

Structure-oriented Behavior Tests in Model Validation1

Yaman Barlas and Korhan Kanar
Bogaziçi University

Department of Industrial Engineering
Bebek, Istanbul, Turkey

Email: ybarlas@boun.edu.tr

Structure validation means establishing that the relationships used in a model are an
adequate representation of the real relationships and it can be done in two ways:
direct structure testing and indirect structure (or structure-oriented behavior)
testing. Direct structure tests assess the validity of the model structure, by direct
comparison with knowledge about real system structure. This involves evaluating
each relationship in the model against available knowledge about real system. These
tests are qualitative in nature; no simulation is involved. Structure-oriented behavior
tests on the other hand assess the validity of the structure indirectly, by applying
certain behavior tests on model-generated behavior patterns. For example, extreme-
condition (indirect) test involves assigning extreme values to selected parameters and
comparing the model-generated behavior to the “anticipated” (or observed) behavior
of the real system under the same extreme condition. These are “strong” behavior
tests that can provide (indirect) information on potential structural flaws. In a typical
structure-oriented behavior test, the modeler makes a claim of the form: “if the
system operated under condition C, then the behavior B would result.” The model is
then run under condition C and it is said to “pass” this structure-oriented behavior
test, if the resulting behavior is similar to the anticipated behavior. This article
presents a computerized algorithm that automates this comparison/testing process.
The modeler would hypothesize a dynamic pattern from the template of all basic
patterns (such as "exponential growth", "S-shaped growth", "oscillations",
"exponential decay"…) and then run the model under condition C. The algorithm
would take the dynamic behavior generated by the model, “recognize” it and test if it
belongs to the class hypothesized by the modeler. The algorithm, a Hidden Markov
model-based pattern classifier, has been tested with various typical test patterns and
proven to be quite effective and reliable.

1. Introduction

 Model validity and validation have long been recognized as one of the main
issues in system dynamics field. (Forrester 1968; Forrester et al.1974; Forrester and
Senge 1980; Sterman 1984; Barlas 1989a, Barlas & Carpenter 1990). Richardson
(1996) identifies “confidence and validation” as one of the eight key problems for the
future of system dynamics discipline. Yet, there has been little active research
devoted to the development of concrete methods and tools suitable for system
dynamics validation. Barlas (1996) states that only three of all the articles published
in System Dynamics Review (between 1985 - 1995) deal with model
validity/validation. Furthermore, there is no clear evidence of consistent and
widespread use of even the established validity tools. (See Peterson and Eberlein 1994
and Scholl 1995). Barlas et al (1989a and 1997) provides a set of tools (“BTS”) for

1 This research is supported by Bogaziçi University Research Fund No. 97HA304

testing the behavior validity of a model. This current article presents a method that
addresses the structural aspect of model validity.
 Validity of a causal-descriptive (theory-like, “white-box”) model is critically
different than that of a merely correlational (purely data-driven, “black-box”) model.
(Barlas 1990 and 1996). In purely correlational (black-box) modeling, since there is
no claim of causality in structure, the model is assessed valid, if its output behavior
matches the “real output” within some specified range of accuracy, without any
questioning of the validity of the relationships that constitute the model. Models that
are built primarily for forecasting purpose (such as time-series or regression models)
belong to this category. On the other hand, causal-descriptive (white-box) models are
statements as to how real systems actually operate in certain aspects. In this case,
generating an “accurate” output behavior is not sufficient for model validity; what is
crucial is the validity of the internal structure of the model. A white-box model, being
a “theory” about the real system, must not only reproduce/predict its behavior, but also
explain how the behavior is generated, and possibly suggest ways of changing the
existing behavior. System dynamics models - and all models that are design-oriented
in general - fall in this category. In short, it is often said that a system dynamics
model must generate the “right output behavior for the right reasons.”
 Validation of a system dynamics model thus consists of two broad components:
structure validation and behavior validation. Structure validation means establishing
that the relationships used in the model are an adequate representation of the real
relationships, with respect to the purpose of the study. Behavior validation consists of
demonstrating that the behavior of the model is “close enough” to the observed real
behavior. In system dynamics validation, there is no point in testing the behavior
validity, until the model demonstrates some acceptable level of structure validity. The
model would be refuted if it is shown that a relationship in the model conflicts with a
known/established “real relationship”, even if the output behavior of the model
matches the observed system behavior. For such models, validity ultimately means
validity of the internal structure of the model. (See Barlas 1996 for more discussion).
 Although structure validity is crucial, a big majority of technical research in
model validation literature deals only with what we call behavior validation. There
may be two main reasons why structure validity has been ignored so long in modeling
literature. The first one stems from a lack of recognition of the philosophical
importance of structure validity in white-box modeling (as opposed to black-box
modeling). The second reason has to do with the technical difficulty of designing
formal/statistical tools that address structure validity. In an attempt to initiate research
in structure validation, Barlas (1989b and 1996) distinguishes between two types of
structural testing: 1- direct structure testing, 2- indirect structure (or structure-oriented
behavior) testing. Direct structure tests assess the validity of the model structure, by
direct comparison with knowledge about real system structure. This involves taking
each relationship (mathematical equation or any form of relationship) individually and
comparing it with available knowledge about real system. There is no simulation
involved and these tests are as such highly qualitative in nature. (See Forrester and
Senge 1980 for example tests such as structure confirmation and extreme-conditions).
Indirect structure (or structure-oriented behavior) tests, on the other hand assess the
validity of the structure indirectly, by applying certain behavior tests on model-
generated behavior patterns. (See Barlas 1989b; Forrester and Senge 1980). These
tests involve simulation, and can be applied to the entire model, as well as to isolated
sub-models of it. For example, extreme-condition (indirect) test involves assigning

