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Structure  validation means establishing that the relationships used in a model are an 
adequate representation of the real relationships and it can be done in two ways: 
direct structure testing  and indirect structure (or structure-oriented behavior) 
testing. Direct  structure tests assess the validity of the model structure, by direct 
comparison with knowledge about real system structure. This involves evaluating 
each relationship in the model against available knowledge about real system. These 
tests are qualitative in nature; no simulation is involved. Structure-oriented  behavior 
tests on the other hand assess the validity of the structure indirectly, by applying 
certain behavior tests on model-generated behavior patterns. For example, extreme-
condition (indirect) test involves assigning extreme values to selected parameters and 
comparing the model-generated behavior to the “anticipated” (or observed) behavior 
of the real system under the same extreme condition. These are “strong” behavior 
tests that can provide (indirect) information on potential structural flaws. In a typical 
structure-oriented behavior test,   the modeler makes a claim of the form: “if the 
system operated under condition C, then the behavior B would result.” The model is 
then run under condition C and it is said to “pass” this structure-oriented behavior 
test, if the resulting behavior is similar to the anticipated behavior. This article 
presents a computerized algorithm that automates this comparison/testing process. 
The modeler would hypothesize a dynamic pattern from the template of all basic 
patterns (such as "exponential growth", "S-shaped growth", "oscillations", 
"exponential decay"…)  and then run the model under condition C.  The algorithm 
would take the dynamic behavior generated by the model, “recognize” it and test if it 
belongs to the class hypothesized by the modeler. The algorithm, a Hidden Markov 
model-based  pattern classifier,   has been tested with various typical test patterns and 
proven to be quite  effective and reliable.  
 
1. Introduction 
  
 Model validity and validation have long been recognized as one of the main 
issues in system dynamics field. (Forrester 1968; Forrester et al.1974; Forrester and 
Senge 1980; Sterman 1984; Barlas 1989a, Barlas & Carpenter 1990).  Richardson 
(1996) identifies “confidence and validation” as one of the eight key problems for the 
future of system dynamics discipline.  Yet,  there has been little active research 
devoted to the development of concrete methods and tools suitable for system 
dynamics validation.  Barlas (1996) states that  only three of all the articles published 
in System Dynamics Review (between 1985 - 1995)  deal with model 
validity/validation.  Furthermore,   there is no clear evidence of consistent and 
widespread use of even the established validity tools. (See Peterson and Eberlein 1994 
and Scholl 1995).  Barlas et al (1989a and 1997) provides a set of tools (“BTS”) for 
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testing the behavior  validity of a model.  This current article presents a method that 
addresses the structural  aspect of  model validity.  
 Validity of a causal-descriptive (theory-like, “white-box”) model is critically 
different than that of a merely correlational (purely data-driven, “black-box”) model. 
(Barlas 1990 and 1996).  In purely correlational (black-box) modeling, since there is 
no claim of causality in structure, the model is assessed valid, if its output behavior 
matches the “real output” within some specified range of accuracy, without any 
questioning of the validity of the relationships that constitute the model. Models that 
are built primarily for forecasting purpose (such as time-series or regression models) 
belong to this category. On the other hand,  causal-descriptive (white-box) models are 
statements as to how real systems actually operate in certain aspects. In this case,  
generating an “accurate” output behavior is not sufficient for model validity; what is 
crucial is the validity of the internal structure of the model. A white-box model, being 
a “theory” about the real system, must not only reproduce/predict its behavior, but also 
explain how the behavior is generated, and possibly suggest ways of  changing the 
existing behavior. System dynamics models - and all models that are design-oriented 
in general - fall in this category.  In short, it is often said that a system dynamics 
model must generate the “right output behavior for the right reasons.”  
 Validation of a system dynamics model thus consists of two broad components:  
structure validation and behavior validation. Structure validation means establishing 
that the relationships used in the model are an adequate representation of the real 
relationships, with respect to the purpose of the study. Behavior  validation consists of 
demonstrating that the behavior of the model is “close enough” to the observed real 
behavior.  In system dynamics validation, there is no point in testing the behavior 
validity, until the model demonstrates some acceptable level of structure validity.  The 
model would be refuted if it is shown that a relationship in the model conflicts with a 
known/established “real relationship”, even if the output behavior of the model 
matches the observed system behavior. For such models, validity ultimately means 
validity of the internal structure of the model. (See Barlas 1996 for more discussion).  
 Although structure validity is crucial, a big majority of technical research in 
model validation literature deals only with what we call behavior validation. There 
may be two main reasons why structure validity has been ignored so long in modeling 
literature. The first one stems from a lack of recognition of the philosophical 
importance of structure validity in white-box modeling (as opposed to black-box 
modeling). The second reason has to do with the technical difficulty of designing 
formal/statistical tools that  address structure validity. In an attempt to initiate research 
in structure validation, Barlas (1989b and 1996) distinguishes between two types of 
structural testing: 1- direct structure testing, 2- indirect structure (or structure-oriented 
behavior) testing. Direct structure tests assess the validity of the model structure, by 
direct comparison with knowledge about real system structure. This involves taking 
each relationship (mathematical equation or any form of relationship) individually and 
comparing it with available knowledge about real system. There is no simulation 
involved and these tests are as such highly qualitative in nature. (See Forrester and 
Senge 1980 for example tests such as structure confirmation and extreme-conditions).  
Indirect structure (or structure-oriented behavior) tests, on the other hand assess the 
validity of the structure indirectly, by applying certain behavior tests on model-
generated behavior patterns. (See Barlas 1989b; Forrester and Senge 1980). These 
tests involve simulation, and can be applied to the entire model, as well as to isolated 
sub-models of it. For example, extreme-condition (indirect) test involves assigning 



