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ABSTRACT 
 
The current literature review investigates the literature of dynamic decision 

making. Based on the 33 empirical studies published from 1978 to 1997, the study 
provides five categories for grouping the dependent variables: task performance, 
learning, efforts for decision making, quality of decision-making process, and 
decision-making architecture. 24 predictors have also been conceptualized in three 
categories: decision makers' factors, task complexity, and decision-making interfaces 
and environments. Overall speaking, the research has not been able to find any single 
explanatory indicator of decision-makers' cognitive / learning style. Predictors 
related to task complexity have been mostly significant effects on task performance 
and verbalizable knowledge. Finally, most of the predictors related to decision-
making interfaces and environments are still controversial as the decision aids for 
dynamic decision behavior. Theoretical foundations of expertise, task complexity, 
mental model, and information feedback have also been discussed to shed light on the 
future research directions. 
 



 

  

1.  INTRODUCTION 
 
The present study will review these studies following the three defining 

characteristics (Edward, 1962) plus the real time and interaction functions expanded 
by the researchers.  In addition, complex problem solving (CPS) and dynamic decision 
making (DDM) will be used interchangeably throughout the studies with notes that the 
European literature (particularly the German’s) uses CPS, and the English literature 
uses DDM.  The major purposes of the literature review are to provide a framework to 
involve the central variables, to synthesize the empirical findings extracted from the 
studies using various dynamic decision tasks, and to explore the theories based on 
which the studies hypothesize and extend their empirical examinations. 

As the limit of the paper’s length, the current edition is an excerpt from the full 
paper with the same title, which can be downloaded from the Internet at 
http://ALPHA1.albany.edu/~nh7365/litrev1.htm. 

 
2.  EVALUATIVE  CRITERIA  AND  PREDICTORS 

 
Three topics are discussed in the section.  In the first place, while a thorough 

historical examination of research paradigm for the DDM research will not be 
attempted here (more details in Brehmer, 1992; Brehmer and Dorner, 1993), some 
methodological issues have to be briefly introduced for the background of the 
literature review.  A summary of the dynamic decision tasks will then be provided in 
Table 1.  Secondly, five groups for the evaluative criteria (Table 2) have been 
identified through examining various measures employed by the empirical work 
collected.  Thirdly, in the same manner, three groups and 24 conceptual definitions of 
predictors (Table 3) can be extracted.  The present study presumes that examining the 
measurement issues of these evaluative criteria and predictors independently would 
contribute to the synthesis of the empirical findings. 

 
3.  DESCRIPTIVE  AND  PRESCRIPTIVE  FINDINGS 

 
The foregoing discussion for the evaluative criteria and predictors for dynamic 

decision behavior has provided the basic construct of hypotheses – the dependent 
variables, independent variables, and their measurement.  The major task of this 
section is to summarize the empirical findings, and if possible, to synthesize them.   

Two types of the nature of the empirical findings can be identified, although 
they are in some cases intertwined in the same hypothesis.  Descriptive findings are 
those describing dynamic decision behavior, for instance, how task performance 
would be affected by varying lagged effects inherent in task structure.  Then based on 
the nature of dynamic decision behavior revealed by the descriptive findings, 
prescriptions to improve in terms of the evaluative criteria (Table 2) can be proposed 
and tested.  Accordingly, most if not all of the prescriptions are those predictors 
related to decision-making interfaces and environments (IVC1 to IVC11 in Table 3).  
Some empirical findings about decision makers’ factors (IVA1 to IVA4 in Table 3) 
may suggest prescriptions.  Empirical findings involving task complexity (IVB1 to 
IVB9 in Table 3) are essentially descriptive.  The ongoing discussion will proceed in 
order of the three categories of the predictors.  In each category, hypotheses, as well as 
the empirical results, will be brought up in order of the degree of agreement among 
the studies based on the authors’ judgment. 



 

  

 

3.1.  Decision Maker’s Factors 
Computing skills (IVA3 in Table 3) have been demonstrated to be irrelevant to 

task performance (A1 in Table 2), though only one study did this test (Trees et al., 
1996).  Nevertheless, the irrelevance of computing skills appears quite predictable if 
subjects are allowed to spend sufficient time familiarizing themselves with 
computerized gaming interfaces, which is exactly the case for all studies reviewed.  In 
addition, researchers have to produce user-friendly computer interfaces so that 
subjects’ computing skills would not interfere in their experiments.  Therefore, both 
the direct impact of computing skills on task performance and the indirect impact 
through information display are usually reduced to the minimal degree. 