extreme values to selected parameters and comparing the model-generated behavior to
the “anticipated” (or observed) behavior of the real system under the same extreme
condition. (See Barlas 1989b for illustrations).
 Structure-oriented behavior tests are strong behavior tests that can provide
information on potential structural flaws. Their main advantage over direct structure
tests is that they are much more suitable to formalize and quantify. Thus, Barlas
(1996) submits that structure-oriented behavior testing is the most promising
direction for research on model validation. Earlier examples of such tests include the
“Qualitative Features Analysis” by Carson & Flood (1990) and the “Reality Check”
feature of VENSIM simulation software. (See Peterson and Eberlein 1994). In this
article, we offer a method, a software, developed for structure-oriented behavior
testing.

2. Automated Dynamic Pattern Recognition/Testing

 In a typical structure-oriented behavior test, the modeler makes a claim of the
form: “if the system operated under condition C, then the behavior B would result.”
The model is then run under condition C and it is said to “pass” this structure-oriented
behavior test, if the resulting behavior is similar to the anticipated behavior. The test
condition “C” is typically (but not always) an “extreme condition” since we are much
better at anticipating the behavior of the real system under extreme conditions. For
example, the modeler may claim that the food consumption (and household waste,
etc) would gradually decline to zero, if birth rate is set to zero. The model is run under
this extreme condition and if it yields a different dynamics (such as growing food
consumption) we suspect that there are some structural flaws in the formulations.
Note that in this general version of the test, the modeler hypothesizes a certain
“dynamic pattern” (like “gradual decline to zero”) and then tests if the model yields
the expected dynamic pattern. The comparison of the anticipated and model-generated
patterns is done visually by the modeler, which makes the test subjective and time
consuming (considering hundreds of such comparisons). An automated dynamic
pattern comparison/testing software could be a big contribution. (Reality Check
feature of VENSIM incorporates a limited version of this type of extreme-condition
testing, where the “anticipated behavior” is simply a numeric value, not a dynamic
pattern). The purpose of this research is to design a computerized algorithm that can
take two dynamic patterns, compare them and decide if they “belong to the same
class.”
 The first problem in the design of a dynamic pattern recognition/validation tool is
the determination of the basic patterns to be included in the algorithm. The theory and
practice of system dynamics define some forms of basic behavior patterns. A survey
of simple analytical models reveals certain types of patterns, including constant,
linear, positive and negative exponential trends, s-shaped growth, growth-and-decline
and oscillations. These basic patterns, although derived from simple structures, are
also frequently encountered in many large-scale and complex models.
 The shape of the basic patterns mentioned above can be characterized by various
combinations of constant, growth, decline and oscillatory components. A second
characterization could be the nature of the rate of growth or decline (negative linear,
positive linear, negative exponential, positive exponential or zero) in successive time
segments. Using this approach, the set of basic patterns can be enriched further to
include patterns such as decline-and-exponential growth or boom-then-bust. Figure

2.1 shows the complete template of basic behavior patterns used in the method.
Observe that there are six classes of basic patterns (constant, growth, decline, growth-
then-decline, decline-then-growth and oscillatory). Each pattern class may in turn have
several pattern variants. For instance, the “growth” class consists of four different
growth patterns: (a) linear growth, (b) exponential growth, (c) negative exponential
growth and (d) s-shaped growth. Similarly, the “growth-then-decline” class consists of
(a) growth-then-exponential decay to zero, (b) growth-then-exponential decay to non-
zero and (c) growth-then-crash. (When the steady-state behavior approaches an
equilibrium value, whether the equilibrium value is zero or non-zero may be important
in evaluating the validity of the extreme-behavior, although this difference seems
mathematically trivial. A zero equilibrium is an indication of the total extinction of the
variable, which, for example in a population model, has a very different real-life
meaning that a nonzero equilibrium).
 Oscillation is the last basic pattern on the template of Figure 2.1. Oscillation
could be further classified as neutral, damped, expanding, or can even be regarded as
an additional pattern component riding on top of any of the patterns listed above. In
this research however, we consider oscillation more broadly and treat it in three
subclasses: around a constant mean, around a growing trend and around a declining
trend. Once the fundamental method proves its effectiveness with the basic patterns of
Figure 2.1, extending the template to include additional patterns should not be too
difficult.
 With the proposed algorithm, the modeler can automatically test a claim like: “if
the system operated under condition C, then an exponential crash would result.” S/he
would choose the basic pattern “Decline(b)” from the template and then run the model
under condition C. The algorithm would take the dynamic behavior generated by the
model, “recognize” it and test if it belongs to the hypothesized class (Decline(b)). A
thorough structure-oriented behavior test would consist of making numerous validity
claims, then let the computerized algorithm test them one by one automatically and
report the fraction of passes.