 

extreme values to selected parameters and comparing the model-generated behavior to 
the “anticipated” (or observed) behavior of the real system under the same extreme 
condition. (See Barlas 1989b for illustrations). 
 Structure-oriented behavior tests are strong behavior tests that can provide 
information on potential structural flaws. Their main advantage over direct structure 
tests is that they are much more suitable to formalize and quantify. Thus, Barlas 
(1996) submits that structure-oriented  behavior testing is the most promising 
direction for  research on model validation. Earlier examples of such tests include the 
“Qualitative Features Analysis” by Carson & Flood (1990) and the “Reality Check” 
feature of VENSIM simulation software. (See Peterson and Eberlein 1994). In this 
article, we offer a method, a software, developed for structure-oriented behavior 
testing.   
 
2. Automated Dynamic Pattern Recognition/Testing 
   
 In a typical structure-oriented behavior test,   the modeler makes a claim of the 
form: “if the system operated under condition C, then the behavior B would result.” 
The model is then run under condition C and it is said to “pass” this structure-oriented 
behavior test, if the resulting behavior is similar to the anticipated behavior. The test 
condition “C” is typically (but not always) an “extreme condition” since we are much 
better at anticipating the behavior of the real system under extreme conditions.  For 
example, the modeler may claim that the food consumption (and household waste, 
etc) would gradually decline to zero, if birth rate is set to zero. The model is run under 
this extreme condition and if it yields a different dynamics (such as growing food 
consumption) we suspect that there are some structural flaws in the formulations.  
Note that in this general version of the test, the modeler hypothesizes a certain 
“dynamic pattern” (like “gradual decline to zero”) and then tests if the model yields 
the expected dynamic pattern. The comparison of the anticipated and model-generated 
patterns is done visually by the modeler, which makes the test subjective and time 
consuming (considering hundreds of such comparisons).  An automated dynamic 
pattern comparison/testing software could be a big contribution.  (Reality Check 
feature of VENSIM  incorporates a limited version of this type of extreme-condition 
testing, where the “anticipated behavior” is simply a numeric value, not a dynamic 
pattern).  The purpose of this research is to design a computerized algorithm that can 
take two dynamic patterns, compare them and decide if they “belong to the same 
class.”       
 The first problem in the design of a dynamic pattern recognition/validation tool is 
the determination of the basic patterns to be included in the algorithm. The theory and 
practice of system dynamics define some forms of basic behavior patterns. A survey 
of simple analytical models reveals certain types of patterns, including constant, 
linear,  positive and negative exponential trends, s-shaped growth, growth-and-decline 
and oscillations.  These basic patterns, although derived from simple structures, are 
also frequently encountered in many large-scale and complex models.  
 The shape of the basic patterns mentioned above can be characterized by various 
combinations of constant, growth, decline and oscillatory components.  A second 
characterization could be the nature of the rate of growth or decline (negative linear, 
positive linear, negative exponential, positive exponential or zero) in successive time 
segments. Using this approach, the set of basic patterns can be enriched further to 
include patterns such as decline-and-exponential growth or boom-then-bust.  Figure 