Cognitive style (IVA1 in Table 3) has been hypothesized to be significant as 
certain functions of cognitive components may be necessary for performing dynamic 
decision tasks.  Generally, the reviewed studies have revealed little effect of cognitive 
style / learning style on task performance (A1 in Table 2), task knowledge (B1 in 
Table 2), decision time (C1 in Table 2), and information use (C2 in Table 2) 
(Maxwell, 1995; Trees et al., 1996).  The sole minor exception is that Abstract, one of 
the Gregorc Style Delineator scales which indicates the extent to which people prefer 
to learn deductively with big picture, concepts, and theory first followed by examples, 
has marginal explanatory power for task performance (Trees et al., 1996).  The 
marginal effect, unfortunately, has not been replicated in other experimental settings.  
Compared with the English literature, the European research seems to be more 
intensive on the effect of test intelligence on task performance and knowledge, as 
detailed by Brehmer (1992), Buchner (1995), and Funke (1995).  The results, in 
general, have been similar to those about cognitive and learning style in the English 
literature – the relationship between test intelligence and task performance and 
knowledge, if any, seems to go beyond the global intelligence score, such as IQ.  A 
promising direction points to singling out components of intellectual ability of 
information processing. 

Task expertise (IVA2 in Table 3) from academic background or intensive 
training sessions seems more relevant to dynamic decision behavior compared with 
the previous cognitive style and computing skills.  The relevance stems from a general 
belief that experts usually do better than novices in dealing with the tasks on which 
they possess domain knowledge (Fong and Nisbett, 1991).  The surveyed studies 
nevertheless provide contradictory evidences on task performance (A1 in Table 2).  
Bakken (1993), choosing student subjects with business management background, 
finds that they master a real estate game, which presumably requires more 
management expertise, better than oil tanker game.  They are also found to be able to 
learn from the original real estate game (B5 in Table 2).  Exposed to a two-day 
training session on simulation techniques and general knowledge of social welfare, 
however, Maxwell’s student subjects show no performance difference from those 
without receiving the training (Maxwell, 1995).  As the dynamic tasks used by both 
studies appear to be similar in terms of delays, nonlinearity, and positive feedback 
structure (Table 1), it is plausible that task domain knowledge obtained by enduring 
academic exposure, rather than pre-task training sessions, relates to task performance.  
Similar inconsistent findings have also been discovered in the European literature 
(Buchner, 1995), which has showed that experts, such as economic aid professionals 
with 6 to 8 years of experience, are more capable of taking into account conflicting 



 

  

goals and hence perform better than novices, such as postgraduates just about to start 
an economic aid career.  However, evidences are mixed to support that experts can 
really develop better heuristics knowledge for specific tasks.   

Note that task expertise here points to general domain knowledge rather than 
those strategies and decision rules tailored for specific decision tasks measured by 
IVC4 in Table 3.  While both may serve as prescriptions for decision performance and 
task knowledge acquisition, few experiments have examined whether and how general 
knowledge (or epistemic competence) can help decision makers develop specific 
heuristics (or heuristics competence).  Exploring the components of task domain 
knowledge related to heuristics-producing knowledge appears to be a research 
direction.  

The preceding three predictors – computing skills, cognitive styles, and task 
expertise from academic background – stand uniquely for they have been solidly 
possessed by decision makers prior to tasks rather than quickly trained and infused 
into decision makers such as those decision heuristics (IVC4 in Table 3).  In the same 
vein, it appears instructive to extract the enduring characteristics from decision 
makers’ behavior.  This idea has been realized by a stream of the European CPS 
research studying characteristics of either successful or unsuccessful decision makers 
in managing dynamic decision tasks.  Particularly, observing the behaviors of those 
unsuccessful subjects leads to the pathologies of dynamic decision making, such as 
tendency to shift goals, sticking to one specific goal that decision makers feel doable, 
refusal to make decisions, blaming others for failure, and inappropriate delegation of 
decision-making responsibility (Dorner, 1980). 

Practice and task experience (IVA4 in Table 3), appearing a straightforward 
predictor for decision behavior, have inspired much in-depth discussion among the 
literature.  Almost all studies reviewed presently, with few exceptions such as the 
results reported by Berry and Broadbent (1987) and Sengupta and Abdel-Hamid 
(1993), have discovered a positive effect on task performance (A1, A2, and A4 in 
Table 2) both for simple tasks such as a computer person game (e.g., Berry and 
Broadbent, 1984) and for much more complicated tasks such as a real estate game 
(Bakken, 1993).  Task experience through practicing in dealing with dynamic decision 
tasks, as has been examined for static tasks, presumably helps decision makers 
familiarize themselves with decision environments, explore the relationships of 
decisions and outcomes by trial and error, enhance their understanding of task 
structure, and develop reliable decision rules.  All these benefits contribute to 
improvement for task performance.  It seems fair, in the first place, to conclude that 
this “ultimate” purpose – improving task performance – seems to be achieved through 
sufficient practice based on the empirical findings reviewed.  Additionally, decreasing 
decision time (C1 in Table 2) has also reflected decision makers’ growing degree of 
task familiarity through practicing as reported by several studies (e.g., Brehmer, 1990; 
Diehl and Sterman, 1995).  Brehmer and Allard (1991) also shows that task 
experience may affect the behavior of information use (C2 in Table 2), implying that 
decision makers have gradually develop their resource allocation strategy, although 
they may not change delegation behavior of dynamic decision making (E1 in Table 2). 