3. Selection And Extraction Of Features From Data

 Automating the structure-oriented behavior testing is in part a “pattern
recognition/classification” problem. The pattern recognition literature is quite rich
with different approaches and algorithms. But due to the “dynamic” nature of our
pattern recognition problem, the classical pattern recognition algorithms are
inadequate for this task. Therefore, a dynamic pattern recognition algorithm based on
“Hidden Markov Models” is to be developed. The major difference between classical
and Hidden Markov Model (HMM) based pattern recognition lies in the feature
extraction process. In HMM-based pattern recognition, one-dimensional data is
divided into segments and a sequence of feature vectors is extracted, whereas in
classical approach a single feature set is extracted from the whole data. Patterns to be
recognized in dynamic patterns which are the subject of this study are inherently one-
dimensional and suitable for HMM implementation.
 In our dynamic behavior recognition problem, a dynamic signal can be denoted by
a sequence y(k), k = 1, 2, … , K, where K is the number of data points. As depicted in
Figure 3.1, such a signal would be a somewhat distorted (or "noisy") version of one of
the patterns given in the template of Figure 2.1. The procedure starts with dividing the
sequence y(k) into T number of segments of equal length L. Each segment is denoted

 Figure 2.1. Template of Dynamic Patterns

by the sequence yt(l), t = 1, 2, …, T.

 yt(l) = y [(t-1)L+l], l = 1, 2, … , L (3.1)

Here, the choice of value T is one of the decisions to be made in the design of the
recognition system.

0

0,25

0,5

0,75

1

1 11 21 31 41 51 61 71 81 91 101 111 k

y(k)

 Figure 3.1. A Dynamic Signal Example

 The next step is to extract features from each data segment. Basic dynamic
patterns are characterized by successive time segments of growth or decline and their
trends (as growing or declining rates). Therefore, it is reasonable to form our feature
vector using the slope and 2nd derivative ("curvature") information of the data in each
segment. The features can be obtained by fitting polynomials to each segment data.
The slope of the first order polynomial provides trend information which is either
growth, decline or constant. The second order polynomial can be used to obtain the
second derivative (which will yield the curvature information).
 In our sample data illustrated in Figure 1, we have K=120 data points and
assuming that we have taken number of segments as T = 6, the segment size becomes
L = 120/6 = 20. The 5th segment shown in Figure 3.2 includes data points from 81 to
100.

0,75

0,8

0,85

0,9

0,95

1

81 83 85 87 89 91 93 95 97 99
k

y (k) r(k)
linear f it

square f it

 Figure 3.2. Segment 5 of the Signal given in Figure 3.1

The first order polynomials fitted on the segment data points are in the form of,

 ft(x) = φt1 x+ φt0 , t =1, 2, ... T (3.2)

where, x is a normalized continuous independent variable such that k=1 and k=K
correspond to x=0 and x=1 respectively. Here, the value of φt1 is our first feature that
provides the slope information.
 The second order polynomials are in the form of,

 gt(x) = γt2 x
2 + γt1 x + γt0, t =1, 2, ... T (3.3)

This can be used to drive the second derivative, however, instead of using simply
d2gt/dx2 , we use "curvature" ct(x), given by,

()()c x
d g d x

dg dx
t

t

t

()
/

/
/=

+

2 2

2 3 2

1
 t =1, 2, ... T (3.4)

which is more relevant for our purpose, owing to the “shape” information it yields.
Curvature value at any point on the fitted polynomial can be easily calculated from
(3.4). We take the midpoint of the segment, denoted by κt, and evaluate the curvature
ct(κt) at the midpoint, as our second feature.

In addition to the slope and the curvature, the level of the state variable also
provides useful information. Thus, the segment mean becomes our third feature.
,

 µ t
tr l

L
=
∑ () (3.5)

 To sum up, our feature vectors are M = 3 dimensional and are given by three
components slope, curvature, and mean,

 Ttforco

t

tt

t

t ,...,2,1)(
1

=















=

µ
κ
φ

 (3.6)

Therefore, the result of the segmentation and feature extraction process for a
pattern sample using T number of segments is a sequence {o1, o2, …. , oT}. For the
example signal in Figure 3.1 - and specifically for its 5th segment in Figure 3.2-
feature extraction yields,

O o o o o o= −
































1 2 3 4 6

0 6711

2 5308

0 9440

, , , ,

.

.

.

