once you
start modeling, you find new forms of data to be collected. So it is difficult to work with an
existing set of data where new kinds of data can not be obtained directly from an existing
database. Also the starting point for the generation of artifacts is usually the weakest link in the



model. Since this point also decides the behavior of all subsequent flows, it is possible that the
first level or source can significantly alter the model behavior. The best strategy is to start from
an insensitive source.

Appendices

Appendix A. Activities in LCO, LCA, and RLCA

Table 2: Activities in LCO and LCA

[cggl [ﬁl Total Total Al:;;ge A"Lﬁge Average Average Total %, Time
Hours) (Hows) LCO% LCA% il Moursy LCO% LCA%  Hours
Tool Training/Learning: 19723 19075 1433 1.94 9364 954 1433 184 26355  92%
Application Research: 114265 32045  6.33 326 5713 1602 533 326 14631  B.2%
Client Interaction: B30.6  399.55 46 407 3153 19498 45 407 103045  4.4%
Team meetings: 2143.4 1941 05 1567  19.77 10747 9705 1567 1977 409045 17.4%
WinWin Usage: 135865  120.55 K 123 6793 6.03 aa 123 14792  B3%
Email: 98713 808.05 7.9 5.23 4936 40.4 7418 823 179518  T6%
Telephone and Other 3436 252.91 25 258 1718 1285 25 258 59651 25%
Interactions:
Operational Concept g38 91043 G4 527 464 4557 B4 927 1g4md3 TO%
D escription:
Sy=tern and Software
Requir Dot 708.2 73533 516 7.4 3541 3677 516 743 144353 BA%

Sy=termn and S oftware

Architecture D escription: g76.5 953 6 £.39 9.71 4384 47 B5 5.39 9.71 1830.4 7 8%

Feasibility Rationale: 543.65  578.25 4 583 2743 2841 4 583 11269  45%
Life Cycle Plan: 513.8 7975 374 512 2563 3988 374 812 13113  56%
Product Review and 146.5 234 107 2.38 733 117 107 238 3805 16%
Inteqgrati on:

Prototyping 710.45  BO025 548 614 3552 3013 518 B14 131285  56%
Planning and Control: 3268 1044 233 1.06 1634 5.22 238 106 4312 18%
Architecture R eview 1376 7025 1 716 88 3513 1 716 840 36%
B oard preparation:

Other 1 175.5 1547 128 1.58 578 7.74 1.28 1 .58 3302 14%
Other 2 50.25 as 037 01 2 51 0.43 037 04 5975 03%
Other 3 3 o 002 0 015 0 002 0 3 00%

TOTAL 1372028  9816.02 100 100 GE6 .01 43905 100 100 233365 100.0%




Table 3: Activities in RLCA

Total Total Average Average Total o Ti

RLCA{Hours) RLCA% RLCA{Hours) RLCA% Hours ime
Tool Training/Learning: 311.15 15.20 51.86 15.20 311.15 15.2%
Application Research: S9E5.25 4.70 16.04 4.70 S9E5.25 4.7 %
Client Interaction: 81.65 399 13.69 399 81.55 4.0%
Team meetings: 195.590 9.57 32.65 9.57 195.9 9.6%
Email: 262.20 12.81 43.70 12.81 2622 12.8%
Telephone and Other 32.40 1.58 5.40 1.55 324 16%
Interactions:
Updates to Operational 109.50 535 18.25 535 1095 @ 54%
Concept Description:
Updates to System and
Software Requirements 118.50 5.749 19.75 5.749 118.5 5.8%
Definition:
Updates to Feasibility 4775 233 7 96 233 4775 23%
Rationale:
Design Creation or 17125 £.37 2654 837 17125 | B.4%
Modification:
Design _ £1.10 2.99 10.18 2.99 B1.1 3.0%
Review/Inspection:
Code Generation or f1.50 3.98 13.53 3.98 815 | 40%
Modification:

o

Code Review/Inspection: 9.10 0.44 1.62 0.44 9.1 0.4%
Unit Testing: 8.00 039 1.33 039 g 0.4%
Integration Testing: 6.00 0.25 1.00 0.25 = 0.3%
Prototyping 109.00 5.33 18.17 5.33 109 5.3%
COTS Assessment: 31.25 1.63 5.21 1.63 31.25 1.6%
COTS Tailoring: 4.50 022 075 022 4.5 0.2%
COTS Integration: 4.20 0.1 070 0.1 4.2 0.2%
Planning and Control: 106.35 5.20 17.73 5.20 106.35 5.2%
Project Review 35.65 1.74 5.94 174 | 3BB5 | 17%
preparation:
Quality Assurance: 38.00 1.86 6.33 1.86 35 1.9%
Transition Planning,
Preparation and 5.50 .42 1.42 .42 a8.5 0.4%
Execution:
Training: 4.00 020 067 020 4 0.2%
User Documentation: 3.50 07 0.58 07 3.5 0.2%
Customer Deliverahles: 4.30 021 0.72 021 4.3 0.2%
Test Specification: 88.50 4.32 1475 4.32 8a8.a 4 3%
Other 1 8.50 0.42 1.42 0.42 8.5 0.4%
Other 2 8.00 039 1.33 039 g 0.4%

TOTALS 2046.40 100.00 341.07 100.00 | 2045.40  100.0%



Appendix C. Test Cases

Table 4: Test Case Matrix

Tazk Productivity
Requirements
lteration
Coordination
Quality Azsurance
Initial Completion
Architecture
lteration| 3 10
Coordination 10 3
Quality Assurance. 12 5
Initial Completion 5 10

Prototyping Factors
Tools 1 12
Experience. 1 12
Assets 1 12

Average Prototyping Period 2 1

Prototyping Risk Factors
ks 0.7 04
Precedentedness| 0.2 03
Collaboration| 0.6 06

Average Duration
Requirements
lteration| 05 1
Coordination 1 04
Quality Assurance 075 1
Initial Completion 025 1
Architecture
lteration| 0.5 1
Coordination 1 04
Quality Assurance (.75 025
Initial Completion 025 1

Probability
Discover Defect
Requirements 033 04
Architecture | 035 045
Intraphase Defect
Requirements 0.4 1]
Architecture | 0.25 073
Interphase Defect
Requirements (.05 [I5]
Architecture | 0.1 04

EFFORT
Requirements 383 345 373 337 340 377 372 361 463 383 B3 383 383 396 384 388 383 383 3|3 /3 W5 3|2 W5 T3 W B/F B3 B8 W3 W2
Architecture & Design| 445 49 463 498 494 46 466 481 342 M5 448 448 448 468 45 455 45 M5 445 448 464 45 447 463 469 M5 406 469 44 466
Prototyping 164 163 162 163 163 163 162 138 185 169 169 169 169 136 165 138 168 168 168 169 162 167 169 162 141 168 231 163 167 161
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Appendix E: Source Code of Model
Performance

Approved[Activity](t) = Approved[Activity](t - dt) + (Approval_Rate[Activity] -
Coord_due_to_downstream_QA[Activity]) * dt

INIT Approved[Activity] = 0

DOCUMENT: Number of items that have been approved for release to the next phase. units
INFLOWS:

Approval_Rate[Activity] (IN SECTOR: Process Structure)

OUTFLOWS:

Coord_due_to_downstream_QA[Activity] (IN SECTOR: Process Structure)
Effort[Activity](t) = Effort[Activity](t - dt) + (Effort_rate[Activity]) * dt

INIT Effort[Activity] = 0

DOCUMENT: Amount of effort expended in the particular phase. This includes dead and
wasted effort. person-weeks

INFLOWS:

Effort_rate[Activity] = Personnel[Activity]

DOCUMENT: Rate at which effort is spent on the particular phase. persons
Prototyping_effort(t) = Prototyping_effort(t - dt) + (Proto_Effort_rate) * dt
INIT Prototyping_effort = 0

DOCUMENT: Effort spent on prototyping. person weeks

INFLOWS:

Proto_Effort_rate = Total_Personnel*frac_Proto

DOCUMENT: Rate at which effort is spent on prototyping. persons

Average Effort to_date = Total Eftftime



DOCUMENT: The average effort expended on the project on a weekly basis. person-
weeks/weeks

Effort_%[Activity] = Effort[Activity]/Total_Effort*100
DOCUMENT: percentage of the total effort spent in a particular phase. dimensionless
Personnel[Activity] = Total _Personnel*ARRAYSUM(frac_avl_Personnel[Activity,*])

DOCUMENT: Number of personnel working on a particular phase. This is only for observation
purposes. Persons

Prototyping_Effort % = Prototyping_effort/Total Effort*100

DOCUMENT: Fraction of the total effort spent on prototyping. dimensionless
Total_Effort = ARRAYSUM(Effort[*])+Prototyping_effort

DOCUMENT: Total effort spent on the project. peron-weeks

Process Structure

Completed_but_not_Checked[Activity](t) = Completed_but_not_Checked[Activity](t - dt) +
(Iter_Rate[Activity] + Initial_ Completion_Rate[Activity] -

Discover_Intraphase_Defect Rate[Activity] - Discover_Interphase_Defect_Rate[Activity] -
Approval_Rate[Activity]) * dt

INIT Completed_but_not_Checked[Activity] = .2

DOCUMENT: Number of items that have been completed but cannot be considered to be
checked. These items have been recently completed and need verification. units

INFLOWS:

Iter _Rate[Activity] = min(Resource_Constraint[Activity, Iteration],
to_be_lIterated[Activity]/Average Duration[Activity,lteration]-
Reduction_due_to_Proto_Rate[Activity])

DOCUMENT: Rate at which iteration can be performed on items to remove internal defects.
This rate is affected by the speed at which prototyping can be performed. units/week

Initial_Completion_Rate[Activity] =
min(Resource_Constraint[Activity,Initial_Comp],Avl_for_Initial_Completion[Activity]/Average
_ Duration[Activity,Initial_Comp])



DOCUMENT: Rate at which items can be preliminarily processed to an initial completion.
units/week

OUTFLOWS:

Discover_Intraphase_Defect Rate[Activity] =
QAJ[Activity]*prob_Discover_Def[Activity]*prob_Intraphase_Def[Activity]

DOCUMENT: The rate at which defects are detected within a phase. e.g defects of
incompleteness and incorrectness. These can be removed through refinement and iteration.
units/week.

Discover_Interphase_Defect Rate[Activity] = QA[Activity]*prob_Interphase_Def[Activity]*(1-
prob_Intraphase_Def[Activity])*prob_Discover_Def[Activity]

DOCUMENT: Rate at which defects are found in downstream phases leading to rework in the
previous phases. Once the rework is completed, these items might need more iteration.
units/week.

Approval_Rate[Activity] = QA[Activity]-Discover_Interphase_Defect Rate[Activity]-
Discover_Intraphase_Defect Rate[Activity]

DOCUMENT: Rate at which items are released. units/week

Identified[Activity](t) = Identified[Activity](t - dt) + (Identification_Rate[Activity] -
Initial_Completion_Rate[Activity]) * dt

INIT Identified[Activity] = O

INFLOWS:

Identification_Rate[Activity] = time

OUTFLOWS:

Initial_Completion_Rate[Activity] =
min(Resource_Constraint[Activity,Initial_Comp],Avl_for_Initial_Completion[Activity]/Average

_ Duration[Activity,Initial_Comp])

DOCUMENT: Rate at which items can be preliminarily processed to an initial completion.
units/week

Prototyping_required(t) = Prototyping_required(t - dt) + (Prototype_Need_Rate -
Prototyping_Rate) * dt



INIT Prototyping_required =0

DOCUMENT: A measure of the need to perform prototyping. This depends on the risks
involved in the project as well as the number of requirements and architectural elements
identified. units

INFLOWS:

Prototype Need_ Rate =

To_be_Iterated[Req]*frac_Prototypable[Req]*(Prototyping_Risk Factors[IKIWISI]+Prototypin
g_Risk Factors[Collaboration])+to_be_Iterated[Arch_Des]*frac_Prototypable[Arch_Des]*(Prot
otyping_Risk_Factors[Precedentedness])