 

2.1 shows the complete template of  basic behavior patterns used  in the method. 
Observe that there are six classes of basic patterns (constant, growth, decline, growth-
then-decline, decline-then-growth and oscillatory). Each pattern class may in turn have 
several pattern variants. For instance, the “growth” class consists of four different 
growth patterns: (a) linear growth, (b) exponential growth, (c) negative exponential 
growth and (d) s-shaped growth. Similarly, the “growth-then-decline” class consists of 
(a) growth-then-exponential decay to zero, (b) growth-then-exponential decay to non-
zero and (c) growth-then-crash. (When the steady-state behavior approaches an 
equilibrium value, whether the equilibrium value is zero or non-zero may be important 
in evaluating the validity of the extreme-behavior, although this difference seems 
mathematically trivial. A zero equilibrium is an indication of the total extinction of the  
variable, which, for example in a population model, has a very different real-life 
meaning that a nonzero equilibrium). 
 Oscillation is the last  basic pattern on the template of Figure 2.1.  Oscillation 
could  be further classified as neutral, damped, expanding, or can even be regarded as 
an additional pattern component riding on top of any of the patterns listed above.  In 
this research however, we consider oscillation more broadly and treat it in three 
subclasses: around a constant mean, around a growing trend  and around a declining 
trend. Once the fundamental method proves its effectiveness with the basic patterns of  
Figure 2.1, extending the template to include additional patterns should not be too 
difficult. 
 With the proposed algorithm, the modeler can automatically test a claim like: “if 
the system operated under condition C, then an exponential crash would result.” S/he 
would choose the basic pattern “Decline(b)” from the template and then run the model 
under condition C. The algorithm would take the dynamic behavior generated by the 
model, “recognize” it and test if it belongs to the hypothesized class (Decline(b)).  A 
thorough structure-oriented behavior test would consist of making numerous validity 
claims, then let the computerized algorithm test them one by one automatically and 
report the fraction of passes.    
  
3. Selection And Extraction Of Features From Data 
  
 Automating the structure-oriented behavior testing is in part a “pattern 
recognition/classification” problem. The pattern recognition literature is quite rich 
with  different approaches and algorithms. But due to the “dynamic” nature of our 
pattern recognition problem, the classical pattern recognition algorithms are 
inadequate for this task. Therefore, a dynamic pattern recognition algorithm based on 
“Hidden Markov Models” is to be developed. The major difference between classical 
and Hidden Markov Model (HMM) based pattern recognition lies in the feature 
extraction process. In HMM-based pattern recognition, one-dimensional data is 
divided into segments and a sequence of feature vectors is extracted, whereas in 
classical approach a single feature set is extracted from the whole data. Patterns to be 
recognized in dynamic patterns which are the subject of this study are inherently one-
dimensional and suitable for HMM implementation. 
  In our dynamic behavior recognition problem, a dynamic signal can be denoted by 
a sequence y(k), k = 1, 2, … , K, where K is the number of data points. As depicted in 
Figure 3.1, such a signal would be a somewhat distorted (or "noisy") version of one of 
the patterns given in the template of Figure 2.1. The procedure starts with dividing the 
sequence y(k) into T number of segments of equal length L. Each segment is denoted 



 

 
 