,

4. Continuous Density HMM

In a Markov process, a new state st ∈ {1, 2, ... , N} is entered at each step t = 1, 2,

...., T, depending on an initial probability vector Π and a state transition matrix A,
where

Π ={πi}, πi = Pr(s1 = i), i = 1, 2, …., N (4.1)

A = {aij}, aij = Pr(st+1 = j | st = i) i, j = 1, 2, …. N (4.2)

 T = length of the state sequence

 N = number of states.

 The resulting state sequence is denoted by S = {st, t = 1, 2, ... ,T} and its
realization probability is given by,

Pr (S | A, Π) =π s s s
t

T

a
t t1 1

2
−

=
∏ (4.3)

 In a continuous density HMM the states of the process are not observed directly.
The outcome of the process is a sequence of vectors O ={o1, o2, ..., oT} where ot ∈
ℜM, M-dimensional Euclidean space. The output vector is produced according to a
probability distribution, depending on the current state. There are N number of
observation-vector probability distributions, denoted by a vector B, where

 B = {bj (ot)}, bj(ot) = a posteriori density of observation vector ot in state j
 (4.4)

 Here we make the assumption that the observation densities are Gaussian. In this
case, a conditional mean vector µj and a conditional covariance matrix Vj determine
the density corresponding to state j . We denote this density as N(µj ,Vj).
 A continuous density HMM is specified by parameters A, Π, and B. The
parameters can be compactly represented as a set denoted by λ = (A,Π,B).
 With this model, a process is described such that transition probabilities from a
step t to t+1 is only dependent on the state at step t. This may not always provide
satisfactory results when dynamic behavior patterns are considered. In order to
increase the realism of the model, a nonstationary component can be introduced, i.e.
by introducing time-dependence in transition probabilities (He and Kundu 1990). In
this case, rather than having a single state transition matrix, A, we have T-1 number of
matrices, At, t=1,2,..,T-1.
 The states of an HMM only reflect clustering properties of the features and should
not be regarded as having a physical meaning (He and Kundu 1990).

5. Application Of HMM To Dynamic Behavior Recognition

 In our problem, each observation vector, ot, is the feature vector extracted from
the tth segment of the signal as explained in Section 3. Each pattern class is
characterized by a HMM, i.e. λ = (A,Π,B), which is built using the training pattern
set.

Optimization Criterion
 Suppose we are given a model λ and an observation sequence O = {o1, o2, ….,
oT}. A choice of optimization criterion in estimation (training) and classification
processes is to maximize the state-optimized likelihood function (Juang and Rabiner
1990) defined by,

 p O S p O S
S

(, |) max (, |)* λ λ=

 = max () ()
S

s s s s t
t

T

b o a b o
t t

π
1 1 11

2
−

=
∏ (5.1)

where, S* = {s1*, s2*, … , sT*} is the state sequence associated with the state-
optimized likelihood function.

Equation (5.1) is the density of the optimal or the most likely state sequence path
among all possible state sequences.

5.1 Training of the HMM
 The training procedure is the process in which the model parameter set λ =
(A,Π,B) for a class is adjusted so that the state optimized likelihood function defined
in (5.1) is maximized for the "training set" of that class. (A training set for a given
class is a collection of dynamic patterns, all of which are "noisy" versions of the basic
dynamic pattern that define that classs). At the end of the training phase, the algorithm
essentially "learns" the basic dynamic pattern of a given class. For Gaussian density
functions, there is a "segmental K-means algorithm" that converges to the state-
optimized likelihood function (Juang and Rabiner 1990). Segmental K-means
algorithm can be outlined briefly as below.

 Given an initial model !λ 0, calculate

 { })ˆ|*,(maxmaxargˆ 1 k

S

k SOp
k

λλ
λ

=+ (5.2)

iteratively until ! !λ λk k+ =1 , where k is the iteration number. Maximization of the

state-optimized likelihood p(O,S*|λ) in (5.2) for each training observation sequence is
achieved using the Viterbi algorithm (given in Appendix A). Given a model λ =
(A,Π,B) and an observation sequence O ={o1, o2, ..., oT}, the Viterbi algorithm finds
the state-optimized likelihood function and the optimal state sequence. At each
iteration, the optimal state sequences are assigned to the observation vectors of each
training sample. The new states are again used to estimate new model parameters. The
iteration proceeds until none of the state assignments change at the end of the
maximization. (Appendix A). A more detailed description of the process is given by
the numerical example in the next section.