DOCUMENT: Rate at which new prototyping needs come up. units/week
OUTFLOWS:

Prototyping_Rate =
min(Prototyping_Resource_Constraint,Prototyping_required/Prototyping_Period)

DOCUMENT: Rate at which prototyping is performed. units/week

to_be_ Coordinated[Activity](t) = to_be_Coordinated[Activity|(t - dt) +
(Discover_Interphase_Defect Rate[Activity] + Coord_due_to_downstream_QA[Activity] -
Coord_Rate[Activity]) * dt

INIT to_be_Coordinated[Activity] = 0

DOCUMENT: Number of items that require inter-phase coordination to be performed. units

INFLOWS:

Discover_Interphase_Defect Rate[Activity] = QA[Activity]*prob_Interphase_Def[Activity]*(1-
prob_Intraphase_Def[Activity])*prob_Discover_Def[Activity]

DOCUMENT: Rate at which defects are found in downstream phases leading to rework in the
previous phases. Once the rework is completed, these items might need more iteration.
units/week.

Coord_due_to_downstream_QA[Activity] = QA[Activity]*DefRel[Activity]

DOCUMENT: Amount of coordination that has to be performed between this phase and the
successive phases due to defects. units/week

OUTFLOWS:



Coord_Rate[Activity] = min(Resource_Constraint[Activity,Coord],
to_be_ Coordinated[Activity]/Average_Duration[Activity,Coord])

DOCUMENT: Rate at which coordination is performed. This depends on the kinds of
techniques used for coordination such as email, meetings and tligceadls. units/week

to_be_lIterated[Activity](t) = to_be_Iterated[Activity](t - dt) +
(Discover_Intraphase_Defect Rate[Activity] + Coord Rate[Activity] - Iter _Rate[Activity]) * dt

INIT to_be_Iterated[Activity] = 0

DOCUMENT: Number of units that require iteration. The iteration is required to remove
internal defects

INFLOWS:

prob_Intraphase Defect Rate[Activity] =
QA[Activity]*prob_Discover_Def[Activity]*prob_Intraphase_Def[Activity]

DOCUMENT: The rate at which defects are detected within a phase. e.g defects of
incompleteness and incorrectness. These can be removed through refinement and iteration.
units/week.

Coord_Rate[Activity] = min(Resource_Constraint[Activity,Coord],
to_be_ Coordinated[Activity]/Average_Duration[Activity,Coord])

DOCUMENT: Rate at which coordination is performed. This depends on the kinds of
technigues used for coordination such as email, meetings and tiigceadls. units/week

OUTFLOWS:

Iter _Rate[Activity] = min(Resource_Constraint[Activity, Iteration],
to_be_lIterated[Activity]/Average Duration[Activity,lteration]-
Reduction_due_to_Proto_Rate[Activity])

DOCUMENT: Rate at which iteration can be performed on items to remove internal defects.
This rate is affected by the speed at which prototyping can be performed. units/week

Average_ Duration[Req,lteration] = 0.5
DOCUMENT: Duration of each requirement iteration. weeks
Average_ Duration[Req,Coord] = 1

DOCUMENT: Duration of each requirement coordination. weeks



Average Duration[Req,Quality_Assurance] = 0.75

DOCUMENT: Duration of each performing quality assurance on requirements. weeks
Average_ Duration[Req,Initial_Comp] = 0.25

DOCUMENT: Duration of initial completion for each requirement. weeks

Average_ Duration[Arch_Des,lteration] = 1

DOCUMENT: Duration of each architecture and design iteration. weeks

Average Duration[Arch_Des,Coord] = 1

DOCUMENT: Duration of each coordination performed for requirements and architecture.
weeks

Average_ Duration[Arch_Des,Quality Assurance] = 0.5

DOCUMENT: Duration of each performing quality assurance on architecture and design. weeks
Average_Duration[Arch_Des,Initial Comp] = .75