  
 Figure 2.1. Template of Dynamic Patterns 



 

 
by the sequence yt(l), t = 1, 2, …, T. 
 
 yt(l) = y [(t-1)L+l],  l = 1, 2, … , L     (3.1) 
 
Here, the choice of value T is one of the decisions to be made in the design of the 
recognition system.  
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 Figure 3.1. A Dynamic Signal Example 
 
 The next step is to extract features from each data segment. Basic dynamic 
patterns are characterized by successive time segments of growth or decline and their 
trends (as growing or declining rates). Therefore, it is reasonable to form our feature 
vector using the slope and 2nd derivative ("curvature") information of the data in each 
segment. The features can be obtained by fitting polynomials to each segment data. 
The slope of the first order polynomial provides trend information which is either 
growth, decline or constant. The second order polynomial can be used to obtain the 
second derivative (which will yield the curvature information).  
 In our sample data illustrated in Figure 1, we have K=120 data points and 
assuming that we have taken number of segments as T = 6, the segment size becomes 
L = 120/6 = 20. The 5th segment shown in Figure 3.2 includes data points from 81 to 
100. 
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 Figure 3.2. Segment 5 of the Signal given in Figure 3.1 
 



 

The first order polynomials fitted on the segment data points are in the form of, 
 

 ft(x) = φt1 x+ φt0 ,  t =1, 2, ... T     (3.2) 
 

where, x is a normalized continuous independent variable such that k=1 and k=K 
correspond to x=0 and x=1 respectively. Here, the value of φt1 is our first feature that 
provides the slope information. 
 The second order polynomials are in the form of, 
 

 gt(x) = γt2 x
2 + γt1 x + γt0, t =1, 2, ... T     (3.3) 

 

This can be used to drive the second derivative, however, instead of using simply 
d2gt/dx2 , we use "curvature" ct(x), given by, 
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which is more relevant for our purpose, owing to the “shape” information it yields. 
Curvature value at any point on the fitted polynomial can be easily calculated from 
(3.4). We take the midpoint of the segment, denoted by κt, and evaluate the curvature 
ct(κt) at the midpoint, as our second feature. 

In addition to the slope and the curvature, the level of the state variable also 
provides useful information. Thus, the segment mean becomes our third feature.  
, 
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 To sum up, our feature vectors are M = 3 dimensional and are given by three 
components slope, curvature, and mean, 
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Therefore, the result of the segmentation and feature extraction process for a 
pattern sample using T number of segments is a sequence {o1, o2, …. , oT}. For the 
example signal in Figure 3.1 - and specifically for its 5th segment in Figure 3.2-  
feature extraction yields, 
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4. Continuous Density HMM 
 
In a Markov process, a new state st ∈ {1, 2, ... , N} is entered at each step t = 1, 2, 

...., T, depending on an initial probability vector Π and a state transition matrix A, 
where 
 

Π ={πi}, πi = Pr(s1 = i),   i = 1, 2, …., N    (4.1) 
 

A = {aij}, aij  = Pr(st+1 = j | st = i)  i, j = 1, 2, …. N   (4.2) 
 

 T = length of the state sequence 
 

 N = number of states. 
 



 

 The resulting state sequence is denoted by S = {st, t = 1, 2, ... ,T} and its 
realization probability is given by, 
 

Pr ( S | A, Π ) =π s s s
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 In a continuous density HMM the states of the process are not observed directly. 
The outcome of the process is a sequence of vectors O ={o1, o2, ..., oT} where ot ∈ 
ℜM, M-dimensional Euclidean space. The output vector is produced according to a 
probability distribution, depending on the current state. There are N number of 
observation-vector probability distributions, denoted by a vector B, where 
 

 B = {bj (ot)}, bj(ot) = a posteriori density of observation vector ot in state j 
           (4.4) 
 