More controversial yet inspiring discoveries, nevertheless, come from the 
experiments to examine the effect of task experience on acquisition of verbalizable 
knowledge (B1 in Table 2).  In one of the pioneering studies previously classified as 
the first thread of the literature, Broadbent and Aston (1978) reveal that subjects’ 
verbal knowledge shows no progress even though sufficient task experience has been 



 

  

able to upgrade task performance.  This seemingly unreasonable result has been 
replicated in different task environments and experimental settings (Berry and 
Broadbent, 1984; Berry and Broadbent, 1988).  Some experiments even find that task 
experience impairs verbal knowledge (Broadbent et al., 1986; Berry and Broadbent, 
1987).  Berry and Broadbent’s evidences (1987) show that this surprising loss of 
verbal knowledge through practicing tasks only applies to the knowledge on the direct 
relationships of variables, rather than to that on the crossed relationships of variables.  
A direct relationship refers to the relationship between two semantically linked 
variables such as sugar output and work force in the sugar production game (Berry and 
Broadbent, 1984), and a crossed relationship is that between two semantically distant 
variables, such as sugar output and computer person behavior.   

Sanderson (1989) suspects that the so-called dissociation between task 
performance and verbal knowledge may just result from insufficient task experience.  
He set up an experiment varying the amount of practice from 4 trial blocks to a 2-day 
session and found that task performance and verbal knowledge did go hand-in-hand.  
Note that, however, Sanderson adopts an alternative approach to assess verbalizable 
knowledge (B4 in Table 2) in addition to the conventional measure, the number of 
post-task questions correctly answered (B1 in Table 2) as described above.  The 
confusing effect of task experience on learning seems also to interact with other 
predictors employed in experiments, such as lagged effects.  More discussion will be 
brought up later.  

 

3.2.  Task Complexity 
As detailed above, nine indicators reflect task complexity of dynamic decision 

making (IVB1 to IVB9 in Table 3).  No evidence supports any differential effect of 
real time simulation tasks (IVB9 in Table 3) on task performance (A1 in Table 2) and 
on decision time (C1 in Table 2), although a real-time task appears more difficult than 
a decision-driven task due to the fact that clock-driven systems keep changing even 
without decisions entered.  First of all, this finding needs to be confirmed since only a 
single study has done a formal test (Brehmer, 1995).  Further, it is likely that other 
predictors of task complexity confound the effect of real-time simulation tasks.  For 
example, the fire-fighting task used by Brehmer (1995) contains so powerful lagged 
decision effectiveness (IVB6 in Table 3) that it may be the major cause for degraded 
task performance, whether the task operates in the clock-driven or event-driven 
modes.  Manipulating the two simulation modes in a relative simple task should be a 
proper research design to confirm the discovery.  

With a welfare administration model, Mackinnon and Wearing (1980) examine 
the influence of another three predictors related to task complexity – total number of 
variables (IVB1 in Table 3), interaction between subsystems (IVB2 in Table 3), and 
random variation (IVB3 in Table 3) – on task performance (A1 in Table 2).  They 
hypothesize that task performance would be deteriorated by the increasing number of 
variables, random variation built in the task, and existing interaction between task 
subsystems.  The empirical evidences support the first two predictions at least 
marginally, but the effect of subsystems interaction turns out to be opposite to that 
expected – subjects perform better when interaction exists.  Again, unfortunately, 
these findings have never been replicated in other studies.  A note worth taking here is 
that it should not be totally surprising for evidences showing that subjects can perform 
well in a task system with the growing degree of interaction between subsystems.  



 

  

Research on systems theory and system dynamics has been able to point out that 
negative feedback loops can stabilize systems behavior through the interaction 
between subsystems (for details, see Forrester, 1968; Richardson, 1991).  Uncertainty 
and random variations would not be always detrimental in dynamic task systems as 
long as the error caused by decisions can be reduced through interaction of subsystems 
where stabilizing negative feedback loops dominate systems behaviors.  The same 
argument applies for the impact of the increasing number of variables.  Therefore, the 
predictors reflecting task complexity for dynamic decision making seem not exactly to 
be those raised in static decision environments.  More precisely, crucial factors should 
be elicited by examining those task characteristics (IVB4 in Table 3) that have been 
empirically supported to have impact on task performance (A1 and A4 in Table 2).  
The challenge rests upon what the crucial factors of task complexity would be and 
how they may be operationalized.   

Positive feedback and gains (IVB8 in Table 3) is one of the prominent factors 
discovered in this fashion.  Sterman’s seminal work in this respect (1989a, 1989b), the 
misperception of feedback hypothesis, characterizes decision makers’ incapability for 
managing dynamic decision tasks due to their failure to identify endogenous positive 
feedback gains enlarging tiny decision errors and side effects.  Follow-up studies 
along this line (e.g., Kampmann, 1992; Paich and Sterman, 1993; Diehl and Sterman, 
1995) have confirmed this hypothesis by varying the strength of positive gains and 
measuring degraded task performance (A1 in Table 2).  Diehl and Sterman (1995) also 
find that decision time allocated by subjects does not increase proportional to the 
increasing strength of positive gains.  If subjects search for optimal rules, they should 
spend more time on decision making since the increasing dynamic complexity would 
require more cognitive resource and effort.  Revealing the irrelevance of decision time 
allocation suggests that subjects either do not or fail to account for increasing task 
complexity anticipated by the misperception of feedback hypothesis.  Young et al. 
(1997) report that subjects’ decision scope (D1 in Table 2) has also been impaired 
when dynamic tasks increasingly fall into the uncontrollable positive feedback loops.  
The finding, beyond the previous evidence showing that subjects are insensitive for 
decision time required, further indicates that they basically give up developing 
decision rules and comply with random guess or stick to certain biased heuristics, such 
as anchoring and adjustment as analyzed by several studies (e.g., Sterman, 1989a; 
Diehl and Sterman, 1995). 

