Improving the Practice of Process Improvement

Laura Black

The Paradox of Process

- Process-focused improvement efforts promise big payoffs. (e.g. Easton and Jarrell 1998)
 - Total Quality Management
 Business Process Reengineering
- But process-oriented efforts often fail.
 - Failed implementation (e.g. Ernst and Young 1991, White 1996)
 - > Short-lived successes (e.g. Kaplan 1990)

The Paradox of Process

- Product development is a particularly challenging process.
 - Long delays between decisions and consequences
 - › Content provided by many functions
- Doing product development well promises a particularly high payoff.
 - Tools seldom used (e.g. Cooper, Edgett, and Kleinschmidt 1997)

Why can't we collaborate?

engineer-hours to complete

projects duration: initiation to launch

percent first-time

buyers

customer base

volumes

Challenges in Cross-functional Collaboration

- The knowledge we need is
 - > Local (Wenger 1998)
 - > Embedded (Polanyi 1966)
 - > Invested (Taylor 1993)
- We have trouble representing to each other what's at stake for us
 - Longer development cycles,
 higher costs, fewer efficiencies

Why can't we keep up?

MKT: No design changes--just make it black!

ENG: It's a process problem. We've never painted parts that get so hot.

MKT: It's the right thing to do!

Marketing

ENG: We'll have to pull people off the early phase of Secret Project.

MKT: Secret Project is the right thing to do, too. It must be ready next year.

ENG: We'll work extra hard. We'll pull off this lob-in and Secret Project, too.

Challenges of Dynamic Complexity

- Short-term actions and outcomes are more
 - > Salient (Kahneman et al. 1982)
 - > Certain (Einhorn and Hogarth 1985)
 - > Tangible (Repenning and Sterman 2000)
- The longer the delays, the worse grows our decision-making.
 - We blame the people, not the system--and make the problems worse. (Repenning and Sterman 2000)

Process Challenges

- A *process* by definition
 - > Involves multiple practices
 - > Is dynamic
- Product development is particularly vulnerable to two failure modes:
 - Break-downs in cross-functional collaboration
 - > Inability to manage dynamic complexity

Boundary Objects Help with Collaboration

- A robust boundary object... *concretely* shows *differences* and *dependencies* and is *transformable* by all involved
- Kinds of boundary objects:
 - > Repositories
 - > Objects / drawings
 - > Maps / models
 - > Methods

Formal Models Help with Dynamic Complexity

- System view shows it's the process, not just the people. (Repenning and Sterman 2000)
- A model can depict interactions between physical and behavioral aspects of work.
- Simulation through time portrays tradeoffs between short-term and long-term strategies.

Each Without the Other May Not Work

- Typical boundary objects can't always
 - Represent the dynamic complexity at stake
 - Represent a
 process as it is
 and as it can be

- Formal modeling efforts often
 - Fail to involve the people who can act
 - > Fail to be concrete
 - Fail to be transformable / iterative

Proposed: Use Formal Model as a Boundary Object

- Formal model is more explicit than description with words.
 - The process of building a model aids consistency and draws out unspoken assumptions.
- Simulation through time emphasizes dynamic nature of relationships / process.
 - Simulation model is *designed* to be transformable.

Proposed: Use Formal Model as a Boundary Object

- Process-oriented efforts may *require* formal models as boundary objects
 - > Rapid process prototyping

⇒Easy to transform⇒Easy to see trade-offs over long time horizon

 Low-cost iterative experiments-a "wind tunnel" for organizational process experimentation

As a Boundary Object a Model Can Become More Effective

- Involve people from across practices
 - > Use concrete model variables
 - Show how the work of one group affects the work of other groups
- Model in front of the group
 - > Simulate early and often

Learning More About Boundary Objects

- Using formal models as boundary objects
 - › Provides consistent empirical opportunities
 - Increases the population of boundary objects for study
 - Carries boundary objects into process design as well as product design
- Using system dynamics models explores
 - What levels of detail are appropriate to talking about process
 - > Range of cross-practice collaboration

Research Underway

- Combining formal modeling techniques with a theory of boundary objects, we'll contribute to the theory and practice of creating and sustaining robust processes.
- We're seeking to articulate a **sociology of effective use** of formal models.