 Here we make the assumption that the observation densities are Gaussian. In this 
case, a conditional mean vector µj and a conditional covariance matrix Vj determine 
the density corresponding to state j . We denote this density as N(µj ,Vj). 
 A continuous density HMM is specified by parameters A, Π, and B. The 
parameters can be compactly represented as a set denoted by λ = (A,Π,B). 
 With this model, a process is described such that transition probabilities from a 
step t to t+1 is only dependent on the state at step t. This may not always provide 
satisfactory results when dynamic behavior patterns are considered. In order to 
increase the realism of the model, a nonstationary component can be introduced, i.e. 
by introducing time-dependence in transition probabilities (He and Kundu 1990). In 
this case, rather than having a single state transition matrix, A, we have T-1 number of 
matrices, At, t=1,2,..,T-1. 
 The states of an HMM only reflect clustering properties of the features and should 
not be regarded as having a physical meaning (He and Kundu 1990). 
 
5. Application Of HMM To Dynamic Behavior Recognition 
  
 In our problem, each observation vector, ot, is the feature vector extracted from 
the tth segment of the signal as explained in Section 3. Each pattern class is 
characterized by a HMM, i.e. λ = (A,Π,B), which is built using the training pattern 
set.  
 
Optimization Criterion 
 Suppose we are given a model λ and an observation sequence O = {o1, o2, …., 
oT}. A choice of optimization criterion in estimation (training) and classification 
processes is to maximize the state-optimized likelihood function (Juang and Rabiner 
1990) defined by, 
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where, S* = {s1*, s2*, … ,  sT*} is the state sequence associated with the state-
optimized likelihood function. 

Equation (5.1) is the density of the optimal or the most likely state sequence path 
among all possible state sequences. 



 

 
5.1 Training of the HMM 
 The training procedure is the process in which the model parameter set λ = 
(A,Π,B) for a class is adjusted so that the state optimized likelihood function defined 
in (5.1) is maximized for the "training set" of that class. (A training set for a given 
class is a collection of dynamic patterns, all of which are "noisy" versions of the basic 
dynamic pattern that define that classs). At the end of the training phase, the algorithm 
essentially "learns" the basic dynamic pattern of a given class.  For Gaussian density 
functions, there is a "segmental K-means algorithm" that  converges to the state-
optimized likelihood function (Juang and Rabiner 1990). Segmental K-means 
algorithm can be outlined briefly as below. 

 Given an initial model !λ 0, calculate 
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iteratively until ! !λ λk k+ =1 , where k is the iteration number. Maximization of the 

state-optimized likelihood p(O,S*|λ) in (5.2) for each training observation sequence is 
achieved using the Viterbi algorithm (given in Appendix A). Given a model λ = 
(A,Π,B) and an observation sequence O ={o1, o2, ..., oT}, the Viterbi algorithm finds 
the state-optimized likelihood function and the optimal state sequence. At each 
iteration, the optimal state sequences are assigned to the observation vectors of each 
training sample. The new states are again used to estimate new model parameters. The 
iteration proceeds until none of the state assignments change at the end of the 
maximization. (Appendix A). A more detailed description of the process is given by 
the numerical example in the next section. 
 
5.2 Classification 
 As a result of the training procedure, we obtain one HMM for each class. We 
denote the P models by λp , p = 1, 2, …, P. When a signal O of unknown class is 
given, we calculate p(O,S*|λp) for each class p = 1,2,..,P using the Viterbi algorithm. 
The goal is to clasify the given signal in one of the known pattern classes.  The 
classification is based on the state-optimized likelihood function which is a measure 
of how well the input signal is representative of a given class. However, the likelihood 
values for different classes by themselves may not be suitable for direct comparison, 
depending on the degree of dispersion of the training feature vectors within their 
clusters. He and Kundu (1990) normalize the state-optimized likelihood function for a 
class by dividing it to the mean of the likelihoods of the training set used for that 
class. We move one step further and take into account the variation of the likelihood 
function values of the training samples within classes. Our criterion is the state-
optimized likelihood value of the input signal normalized by the mean, mp, and the 
standard deviation of the likelihood function of the training set, !σ p

. We denote the 

normalized likelihood function by h(O,S|λp) such that, 
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where, np is the number of training samples used for class p and Oi
p is the observation 