Time delay / lagged effects (IVB5 in Table 3) and decision effectiveness / task 
salience built in the model (IVB6 in Table 3) account for another dimension of the 
misperception of feedback hypothesis.  As explained previously, both predictors 
conceptualize the extent to which the delayed effect of a decision is perceived by 
decision makers.  Analyzing decision rules employed by subjects in performing a 
capital investment task, Sterman (1989a) points out two facets of their failure to 
appreciate time delays: ignoring the time lag between the initiation of a control action 
and its full effect, and being overly aggressive for correcting discrepancies between 
desired and actual outcome.  It should be logically valid to argue that the correction 
decision tends to be overly aggressive because subjects fail to understand that the full 
effect of their previous correction would not be perceived until subsequent time 
periods.  That is, the former facet leads to the latter.  Then the overly-aggressive 
correction results in some side effect, such as high inventory cost, and subjects need 
the counter-correction.  The same failure to appreciate the lagged effect of decisions 
also applies for the counter-correction.  This scenario often ends up with instability of 



 

  

systems behaviors and hence unsatisfactory task performance.  It has been solidly 
supported by empirical studies adopting various tasks and experimental settings (e.g., 
Berry and Broadbent, 1988; Brehmer, 1990; Paich and Sterman, 1993), with a single 
exception reporting that task performance is not influenced by lagged effects 
(Broadbent and Aston, 1978).  Again, the failure for ignoring lagged effects in a 
relatively simple task may be compensated if subjects can grasp the relationships 
between decisions and outcomes.   

Similar to the effect of positive gains, subjects have been found to be insensitive 
for allocating decision time despite increasing lagged effects (Brehmer and Allard, 
1991; Diehl and Sterman, 1995), although there has been a counter-evidence showing 
that subjects do spend more time on tasks with time delays (Brehmer, 1990).  More 
studies are certainly needed to resolve the contradictory findings.  Yet, a detailed 
comparison of experimental design suggests a sensible explanation for their 
discrepancies.  In Brehmer (1990) subjects are assigned to different groups at the 
outset performing the same task with delay and no-delay, whereas Diehl and Sterman 
(1995) manipulate time delays as a continuous scale.  Therefore, it is worth 
speculating that there might exist a delicate cut-point of time delays over which 
subjects would fail to manage.   In addition, Brehmer and Allard (1991) report that 
subjects fail to adopt appropriate command delegation (E1 in Table 2) that may assist 
them to deal with time delays, confirming the previous misperception of feedback 
hypothesis.  Information use (C2 in Table 2) is not either found any difference for the 
task conditions with time delays. 

While the misperception of feedback appears satisfactory to explain why lagged 
decision effects degrade task performance, can it also account for the impact of time 
delay on verbal knowledge (B1 in Table 2)?  Broadbent et al. (1986) and Berry and 
Broadbent (1988) have been able to conceptualize decision effectiveness as task 
salience built in the model.  Increasing decision effectiveness, in other words reducing 
lagged effects and time delays, would provide a higher probability (salience) that 
decision makers can detect important variables and further have a better grasp of the 
relationships between decisions and outcomes.  This better understanding of task 
structure should be reflected on verbal knowledge measured by the scores of post-task 
questions.  The evidences from both studies above support this prediction.  Based on 
the descriptive finding, one of the prescriptions to dynamic decision aids points to 
informing decision makers prior to lagged effects / time delays (IVC6 in Table 3), 
which would be brought up below.  Also noteworthy is the property of tasks used by 
Sterman (1989a) and Berry and Broadbent (1988) to empirically confirm the 
hypotheses of misperception of feedback and of task salience respectively.  While 
Sterman’s capital management task involves nonlinearity and endogenous positive 
feedback gains, Berry and Broadbent (1988) uses a relatively simple computer person 
task without feedback and nonlinear relationships among variables (Table 1).  
Therefore, the detrimental effect of lagged effects / time delays has high degree of 
external validity as the confirmatory evidences come out from the diverse task 
properties.  

Aside from the preceding positive gains and lagged effects / time delays, 
frequency of oscillations (IVB7 in Table 3) is another predictors characterizing 
dynamic decision tasks.  Bakken (1993) reasons that a less frequent oscillations (low 
compression) resulting from a longer time-delay constant in tasks would hinder 
subjects from appropriate task structure (B5 in Table 2) and hence effective decisions 
(A1 in Table 2).  Whereas his data confirm the latter prediction that subjects perform 



 

  

better in a highly compressed environment, the former prediction on the effect of 
frequency on learning only receives marginal support. 