5.2 Classification
 As a result of the training procedure, we obtain one HMM for each class. We
denote the P models by λp , p = 1, 2, …, P. When a signal O of unknown class is
given, we calculate p(O,S*|λp) for each class p = 1,2,..,P using the Viterbi algorithm.
The goal is to clasify the given signal in one of the known pattern classes. The
classification is based on the state-optimized likelihood function which is a measure
of how well the input signal is representative of a given class. However, the likelihood
values for different classes by themselves may not be suitable for direct comparison,
depending on the degree of dispersion of the training feature vectors within their
clusters. He and Kundu (1990) normalize the state-optimized likelihood function for a
class by dividing it to the mean of the likelihoods of the training set used for that
class. We move one step further and take into account the variation of the likelihood
function values of the training samples within classes. Our criterion is the state-
optimized likelihood value of the input signal normalized by the mean, mp, and the
standard deviation of the likelihood function of the training set, !σ p

. We denote the

normalized likelihood function by h(O,S|λp) such that,

 h O S
p O S m

p

p p

p

(, * |)
(, * |)

!
λ

λ
σ

=
− (5.3)

Here,

 m
n

p O S p Pp
p

i
p

p
i

np

= =
=
∑1

1 2
1

(, *|) , , ... ,λ (5.4)

and,

 ! ((, *|)) , ,...,

/

σ λp
p

i
p

p p
i

n

n
p O S m p P

p

=
−

−











=

=
∑1

1
1 22

1

1 2

 (5.5)

where, np is the number of training samples used for class p and Oi
p is the observation

(feature) vector sequence extracted from the ith training sample of class p.
 When an input does not belong to any of the classes, it should not be erroneously
classified into one of the classes. The criterion in (5.3) also allows us to define a
common lower rejection region. Since the likelihood values of the training set are
approximately normal, (5.5) is an estimator for the population standard deviation. We
take the ad hoc value of 3 times the standard deviation of the likelihood functions
within a class as our rejection region. Thus, if the outcome of the classifier (5.3) is less
than 3.0 for all P classes, we classify the input signal into the “none” class. Therefore
our classification rule becomes:

[]

choose
h O S

none

if h O S

otherwise
p

p p
pargmax (, *|) max (, *|) .λ λ > −






30
 (5.6)

6. Training Of A Pattern Class - A Simplified Example

In this simplified example we a have training set of 8 sample patterns each

belonging to the “negative-exponential growth” class. Each pattern consists of 120
data points. The training samples are presented in Figures 6.1 (a) and (b).

We take number of segments T =10 and number of states, N=3 as model
parameters. For simplicity of illustration, a stationary model will be used.

������
������
������

���
���

����
����

�����
�����

��
��

���
���

����
����
�����
�����

��
��
���
���
����
�����
�����

�����
����
����
�����
�����
��������������������������������

��
��
���
���
����
����
��

0

0,25

0,5

0,75

1

1 11 21 31 41 51 61 71 81 91 101 111 k

Y(k)

sample1

sample2
������������������

sample3

sample4

Figure 6.1 (a) Training samples for negative-exponential growth class (Samples 1 - 4)

������
������

���
���
����
����

�����
�����

��
��
���
���

����
����
�����
�����

��
���
���
����
�����
�����

��
��
�������
�����
�����
�������������

�����
�����
�������
�������

���
���
����������������������������

����
����
�����
�����
��

��
��
���
���
����
����
�����
�����

��
��
���
���
����
����
������
������

��
��
���
���
�������������

����
�����
�����

��
��
���
���
����
����
�����
�����
������
�������������

�����
�����

��
��
���
���
����
����
�����
�����

��
��
���
���
����
����
�����
�����

��
��
����������������������

����
������
������

���
���
����
����
�����
�����

��
��
���
���
����
����

0

0,25

0,5

0,75

1

1 11 21 31 41 51 61 71 81 91 101 111 k

Y(k)

sample5

sample6������������������
sample7

sample8

Figure 6.1 (b) Training samples for negative-exponential growth class (Samples 5 - 8)

The first step in the training procedure is to segment each pattern and extract
features from the segments as outlined in Section 3. The resulting observation
sequence for sample 1, denoted by O1, is a set of 10 vectors of size 3x1:

O 1

6 6096

0 2507

0 3602

2 3209

1 6724

0 7802

0 6991

4 2347

0 9186

0 2213

0 2285

0 9594

0 2607

2 2482

0 9866

0 0273

2 3789

0 9985

0 0553

1 8583

0 9938

= −
















−
















−
































−
















−
−

















−
−
















.

.

.

,

.

.

.

,

.

.

.

,

.

.

.

,

.

.

.

,

.

.

.

,

.

.

. 

−















−
















−
−

































,

.

.

.

,

.

.

.

,

.

.

.

0 1139

3 2653

0 9812

0 1383

1 0925

0 9860

0 0002

0 0305

0 9919

Here, the first feature corresponds to the slope in the segment, the second designates
curvature, where the negative and positive values indicate concave down or up
respectively. The third feature gives level information. We have similar vector
sequences for the training samples 2 to 8, which make altogether 80 feature vectors.

Initial Model.

First, all 80 feature vectors are clustered in 3-dimensional space. We use the same
minimum distance algorithm used by He and Kundu (1991). The result is an
assignment of each feature vector, Sj ={sjt , t = 1,2,…,6} for j = 1,2,…,8, to one of the
3 states:

S1 ={1,2,3,3,3,2}
S2 ={1,3,2,2,3,3}
S3 ={1,2,3,3,3,3}
S4 ={1,2,2,3,3,3}
S5 ={1,2,2,3,2,3}
S6 ={1,2,2,3,3,3}
S7 ={1,2,3,3,3,2}
S8 ={1,2,3,3,3,3}

Clustering of the vectors into 3 states in 3-dimensional space is visually depicted
in Figure 6.2.