(feature) vector sequence extracted from the ith training sample of class p. 
 When an input does not belong to any of the classes, it should not be erroneously 
classified into one of the classes. The criterion in (5.3) also allows us to define a 
common lower rejection region. Since the likelihood values of the training set are 
approximately normal, (5.5) is an estimator for the population standard deviation. We 
take the ad hoc value of 3 times the standard deviation of the likelihood functions 
within a class as our rejection region. Thus, if the outcome of the classifier (5.3) is less 
than 3.0 for all P classes, we classify the input signal into the “none” class. Therefore 
our classification rule becomes: 
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6. Training Of A Pattern Class - A Simplified Example 

 
In this simplified example we a have training set of 8 sample patterns each 

belonging to the “negative-exponential growth” class. Each pattern consists of 120 
data points. The training samples are presented in Figures 6.1 (a) and (b). 

We take number of segments T =10 and number of states, N=3 as model 
parameters. For simplicity of illustration, a stationary model will be used. 
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Figure 6.1 (a) Training samples for negative-exponential growth class (Samples 1 - 4) 
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Figure 6.1 (b) Training samples for negative-exponential growth class (Samples 5 - 8) 
 
 

The first step in the training procedure is to segment each pattern and extract 
features from the segments as outlined in Section 3. The resulting observation 
sequence for sample 1, denoted by O1, is a set of 10 vectors of size 3x1: 
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Here, the first feature corresponds to the slope in the segment, the second designates 
curvature, where the negative and positive values indicate concave down or up 
respectively. The third feature gives level information. We have similar vector 
sequences for the training samples 2 to 8, which make altogether 80 feature vectors. 
 
Initial Model.  

First, all 80 feature vectors are clustered in 3-dimensional space. We use the same 
minimum distance algorithm used by He and Kundu (1991). The result is an 
assignment of each feature vector, Sj ={sjt , t = 1,2,…,6} for j = 1,2,…,8, to one of the 
3 states: 

 
 

S1 ={1,2,3,3,3,2} 
S2 ={1,3,2,2,3,3} 
S3 ={1,2,3,3,3,3} 
S4 ={1,2,2,3,3,3} 
S5 ={1,2,2,3,2,3} 
S6 ={1,2,2,3,3,3} 
S7 ={1,2,3,3,3,2} 
S8 ={1,2,3,3,3,3} 
 

Clustering of the vectors into 3 states in 3-dimensional space is visually depicted 
in Figure 6.2. 
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Figure 6.2. Initial cluster of the feature vectors. (+: State-1, o: State2, x: State3) 
 

 
From these state assignments, initial model parameters are estimated. Initial 

probability vector, Π, and the state transition matrix, A, can be calculated using (He 
and Kundu 1990): 
 

For 1 ≤ i ≤ N 
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For the current state assignment, calculation yields, 
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The mean vectors and the covariance matrices for states 1, 2, and 3 are estimated 
using (He and Kundu 1990): 
 

For 1 ≤ i ≤ N 
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Calculation of the mean vector and covariance matrix for this state assignment gives 
the following: 
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and, 
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The values µi and Vi determine the observation probability densities, B, such that, 
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Iteration 1. 

For the model, λ=(A, Π, B), at hand, optimal state sequences for the 8 
observation sequences are traced using the Viterbi algorithm (Appendix A). The 
resulting state sequences, Si, i=1,2,..8, and their corresponding state-optimized 
likelihood function values are calculated to be: 
 

S1 ={1,2,3,3,3,3} (-13.2520) 
S2 ={1,3,2,2,3,3} (-22.6685) 
S3 ={1,2,3,3,3,3} (-7.4058) 
S4 ={1,2,2,3,3,3} (-6.4410) 
S5 ={1,2,2,3,3,3} (-10.1784) 
S6 ={1,2,2,3,3,3} (-6.7685) 
S7 ={1,2,3,3,3,2} (-7.6222) 
S8 ={1,2,3,3,3,3} (-4.5015) 
(note that the optimum "likelihood functions" shown in parentheses are negative, 
bacause logarithms of the likelihoods are taken in computations in order to prevent 
numerical errors) 
 

The assignment of the observation vectors to different states, new model 
parameters, λ = (A,Π,B), are reestimated using (6.1-5). The cycle of model parameter 
estimation and tracing the optimal state sequences is repeated until no new 
assignments are made. At the end of the 5th iteration, the model converges to: 
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The above HMM model characterizes the “negative-exponential-growth” class. 