 

3.3.  Decision-making Interfaces and Environments 
As mentioned above, most hypotheses about decision aids for dynamic decision 

making lie in the decision-making interfaces and environments that refer to the 
predictors that can usually be manipulated.  These DDM prescriptions generally point 
to the following questions: Which decision aids are helpful (in terms of those 
evaluative criteria in Table 2)?  How are they functioning?  Among the decision aids 
summarized, the decision-making architecture (IVC11 in Table 3) has an unique 
position for it reflects the communication network embedded in the organizational 
structure.  Brehmer and Svenmark (1995) have their subjects perform a real-time fire-
fighting task in either networked architecture or hierarchical architecture as defined 
above.  Their study hypothesizes that task performance (A1 in Table 2) should be 
better in the hierarchical environment since the commanding subjects with complete 
information can respond more effectively and spend less decision time (C1 in Table 2) 
than the subjects in the fully-connected environment.  The prediction about task 
performance is supported, although the difference between the two architectures is not 
as great as expected.  The decision time allocated in the hierarchical environment, 
however, shows no significant difference from that in the networked environment.  In 
other words, the subjects with a “whole picture” appears perform better, but not 
always spend less time.  

Several studies have been able to conduct Monte-Carlo simulation games to 
explore the effect of various decision rules on task performance (Hogarth et al., 1981; 
Kleinmuntz et al., 1981; Kleinmuntz, 1985).  These heuristics built in task systems 
(IVC1), including random strategies, are programmed into task systems to implement 
the decision heuristics with perfect consistency.  One of the significant findings is that 
human subjects perform (A4 in Table 2) about as well as these built-in decision rules 
which can not adapt to task systems and never receive information feedback (Hogarth 
and Makridakis, 1981; Kleinmuntz and Klienmuntz, 1981).  The result implies human 
decision makers’ incapability to interact with dynamic decision tasks.  Two sources of 
human incapability are possible: cognitive unreliability (inconsistency) and 
inappropriate decision rules.  Human subjects may have good decision rules but they 
fail only because they hardly apply the heuristics consistently.  This line of argument 
remains nearly unexplored by the DDM research although it has attracted relatively 
abundant studies in static decision environments.  Further, inferior task performance 
of human subjects may stem from the fact that they often adopt heuristics 
inappropriate for the dynamic tasks at hand.  The following discussions will explore 
this possibility.  The Monte-Carlo simulations provide another evidence supporting 
that appropriate strategies enhancing task performance (A1 in Table 2) are not always 
those demanding more information and computational complexity, such as the 
heuristics incorporating Bayesian probability (Kleinmuntz, 1985).  The evidence 
should be interpreted as a good news for those who design decision aids since human 
judgment and decision making have not been good at dealing with information 
overload and complicated computation. 

 



 

  

Direct Prescriptions on Decision Heuristics and Task Property 
So the question remains: What would be good strategies and decision rules 

given certain decision tasks?  Several attempts have been implemented.  The first is 
termed heuristics-induced goal setting as defined above (IVC3 in Table 3).  Yang 
(1996, 1997), based on goal setting theory (Locke and Latham, 1990), argues that once 
given a proper goal for a complex dynamic task decision makers can develop their 
mental models by acquiring goal-relevant knowledge, which will in turn improve task 
performance.  The empirical studies confirm that subjects are able to achieve better 
control (A1, A2, and A3 in Table 2) and understanding (B3 in Table 2) of tasks by 
being trained with the explicit goal statements (Yang, 1996, 1997).  As argued 
previously, the goal-setting statements, though not as detailed as decision rules, 
virtually lead subjects to develop relevant heuristics.  Also empirically supported 
(Yang, 1996) is the prediction that subjects would save decision time (C1 in Table 2) 
and easily focus on the goal-oriented information items in task models (C2 in Table 
2).  Whereas the present review conceives Yang’s use of the “goal” as actually 
heuristics-induced goal setting, a promising follow-up should be empirically exploring 
whether general goal statements can achieve as prominently as these heuristics-
oriented goal statements.   

As shown in the previous section, a rich body of the DDM literature has 
designed various strategies, decision rules, and explicated task property, most of 
which are obtained by subjects through verbal instructions (IVC4 in Table 3).  Two 
perspectives have been provided to predict the usefulness of these various decision 
aids.  Firstly, instructed with the relationships of relevant variables (information 
acquisition), dynamic decision makers can then produce decisions based on clearer 
task structure and more predictable outcomes and perform better.  At the same time, 
their post-test verbal knowledge should also be more correct.  Secondly, instructed 
with decision rules effectively, dynamic decision makers would broaden their 
cognitive capacity to interact with decision tasks and hence perform better by both 
acquiring information of relevant variables (information acquisition) and correctly 
combining the variables to produce decisions (information integration).   