DOCUMENT: Duration of initial completion for architecture and design. weeks

Average Prototyping_Period = 2

DOCUMENT: Average time period required for each prototyping iteration. weeks

Avl_for_Initial_Completion[Activity] = Max(0, Total Available[Activity]-
(to_be_Coordinated[Activity]+Considered_Satisfactory[Activity]+to_be_Iterated[Activity]))

DOCUMENT: Number of items available for initial completion. units/week

Considered_ Satisfactory[Activity] =
Approved[Activity]+Completed _but_not_Checked[Activity]

DOCUMENT: number of items considered satisfactory and forms the sum of completed and
approved items. units

DefRel[Activity] = (1-
prob_Discover_Def[Activity])*(prob_Interphase_Def[Activity]+prob_Intraphase_Def{Activity])

DOCUMENT: Fraction of defects released to the next phase. dimensionless

External_Prec_Constraint[Activity] = Prev_Phase_Completion[Activity]



DOCUMENT: External precedence constraint on the work for the current phase. dimensionless
Fraction_Completed_and_Approved[Activity] = Considered_Satisfactory[Activity]/Total_Size

DOCUMENT: Fraction of the total units of development that have been completed or approved.
dimensionless

frac_Prototypable[Req] = .15
frac_Prototypable[Arch_Des] = .1
Internal_Prec_Constraint[Activity] = Fraction_Completed_and_Approved[Activity]

DOCUMENT: Internal Precedence constraint on the completion of work in the phase based on
the amount of work already completed or available for completion. dimensionless

Prev_Phase_Completion[Req] = 100+0*Fraction_Completed_and_Approved[Req]

DOCUMENT: Number of items from the requirements phase that have been completed or
approved. This is required to determine the external concurrence in the project. units

Prev_Phase_Completion[Arch_Des] = Fraction_Completed_and_Approved[Req]

DOCUMENT: Number of items from the requirements phase that have been completed or
approved. This is required to determine the external concurrence in the project. units

prob_Discover_Def[Req] = .85

DOCUMENT: Dimensionless probability that a requirement is defective and found in the
requirement phase.

prob_Discover_Def[Arch_Des] = .95

DOCUMENT: Dimensionless probability that a architecture or design is defective and found in
the architecture and design phase.

prob_Interphase_Def[Req] = .05
DOCUMENT: Dimensionless probability that a defect is found in the architecture phase.
prob_Interphase Def[Arch_Des] = .1

DOCUMENT: Dimensionless probability that a defect is found to be defective in the next phase.
In this case, there is no immediate phase that continues the work of the architecture phase and so
a constant value of 0.2 is used.

prob_Intraphase Def[Req] = .4



DOCUMENT: Dimensionless probability that a requirement is defective and is found to be so in
the requirements phase.

prob_Intraphase Def[Arch_Des] = .25

DOCUMENT: Dimensionless probability that an architecure unit is defective and is found to be
S0 in the same phase.

Prototyping_Factors[Tools] = 1

DOCUMENT: The effort driver for prototyping tools that indicates the extent to which these
tools can resolve critical risks through prototyping. Dimensionless. These factors are calibrated
just like COCOMO and a nominal value of 1.0 is used. When the conditions are favorable, PF
values are reduced and increased when unfavorable conditions exist.

Prototyping_Factors[Experience] = 1

DOCUMENT: The effort driver for prototyping experience that indicates the precedentedness of
the prototyping effort. Dimensionless These factors are calibrated just like COCOMO and a
nominal value of 1.0 is used. When the conditions are favorable, PF values are reduced and
increased when unfavorable conditions exist.

Prototyping_Factors[Assets] = 1

DOCUMENT: The effort driver for prototyping assets that indicates the prepositioning of assets
for prototyping. Dimensionless. These factors are calibrated just like COCOMO and a nominal
value of 1.0 is used. When the conditions are favorable, PF values are reduced and increased
when unfavorable conditions exist.