0

2

4

6
-8

-6
-4

-2
0

2
4

0.2

0.4

0.6

0.8

slope curvature

mean

Figure 6.2. Initial cluster of the feature vectors. (+: State-1, o: State2, x: State3)

From these state assignments, initial model parameters are estimated. Initial

probability vector, Π, and the state transition matrix, A, can be calculated using (He
and Kundu 1990):

For 1 ≤ i ≤ N

{ }
!π i

1number of occurances s 1

number of training samples
 =

=
 (6.1)

For 1 ≤ i ≤ N and 1 ≤ j ≤ N

{ }
{ }!a

Number of occurances s i and s j for all t

Number of occurances s i for all t
ij

t t 1

t

=
= =

=
+

 (6.2)

For the current state assignment, calculation yields,

{ }Π = =
















!π i

1

0

0

 { }A ij= =
















!

. .

. .

. .

a

0 0 8 7 5 0 0 1 2 5 0

0 0 3 0 7 7 0 6 9 2 3

0 0 2 1 0 5 0 7 8 9 5

The mean vectors and the covariance matrices for states 1, 2, and 3 are estimated
using (He and Kundu 1990):

For 1 ≤ i ≤ N

! ,µi
i

t
o iN

o
t

=
∈
∑1 (6.3)

! (!) (!)V
N

o oi
i

t i
t

t i
o it

= − −
∈
∑1

µ µ (6.4)

Calculation of the mean vector and covariance matrix for this state assignment gives
the following:

{ } { } { }µ µ µ µ µ µ1 1 2 2 3 3

48072

03731

04756

05322

2 2591

09297

00733

05042

09807

= = −
















= = −
















= =
















!

.

.

.

, !

.

.

.

, !

.

.

.

and,

{ } { }

{ }

V V V V

V V

1 1 2 2

3 3

01312 00124 00158

00124 00278 00115

00158 00115 00089

02033 01488 00245

01488 07496 00189

00245 00189 00032

00235 00921 00066

00921 16103 00373

00066 00373 00023

= = −
−

















= =
− −

−
−

















= =
−
−

− −

















!
. . .

. . .

. . .

, !
. . .

. . .

. . .

,

!
. . .

. . .

. . .

The values µi and Vi determine the observation probability densities, B, such that,

! ()
() !

exp (!) ! (!)
/

/b o
V

o V oj t
M

j

t j j t j
t= − − −





−1

2

1
22

1 2
1

π
µ µ (6.5)

Iteration 1.

For the model, λ=(A, Π, B), at hand, optimal state sequences for the 8
observation sequences are traced using the Viterbi algorithm (Appendix A). The
resulting state sequences, Si, i=1,2,..8, and their corresponding state-optimized
likelihood function values are calculated to be:

S1 ={1,2,3,3,3,3} (-13.2520)
S2 ={1,3,2,2,3,3} (-22.6685)
S3 ={1,2,3,3,3,3} (-7.4058)
S4 ={1,2,2,3,3,3} (-6.4410)
S5 ={1,2,2,3,3,3} (-10.1784)
S6 ={1,2,2,3,3,3} (-6.7685)
S7 ={1,2,3,3,3,2} (-7.6222)
S8 ={1,2,3,3,3,3} (-4.5015)
(note that the optimum "likelihood functions" shown in parentheses are negative,
bacause logarithms of the likelihoods are taken in computations in order to prevent
numerical errors)

The assignment of the observation vectors to different states, new model
parameters, λ = (A,Π,B), are reestimated using (6.1-5). The cycle of model parameter
estimation and tracing the optimal state sequences is repeated until no new
assignments are made. At the end of the 5th iteration, the model converges to:

Π =
















1

0

0

A =

















0 0 8 7 5 0 0 1 2 5 0

0 0 1 1 1 1 0 8 8 8 9

0 0 0 4 3 5 0 9 5 6 5

. .

. .

. .

µ µ µ1 2 3

48072

03731

04756

08140

2 7135

08968

00803

01013

09804

= −
















= −
















=
















.

.

.

,

.

.

.

,

.

.

.

V V V1 2 3

01312 00124 00158

00124 00278 00115

00158 00115 00089

01235 00919 00157

00919 06679 00080

00157 00080 00024

00214 00637 00056

00637 2 0040 00295

00056 00295 00019

= −
−

















=
−
−

− −

















=
−
−

− −

















. . .

. . .

. . .

,

. . .

. . .

. . .

,

. . .

. . .

. . .

The above HMM model characterizes the “negative-exponential-growth” class.

The final cluster of the feature vectors is depicted in Figure 6.3.