The first prediction about the decision aids on task property receives mixed 
support from the literature.  Several experiments instructing subjects with task 
structure information have shown its positive effect on task performance (A1, A2, and 
A5 in Table 2), including Broadbent et al. (1986), Berry and Broadbent (1988), 
Jansson (1995), and Maxwell (1995).  Note that the decision tasks of these studies 
range from the simple computer person task to the complex social welfare 
administration (Table 1), hence adding generalizability of the prescription.  Some 
studies, however, do not find significantly better performance for the subjects 
receiving task information (Berry and Broadbent, 1984; Berry and Broadbent, 1987).  
Stanley et al. (1989) provide subjects with various experts transcripts, the verbal 
reports from experienced subjects, and find that only certain transcripts are proved to 
be helpful.  To illustrate, subjects manage tasks more effectively when they are 
allowed to access to the verbal reports transcribed from the whole process of decision 
making, instead of only from a block of trials.  In addition, the transcripts may be 
selected in different stages – first trial block, final trial block, before sudden 
improvement of performance, and after that sudden improvement, as defined in the 
previous section.  Another experiment in the same study further demonstrates that the 
transcripts in the final block significantly assist decision-making – implying that 
relatively complete mental models and task knowledge have been developed. 



 

  

Generally speaking, the surveyed studies reject the hypothesis that subjects 
receiving task information can acquire more correct verbal knowledge (B1 in Table 2) 
(Berry and Broadbent, 1984; Broadbent et al., 1986; Jansson, 1995).  Berry and 
Broadbent (1987) distinguish two types of the relationships of variables, the direct 
relationships and crossed relationships as mentioned earlier, and presume that the 
crossed relationships are more difficult to be correctly developed in mental models.  
Provided that the two types of variables’ relationships can be differentiated and 
measured, they find that providing subjects with task information only improve the 
direct relationships rather than the indirect relationships.  Finally, although the effect 
of task information on task performance and learning is still controversial, it has been 
shown to increase decision time (C1 in Table 1) and information use (C2 in Table 2) 
(Jansson, 1995).   

The second prediction about the effect of decision heuristics appears more 
agreed-upon – nearly all evidences support its positive effect on task performance 
(Stanley et al., 1989; Jansson, 1995; Maxwell, 1995), although its effect on verbal 
knowledge remains suspicious (Jansson, 1995).  Maxwell (1995) also shows that 
providing subjects with decision rules is more effective for improving task 
performance than providing with task information. 

As a summary for the direct prescriptions – providing verbal instructions on task 
structure information and decision heuristics – the present review has to conclude that 
the truth is far beyond the empirical evidences.  The contribution of decision heuristics 
to task performance is mostly supported.  The success for the provision of task 
complexity information is at least marginal, though not as prominent as decision 
heuristics.  The puzzle, nevertheless, is unsettled: Why is task knowledge not going 
with the verbal instructions on task property and decision heuristics?  One possibility 
is that task performance can be improved without acquiring task knowledge, which 
particularly explains why most studies agree upon the impact of decision heuristics on 
task performance rather than on verbal knowledge.  Another possibility lies in the 
measurement issue.  Decision makers may acquire task knowledge that can not be 
appropriately measured by written questions.  It seems also plausible that providing 
task property and decision heuristics equips decision makers with different types of 
knowledge – the distinction between declarative and procedural knowledge, explicit 
(verbal) and implicit knowledge as described previously. 

 

Indirect Decision Aids 
Another decision aid usually accompanied with verbal instructions of heuristics 

or task structure is concurrent verbalization or thinking-aloud (IVC5 in Table 3), 
which requires subjects to explain the reasons while placing decisions and 
experimenters tape-record the verbal protocol or make subjects put them down in 
notebooks.  Decision makers with concurrent verbalization may be more aware of 
their decision rules and in a better position to acquire task knowledge, which 
eventually results in better task performance.  In an experiment, Berry and Broadbent 
(1984) find that concurrent verbalization alone can not really help task performance 
(A2 in Table 2) and verbalized knowledge (B1 in Table 2) unless pre-task verbal 
instructions are available.  They also observe that subjects without pre-task verbal 
instructions tend to talk about their decisions at a very general level, while subjects 
receiving instructions are usually able to give reasons in line with specific decision 
rules.   



 

  

Yet, McGeorge and Burton (1989) argue that providing subjects with graphical 
representations of systems behavior prior to task may mask the effect of concurrent 
verbalization. An experiment is thus set to replicate that of Berry and Broadbent 
(1984), except that subjects only receive numerical values of system status throughout 
the task.  Interestingly, the results indicate that concurrent verbalization does improve 
task performance.  To further confirm the redundancy of graphical representations and 
concurrent verbalization, subjects in another experiment receive graphs of systems 
behavior without being required to think aloud.  As expected, the subjects receiving 
graphs outperform those who do not.  Along the same line, Stanley et al. (1989) 
suspect that the insignificant effect of concurrent verbalization on task performance 
found in Berry and Broadbent (1984) could be that the limited amounts of task 
experience (40 trials) may not be sufficient for subjects to develop appropriate task 
knowledge.  Accordingly they conduct an experiment where subjects extensively 
interact with the same task as in Berry and Broadbent (1984) (200 trials).  The results 
support their speculation that concurrent verbalization helps subjects perform better 
given sufficient task experience (IVA4 in Table 3). 