The final cluster of the feature vectors is depicted in Figure 6.3. 
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 Figure 6.3. Final cluster of the feature vectors. (+: State-1, o: State2, x: State3) 
 
7. Classification Examples 

 
This section is intended to give a few classification examples. The HMMs for 5 

classes are trained using training sets with sizes ranging from 29 to 119 samples. 
Referring to Figure 1.1 these classes are : i) negative-exponential growth (2-c), ii), 
positive-exponential growth (2-b), iii) S-shaped-growth (2-d), iv) Growth-and-
decline-to-zero (4-a), v) Growth-and-decline-to-nonzero (4-b). In the feature 
extraction process, data is divided into 12 segments. The nonstationary HMMs are 
based on 6 states. 

The test samples, representative of each of the 5 classes, have been used for 
illustration (Figures 7.1 to 7.5). Here, the test signal in Figure 7.1 is generated from 
class 2-b, Figure 7.2 from class 2-c, Figure 7.3 from class 2-d, Figure 7.4 from  class 
4-a, and, Figure 7.5 from class 4-b. In the generation of the test samples, “pure” 
patterns of their representative classes are first constructed, and then autocorrelated 
noise is added. The noise level used in the test samples is comparable to the average 
noise level in the training samples. Finally, the test sample-6 shown in Figure 7.6 is a 
signal that is generated from a pattern that does not belong to any of the 5 pattern 
classes.  



 

   
 Figure 7.1. Test Sample-1 Figure 7.2. Test Sample-2 
 

  
 Figure 7.3. Test Sample-3 Figure 7.4. Test Sample-4 
 

  
 
Figure 7.5. Test Sample-5 Figure 7.6. Test Sample-6 
 
Test Sample-1 

For the first test sample, the calculation results of the classification criterion, 
which is the normalized optimum likelihood function (5.3), is given in Table 7.1. 
According to our classification rule (5.6), the maximum value is attained for Class 2-
b. Thus, Test Sample-1 is corerctly classified as belonging to class 2-b, i.e. positive 
exponential growth. 
 
Class 2-b Class 2-c Class 2-d Class 4-a Class 4-b 
-1.958 -13.086 -3.749 -11.923 -12.862 

Table 7.1. Normalized optimum likelihood values of the Test Sample-1 for each of the 5 classes. 
(Negative values result from logarithms used in computations in order to prevent numeric errors) 
 
Test Sample -2 

Similarly, the normalized state-optimized likelihoods for each HMMs of Test 
Sample-2 are presented in Table 7.2. The greatest likelihood is observed for Class 2-c, 
which is the negative exponential growth - correct class. 



 

 
Class 2-b Class 2-c Class 2-d Class 4-a Class 4-b 
-25.173 -0.925 -3.3775 -7.110 -4.602 

Table 7.2. Normalized optimum likelihoods of the Test Sample-2 for each of the 5 classes. 
 
Test Sample -3 

By similar reasoning, Test Sample-3 is correctly classified into Class 2-d, i.e. s-
shaped growth class. 
 
Class 2-b Class 2-c Class 2-d Class 4-a Class 4-b 
-12.409 -8.054 0.257 -16.405 -14.917 

Table 7.3. Normalized optimum likelihoods of the Test Sample-3 for each of the 5 classes. 
 
Test Sample-4 

As a result of the classification rule, Test Sample-4 is correctly classified into 
Class 4-a, which is the growth-and-decline-to-zero pattern. 
 
Class 2-b Class 2-c Class 2-d Class 4-a Class 4-b 
-27.459 -9.906 -8.336 -1.526 -1.783 

Table 7.4. Normalized optimum likelihoods of the Test Sample-4 for each of the 5 classes. 
 