Prototyping_Period =

Average_ Prototyping_Period/Prototyping_Factors[Tools]/Prototyping_Factors[Experience]/Prot
otyping_Factors[Assets]

DOCUMENT: Nominal period required for performing prototyping. weeks
Prototyping_Risk_Factors[IKIWISI] = .5

DOCUMENT: Amount of extra prototyping to be done as a result of IKIWISI risk. This is
measured in terms of a typical COCOMO effort driver form where 1.0 indicates nominal impact,
a value less than 1 indicates less work and more than 1 indicates extra effort. dimensionless.

Prototyping_Risk Factors[Precedentedness] = .2

DOCUMENT: Amount of extra prototyping to be done as a result of precendentedness of
system risk. This is measured in terms of a typical COCOMO effort driver form where 1.0



indicates nominal impact, a value less than 1 indicates less work and more than 1 indicates extra
effort. dimensionless.

Prototyping_Risk _Factors[Collaboration] = .5

DOCUMENT: Amount of extra prototyping to be done as a result of collaborative development
risk. This is measured in terms of a typical COCOMO effort driver form where 1.0 indicates
nominal impact, a value less than 1 indicates less work and more than 1 indicates extra effort.
dimensionless.

Reduction_due_to_Proto_Rate[Activity] = Req_Proto_Frac[Activity]*Prototyping_Rate
Req_Proto_Frac[Req] =5
Req_Proto_Frac[Arch_Des] =3

Total_Available[Activity] =
Total_Size*min(Internal_Prec_Constraint[Activity],External_Prec_Constraint[Activity])

DOCUMENT: Number of personnel available to perform various activities of a phase. persons

Total_Size = 100

DOCUMENT: Nominal size of the project in terms of development units. This is assumed as
100 so that all development units are measured in percentage rather than real terms

External_Prec_Constraint[Activity] = Prev_Phase_Completion[Activity]
DOCUMENT: External precedence constraint on the work for the current phase. dimensionless
Internal_Prec_Constraint[Activity] = Fraction_Completed_and_Approved[Activity]

DOCUMENT: Internal Precedence constraint on the completion of work in the phase based on
the amount of work already completed or available for completion. dimensionless

Resources
Total_Personnel(t) = Total_Personnel(t - dt) + (hiring_Rate) * dt
INIT Total_Personnel = 3.5

DOCUMENT: Total personnel available for work in the engineering phase for product related
work. persons

INFLOWS:



hiring_Rate = 0
backlog_Coord[Activity] = to_be_ Coordinated[Activity]/Task _Productivity[Activity,Coord]
DOCUMENT: Backlog of coordination work. person-weeks

backlog_Initial_Compl[Activity] =
Identified[Activity]/Task_Productivity[Activity,Initial_ Comp]

backlog_Iterate[Activity] = to_be _Iterated[Activity]/Task Productivity[Activity,Iteration]
DOCUMENT: Backlog of iteration work. person-weeks

backlog_Proto = Prototyping_required/Proto_Productivity

DOCUMENT: Backlog of prototyping work. person-weeks

backlog_QA[Activity] =
(Approved[Activity][+Completed _but_not_Checked[Activity])/Task Productivity[Activity,Quali
ty Assurance]

DOCUMENT: Backlog of QA work. person-weeks

frac_avl_Personnel[Req,lteration] = frac_Iterate[Req] +
O0*(frac_IC[Req]+frac_Coord[Req]+frac_QA[Req])

frac_avl_Personnel[Req,Coord] = frac_Coord[Req]
+0*(frac_IC[Req]+frac_Iterate[Req]+frac_QA[Req])

frac_avl_Personnel[Req,Quality Assurance] =
frac_QA[Req]+0*(frac_IC[Req]+frac_Coord[Req]+frac_Iterate[Req])

frac_avl_Personnel[Req,Initial_Comp] =
frac_IC[Req]+0*(frac_Coord[Req]+frac_Iterate[Req]+frac_QA[Req])

DOCUMENT: Fraction of the total personnel available for the various activities in the different
phases. dimensionless.