Providing subjects with task structure instructions and decision heuristics assists 
decision-making quite directly as these decision aids unveil at least a part of the 
“black box” of task systems.  Aside from concurrent verbalization, several indirect 
decision aids have been attempted.  Sanderson (1989) hypothesizes that task 
performance and learning can be enhanced simply to manipulate the degree of 
decision precision (IVC7 in Table 3).  Requiring subjects to produce decisions more 
precisely, such as to the first decimal place, would force them to reason out the 
workings of the relationships of variables (B1 in B4 in Table 2) and hence advance 
task performance (A2 in Table 2).  The prediction is marginally supported.  Note, 
nevertheless, that the transportation task in Sanderson (1989) only involves four 
variables, and again, task complexity has to be involved in this regard.  For a task with 
limited complexity, such as with less than seven variables, minor delays, and no 
nonlinear equation involved, requiring decision precision may be helpful.  While task 
complexity increases, subjects can not handle the task any more due to their cognitive 
constraint.  In this complex situation, perhaps short-term memory storing decision-
outcome matches and simplified heuristics have more explanatory power for decision 
behaviors than the workings on detailed equations. 

 

Information Feedback as a Decision Aid 
Information feedback (IVC9 in Table 3) has been a unique decision aid, which 

firstly differs from verbal instructions on task property and decision strategies in that 
information feedback is available throughout decision-making process rather than just 
prior to tasks.  Kleinmuntz and Thomas (1987) have supported that availability of 
Bayesian probability, though demanding more decision time (C1 in Table 2), helps 
decision makers with task performance (A1 in Table 2) since it makes previous 
decision outcomes easier to understand.  As an interesting counter-argument, 
Sanderson (1989) argues that having previous decisions and outcomes available to 
subjects would prevent them from developing correct task knowledge (B1 and B4 in 
Table 2) and hinder task performance (A2 in Table 2) since this information may not 
correspond to true task structure.  A mixed supporting evidence inspires the essential 
rationale behind the decision aid of providing information feedback: What 
information is really helpful?  Completeness of information feedback seems not 



 

  

relevant provided that many studies have provided subjects with complete decisions 
and outcomes with no significant help being found (e.g., Sterman, 1989a).   

Building on the literature of psychological decision making (Balzer et al., 1989), 
Sengupta and Abdel-Hamid (1993) have tested differential effects of three types of 
information feedback – feedforward (actually decision heuristics and strategies), 
outcome feedback  (past decisions and outcomes), and cognitive feedback 
(information reflecting task structure and/or cognitive weighting scheme).  The results 
show that subjects receiving outcome feedback alone have inferior task performance 
(A4 in Table 2) and tend to fluctuate their decisions (D2 in Table 2), namely low 
reliability.  Adding cognitive feedback is demonstrated to improve task performance 
in the complex software project task, though meanwhile demanding more decision 
time (C1 in Table 2) and information inquiry (C2 in Table 2).   

Another important discovery in Sengupta and Abdel-Hamid (1993) is that 
subjects receiving cognitive feedback outperform those receiving feedforward.  This 
seemingly contradicts to Maxwell’s finding (1995) that decision strategies (similar to 
feedforward) contributes more than causal-loop training (similar to cognitive 
feedback).  Given similar complexity for the tasks used by both studies, some 
possibilities deserve exploration here.  Firstly, note that subjects in Sengupta and 
Abdel-Hamid (1993) have access to more informative outcome feedback than those in 
Maxwell (1995).  The basic outcome feedback, despite an ineffective decision aid 
alone, may be crucial for facilitating the use of cognitive feedback and feedforward.  
This point can be pursued by an experiment providing subjects with feedforward and 
cognitive feedback without basic outcome information feedback.  Moreover, careful 
comparison of the design of the information feedback suggests that some parts of 
cognitive feedback and feedforward may be more helpful than another.  For instance, 
the degree of detail of decision heuristics may make difference, provided that subjects 
in Maxwell (1995) are not only instructed with decision rules, as those in Sengupta 
and Abdel-Hamid (1993), but they also access to a set of decision rules linking to 
different scenarios and goals. 

Another possible explanation for the contradictory findings about the 
effectiveness of information feedback involves the representation forms of 
information feedback (IVC10 in Table 3).  As has been reported above, McGeorge 
and Burton (1989) find that graphical representation is helpful for task performance, 
which is also confirmed by Sanderson (1989).  Additionally, Sanderson’s series of 
experiments reveal that providing subjects with task structure information in abstract 
formula form can not guarantee better task performance (A2 in Table 2).  Only does 
adding semantic meanings to the formula contribute to performance.  Richardson and 
Rohrbaugh (1990) hypothesize that the subjects with gaming screens containing 
relevant cues and the optimal weights would outperform those with outcome feedback 
alone.  While the prediction is not fully supported, they discover two distinct patterns 
of task performance for the subjects receiving the decision aid.  Half of the subjects do 
improve their performance.  Meanwhile their decision patterns can be captured by a 
linear regression model, which implies cognitive consistency. 