0

2

4

6
-8

-6
-4

-2
0

2
4

0.2

0.4

0.6

0.8

slope curvature

mean

 Figure 6.3. Final cluster of the feature vectors. (+: State-1, o: State2, x: State3)

7. Classification Examples

This section is intended to give a few classification examples. The HMMs for 5

classes are trained using training sets with sizes ranging from 29 to 119 samples.
Referring to Figure 1.1 these classes are : i) negative-exponential growth (2-c), ii),
positive-exponential growth (2-b), iii) S-shaped-growth (2-d), iv) Growth-and-
decline-to-zero (4-a), v) Growth-and-decline-to-nonzero (4-b). In the feature
extraction process, data is divided into 12 segments. The nonstationary HMMs are
based on 6 states.

The test samples, representative of each of the 5 classes, have been used for
illustration (Figures 7.1 to 7.5). Here, the test signal in Figure 7.1 is generated from
class 2-b, Figure 7.2 from class 2-c, Figure 7.3 from class 2-d, Figure 7.4 from class
4-a, and, Figure 7.5 from class 4-b. In the generation of the test samples, “pure”
patterns of their representative classes are first constructed, and then autocorrelated
noise is added. The noise level used in the test samples is comparable to the average
noise level in the training samples. Finally, the test sample-6 shown in Figure 7.6 is a
signal that is generated from a pattern that does not belong to any of the 5 pattern
classes.

 Figure 7.1. Test Sample-1 Figure 7.2. Test Sample-2

 Figure 7.3. Test Sample-3 Figure 7.4. Test Sample-4

Figure 7.5. Test Sample-5 Figure 7.6. Test Sample-6

Test Sample-1

For the first test sample, the calculation results of the classification criterion,
which is the normalized optimum likelihood function (5.3), is given in Table 7.1.
According to our classification rule (5.6), the maximum value is attained for Class 2-
b. Thus, Test Sample-1 is corerctly classified as belonging to class 2-b, i.e. positive
exponential growth.

Class 2-b Class 2-c Class 2-d Class 4-a Class 4-b
-1.958 -13.086 -3.749 -11.923 -12.862

Table 7.1. Normalized optimum likelihood values of the Test Sample-1 for each of the 5 classes.
(Negative values result from logarithms used in computations in order to prevent numeric errors)

Test Sample -2

Similarly, the normalized state-optimized likelihoods for each HMMs of Test
Sample-2 are presented in Table 7.2. The greatest likelihood is observed for Class 2-c,
which is the negative exponential growth - correct class.

Class 2-b Class 2-c Class 2-d Class 4-a Class 4-b
-25.173 -0.925 -3.3775 -7.110 -4.602

Table 7.2. Normalized optimum likelihoods of the Test Sample-2 for each of the 5 classes.

Test Sample -3

By similar reasoning, Test Sample-3 is correctly classified into Class 2-d, i.e. s-
shaped growth class.

Class 2-b Class 2-c Class 2-d Class 4-a Class 4-b
-12.409 -8.054 0.257 -16.405 -14.917

Table 7.3. Normalized optimum likelihoods of the Test Sample-3 for each of the 5 classes.

Test Sample-4

As a result of the classification rule, Test Sample-4 is correctly classified into
Class 4-a, which is the growth-and-decline-to-zero pattern.

Class 2-b Class 2-c Class 2-d Class 4-a Class 4-b
-27.459 -9.906 -8.336 -1.526 -1.783

Table 7.4. Normalized optimum likelihoods of the Test Sample-4 for each of the 5 classes.

Test Sample-5

Test Sample-5 is classified correctly into Class 4-b, i.e. growth-and-decline-to-
nonzero pattern.

Class 2-b Class 2-c Class 2-d Class 4-a Class 4-b
-27.401 -9.747 -8.220 -1.816 -0.647

Table 7.5. Normalized optimum likelihoods of the Test Sample-5 for each of the 5 classes.

Test Sample-6

Table 7.6 shows the normalized state optimized likelihoods of Test Sample-6
under the five HMMs corresponding to each class. The largest likelihood seems to
occur with Class 2-d, which is the s-shaped growth. However, this value is less than
-3.0, and, according to classification rule (5.6) the input sample is correctly classified
as belonging to none of the classes.

Class 2-b Class 2-c Class 2-d Class 4-a Class 4-b
-23.424 -9.495 -6.843 -14.976 -15.079

Table 7.6. Normalized state-optimized likelihoods of the Test Sample-6 for each of the 5 classes.

 The above test examples demonstrate that the algorithm can indeed classsify a
given dynamic pattern into the proper pattern class. We are now in the process of
testing the performance and reliability of the algorithm with extensive input test
patterns. Results obtained so far are very promising.