Test Sample-5 

Test Sample-5 is classified correctly into Class 4-b, i.e. growth-and-decline-to-
nonzero pattern. 
 
Class 2-b Class 2-c Class 2-d Class 4-a Class 4-b 
-27.401 -9.747 -8.220 -1.816 -0.647 

Table 7.5. Normalized optimum likelihoods of the Test Sample-5 for each of the 5 classes. 
 
Test Sample-6 

Table 7.6 shows the normalized state optimized likelihoods of Test Sample-6 
under the five HMMs corresponding to each class. The largest likelihood seems to 
occur with Class 2-d, which is the s-shaped growth. However, this value is less than    
-3.0, and, according to classification rule (5.6) the input sample is correctly classified 
as belonging to none of the classes. 
 
Class 2-b Class 2-c Class 2-d Class 4-a Class 4-b 
-23.424 -9.495 -6.843 -14.976 -15.079 

Table 7.6. Normalized state-optimized likelihoods of the Test Sample-6 for each of the 5 classes. 
 
       The above test examples demonstrate that the algorithm can indeed classsify a 
given dynamic pattern into the proper pattern class. We are now in the process of 
testing the performance and reliability of the algorithm with extensive input test 
patterns. Results obtained so far are very promising.  
 
 
 
 
 



 

 
8. Conclusion 

 
This article presents an automated, computerized method for Structure-oriented  

behavior testing. In a typical structure-oriented behavior test,   the modeler makes a 
claim of the form: “if the system operated under condition C, then the behavior B 
would result.” The model is then run under condition C and it is said to “pass” this 
structure-oriented behavior test, if the resulting behavior is similar to the anticipated 
behavior. This paper presents an algorithm that automates this comparison/testing 
process. The modeler would hypothesize a dynamic pattern from the template of all 
basic patterns (such as "exponential growth", "S-shaped growth", "oscillations", 
"exponential decay"…)  and then run the model under condition C.  The algorithm 
takes the dynamic behavior generated by the model, “recognizes” it and tests if it 
belongs to the class hypothesized by the modeler. The algorithm, a Hidden Markov 
model-based  pattern classifier,   has been tested with various typical test patterns and 
proven to be very effective and reliable. 

The tool, being a “dynamic behavior pattern recognizer/classifier”, can potentially 
contribute in other steps of system dynamics methodology, most notably in data 
analysis, reference behavior identification, behavior validation and finally in 
automating policy improvement (pattern-oriented) simulation experiments.    

 
Appendix A - Viterbi Algorithm (He and Kundu 1990) 
 
Step 1. Initialization 
For 1 ≤ i ≤ N, 
 

δ1(i) = πibi(oi ) 
ψ1 (i) = 0 

 

Step 2. Recursive computation 
For 2 ≤ t ≤ T for 1 ≤ j ≤ N 
 

[ ]δ δt
i N

t ij j tj i a b o( ) max ( ) ( )=
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1
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i N

t ijj i a( ) argmax ( )=
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Step 3. Termination 
 

( )[ ]P i
i N

T
* max=

≤ ≤1
δ  

s*T = [ ]arg max ( )
1≤ ≤i N

T iδ  
 

Step 4. Tracing back the optimal sequence. 
For t = T-1, T-2, …, 1 
 

s*T = ψt+1 (s*t+1 ) 
 

P* is the state-optimized likelihood function, and 
S* = {s1* , s2* , …, sT*} is the optimal state sequence. 
 
Note 1: When calculating the state-optimized likelihood function using the Viterbi 
algorithm, successive multiplications in the evaluation of δt(j) may lead to underflow 



 

errors. To avoid this, logarithms of probability and density values are taken and 
multiplications are replaced by additions. Logarithms for zero values can be assigned 
a very small negative number. 
 
Note 2: The procedure above is given for a stationary HMM. In nonstationary models, 
aij’s in the algorithm are replaced by aij(t)’s. 
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