frac_avl_Personnel[Arch_Des,lteration] =
frac_Iterate[Arch_Des]+0*(frac_IC[Arch_Des]+frac_Coord[Arch_Des]+frac_ QA[Arch_Des])

frac_avl_Personnel[Arch_Des,Coord] =
frac_Coord[Arch_Des]+0*(frac_IC[Arch_Des]+frac_Iterate[Arch_Des]+frac_ QA[Arch_Des])

frac_avl_Personnel[Arch_Des,Quality Assurance] =
frac_QA[Arch_Des]+0*(frac_IC[Arch_Des]+frac_Coord[Arch_Des]+frac_lterate[Arch_Des])



frac_avl_Personnel[Arch_Des,Initial Comp] =
frac_IC[Arch_Des]+0*(frac_Coord[Arch_Des]+frac_Iterate[Arch_Des]+frac_ QA[Arch_Des])

frac_Coord[Activity] = if (total_backlog<0.1) then 0 else backlog_Coord[Activity]/total_backlog
DOCUMENT: Fraction of the total effort to be expended in coordination. dimensionless

frac_IC[Activity] = if (total_backlog<0.1) then O else
backlog_Initial_Compl[Activity]/total _backlog

DOCUMENT: Fraction of the total effort to be expended in initial completion. dimensionless.
This is assumed to be constant throughout the engineering phase

frac_Iterate[Activity] = if (total_backlog<0.1) then O else
backlog_Iterate[Activity]/total _backlog

DOCUMENT: Fraction of the total effort to be expended in iteration. dimensionless
frac_Proto = if (total_backlog<0.1) then 0 else backlog_Proto/total_backlog
DOCUMENT: Fraction of the total effort to be expended in prototyping. dimensionless
frac_ QA[Activity] = if (total_backlog < 0.1) then 0 else backlog_QAJ[Activity]/total backlog
DOCUMENT: Fraction of the total effort to be expended in QA. dimensionless
Prototyping_Resource_Constraint = Proto_personnel*Proto_Productivity

DOCUMENT: The limit imposed on prototyping by available resources. units/week
Proto_personnel = Total_Personnel*frac_Proto

Proto_Productivity = 2

DOCUMENT: Productivity associated with prototyping activity. units/week

QA[Activity] =

min(Resource_Constraint[Activity,Quality Assurance],Completed_but_not_Checked[Activity]/

Average_Duration[Activity,Quality Assurance])

DOCUMENT: Quality assurance activities include configuration management and testing
required to release the development unit to the next phase. units/ week

Resource_Constraint[Activity, Task] =
frac_avl_Personnel[Activity, Task]*Total Personnel*Task_Productivity[Activity, Task]



DOCUMENT: The amount of personnel effort available for performing an activity in a
particular phase. units/week

Task_Productivity[Req,Iteration] = 3

DOCUMENT: Productivity for iterations on requirements. units/person/week
Task_Productivity[Req,Coord] = 6

DOCUMENT: Productivity for coordination of requirements. units/person/week
Task_Productivity[Req,Quality _Assurance] = 6

DOCUMENT: Productivity for quality assurance on requirements. units/person/week
Task_Productivity[Req,Initial_Comp] =5

DOCUMENT: Productivity for initial completion of requirements. units/person/week
Task_Productivity[Arch_Des,lteration] = 3

DOCUMENT: Productivity for iterations on architecture and design. units/person/week
Task_Productivity[Arch_Des,Coord] = 10

DOCUMENT: Productivity for coordination for architecture and design. units/person/week
Task_Productivity[Arch_Des,Quality Assurance] = 12

DOCUMENT: Productivity for quality assurance of architecture and design. units/person/week
Task_Productivity[Arch_Des,Initial_Comp] = 11

DOCUMENT: Productivity for initial completion of architecture and design. units/person/week

total_backlog =
ARRAYSUM(backlog_QA[*])+ARRAYSUM(backlog Coord[*])+ARRAYSUM(backlog_Itera
te[*])+ARRAYSUM(backlog_Initial_Comp[*])+backlog_Proto

DOCUMENT: Total work backlog in person-weeks

Not in a sector



Appendix F: Graphs of Model Runs
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Figure 8: Personnel Levels
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Figure 10: Required Personnel fractions
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Figure 12: Architecture Personnel fractions



Figure 13: Prototyping
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