8. Conclusion

This article presents an automated, computerized method for Structure-oriented

behavior testing. In a typical structure-oriented behavior test, the modeler makes a
claim of the form: “if the system operated under condition C, then the behavior B
would result.” The model is then run under condition C and it is said to “pass” this
structure-oriented behavior test, if the resulting behavior is similar to the anticipated
behavior. This paper presents an algorithm that automates this comparison/testing
process. The modeler would hypothesize a dynamic pattern from the template of all
basic patterns (such as "exponential growth", "S-shaped growth", "oscillations",
"exponential decay"…) and then run the model under condition C. The algorithm
takes the dynamic behavior generated by the model, “recognizes” it and tests if it
belongs to the class hypothesized by the modeler. The algorithm, a Hidden Markov
model-based pattern classifier, has been tested with various typical test patterns and
proven to be very effective and reliable.

The tool, being a “dynamic behavior pattern recognizer/classifier”, can potentially
contribute in other steps of system dynamics methodology, most notably in data
analysis, reference behavior identification, behavior validation and finally in
automating policy improvement (pattern-oriented) simulation experiments.

Appendix A - Viterbi Algorithm (He and Kundu 1990)

Step 1. Initialization
For 1 ≤ i ≤ N,

δ1(i) = πibi(oi)
ψ1 (i) = 0

Step 2. Recursive computation
For 2 ≤ t ≤ T for 1 ≤ j ≤ N

[]δ δt
i N

t ij j tj i a b o() max () ()=
≤ ≤ −

1
1

[]ψ δt
i N

t ijj i a() argmax ()=
≤ ≤

−
1

1

Step 3. Termination

()[]P i
i N

T
* max=

≤ ≤1
δ

s*T = []arg max ()
1≤ ≤i N

T iδ

Step 4. Tracing back the optimal sequence.
For t = T-1, T-2, …, 1

s*T = ψt+1 (s*t+1)

P* is the state-optimized likelihood function, and
S* = {s1* , s2* , …, sT*} is the optimal state sequence.

Note 1: When calculating the state-optimized likelihood function using the Viterbi
algorithm, successive multiplications in the evaluation of δt(j) may lead to underflow

errors. To avoid this, logarithms of probability and density values are taken and
multiplications are replaced by additions. Logarithms for zero values can be assigned
a very small negative number.

Note 2: The procedure above is given for a stationary HMM. In nonstationary models,
aij’s in the algorithm are replaced by aij(t)’s.

References

 Barlas, Y. (1996). “Formal Aspects of Model Validity and Validation in
System Dynamics” System Dynamics Review 12(3):183-210.

Barlas, Y. and S. Carpenter. (1990). “Philosophical Roots of Model
Validation: Two Paradigms.” System Dynamics Review 6(2):148-166.

 Barlas, Y. (1989a). “Multiple Tests for Validation of System Dynamics Type
of Simulation Models.” European Journal of Operational Research 42(1):59-87.

 Barlas, Y. (1989b). “Tests of Model Behavior That Can Detect Structural
Flaws: Demonstration With Simulation Experiments.” In Computer-Based
Management of Complex Systems: International System Dynamics Conference.
P.M.Milling and E.O.K.Zahn, eds. Berlin: Springer-Verlag.

 Carson, E.R.and R.L.Flood. (1990). “Model Validation: Philosophy,
Methodology and Examples.” Trans Inst MC.12(4): 178-185.

 Eberlein, R.L and D.W. Peterson. (1994). “Understanding Models with
VENSIM.” In Modeling For Learning Organizations. Morecroft, J.D.W and J.D.
Sterman, eds. Portland, OR: Productivity Press

 Forrester J.W. and P.M.Senge. (1980). “Tests For Building Confidence in
System Dynamics Models.” In System Dynamics. Legasto, A.A., J.W. Forrester and
J.M. Lyneis, eds. Amsterdam: North-Holland

 Forrester, J.W., G.W. Low and N.J. Mass. (1974). “The Debate on World
Dynamics: A Response to Nordhaus.” Policy Sciences 5: 169-190.

 Forrester, J.W. (1968). “A Response to Ansoff and Slevin.” Management
Science 14: 601-618.

 He, Y. and Kundu, A. (1991). 2-D Shape Classification Using Hidden Markov
Model. IEEE Trans. Patt. Anal. Machine Intell. vol. PAMI-13, no. 11, 1172-1184.

Juang, B. and Rabiner, L. R. (1990). The Segmental K-Means Algorithm for
Estimating Parameters of Hidden Markov Models. IEEE Trans. Acoust. Speech Signal
Processing vol. ASSP-38, no. 9, 1639-1641

 Peterson, D.W. and R.L. Eberlein. (1994). “Reality Check: A Bridge Between
Systems Thinking and System Dynamics.” System Dynamics Review 10(2-3): 159-
174.
 Richardson, G.P. (1996). “Problems for the future of system dynamics.”
System Dynamics Review 12(2): 141-157.

 Scholl, G.J. (1995). “Benchmarking the System Dynamics Community:
Research Results.” System Dynamics Review 11(2): 139-155.

 Sterman, J. D. (1984). Appropriate Summary Statistics for Evaluating the
Historical Fit of System Dynamics Models. Dynamica. 10(2):51-66.