 

The Role of Task Complexity in Prescribing Dynamic Decision Behavior 
An in-depth investigation of dynamic decision making behavior, as continually 

argued in the present study, should take task complexity into account.  Based on the 
reviewed studies, the results also appear to be the most intriguing compared with 



 

  

those reported above. Hayes and Broadbent (1988) manipulate lagged effects built in 
tasks (IVB6 in Table 3) to induce subjects to produce two learning modes (IVC2 in 
Table 3), selective and unselective modes as defined above.  Evidences support their 
hypotheses that the subjects induced to adopt selective mode of learning perform 
better in both the original task (A2 in Table 2) and the transfer task with similar task 
structure (B5 in Table 2).  Also supported is that the subjects acquire more complete 
declarative and procedural knowledge (B1 and B2 in Table 2) since they tend to 
develop explicit knowledge on task structure.  One of the critical implications of the 
results is that solely the task complexity alone, lagged effects in this case, can affect 
the mode of thinking by which decision makers approach the task.   

Another experiment in the same study (Hayes and Broadbent, 1988) has subjects 
go through three continuous phases of tasks.  In the first phase two groups of subjects 
with the two induced learning modes experience the computer person task same as the 
previous experiment.  They then, in addition to the original task, are introduced to a 
secondary task, a letter generation task.  Again, for the new task, lagged effects are 
manipulated (with / without lagged effects) to induce the learning modes.  Finally in 
the last phase, both groups of subjects concurrently experience both tasks as in the 
previous phase except that the relationships of variables in both tasks have reversed.  
A striking finding of the experiment is that subjects in the unselective learning 
outperform those in the selective mode, which is exactly a reversal of the previous 
experiment, and the difference of verbal knowledge for both groups is not significant.  
An inspiring explanation provided is that the secondary task interferes with the 
learning of the subjects induced to have the selective learning mode.  Comparatively, 
the subjects with the unselective mode have “accumulated” learning experience from 
the first task, though not verbally explicable, and they can transfer the knowledge to 
another task without being interfered.  In other words, the selective learning mode is 
not only unnecessary for learning to interact with a new task with lagged effects, but 
also interferes with learning.    

Task complexity also plays an important role even though subjects are only 
instructed to focus their attention on searching for the relationships of variables.  
Wang (1994) adopts this pre-task learning inducement (IVC8 in Table 3) 
accompanied with the economic reward in hope of stimulating subjects to develop 
more appropriate task knowledge (B5 in Table 2) and hence improve task 
performance (A1 in Table 2).  The effectiveness of the learning inducement receives 
mixed support when subjects interact with a capital investment task.  Although 
allocated decision time (C1 in Table 2) is not found to be significantly different with 
the learning inducement, subjects do have more attempts on various decision rules 
(D1 in Table 2) in the decision-making process.  Berry and Broadbent (1988) explore 
the pre-task learning inducement for two groups of subjects, one interacting with the 
computer person task with lagged effects (the non-salient task termed by the authors) 
and the other without lagged effects (the salient task).  The subjects with the explicit 
search instruction are expected to outperform (A2 in Table 2) those without the 
instruction.  The results indicate that only subjects dealing with the salient task meet 
the prediction.  Further analyses also reveal detrimental influence of the explicit 
search instruction on task performance of the subjects handling the non-salient task. 

Provided that task salience controlled by lagged effects is so crucial, would task 
performance be enhanced if the decision aid to increase task salience (IVC6 in Table 
3) is available?  Brehmer (1995) finds that informing subjects with lagged effects 
prior to tasks can not help them improve task performance (A1 in Table 2).  As an 



 

  

alternative to increase task salience, Berry and Broadbent (1988) and Wang (1994) 
attempt to instruct subjects with task structure information and how lagged effects 
function.  The decision aid has been supported to be helpful for task performance (A1 
and A2 in Table 2) and verbal knowledge acquisition (B1 in B5 in Table 2) 

 
4.  DISCUSSION  AND  A  SEARCH  FOR  THEORIES 

 
The current literature review has set forth to explore the factors relevant to 

dynamic decision behavior and synthesize the empirical findings for the hypotheses 
being tested by the DDM studies.  Table 1 to Table 3 as well as the foregoing 
discussions should succeed in the exploration of what have been regarded as 
important in dynamic decision making.  Nevertheless, the synthesis of the empirical 
findings seems to be achieved in a limited success at best.  An immediate difficulty 
comes from the following simple statistics: In the 33 empirical studies being reviewed 
(Table 1), 60 hypotheses involving a single predictor (24 predictors listed in Table 3) 
and a single evaluative criteria (five categories in Table 2) have been developed, but 
only 153 tests have been conducted.  In other words, there are less than three tests for 
each hypothesis in average and many of the hypotheses have only been tested once.  
This suggests that knowledge of dynamic decision making and complex problem 
solving has not been systematically accumulated.   

Subsequent discussions firstly attempt to summarize the empirical findings in 
the previous section.  Further, the theories underlying empirical evidences reviewed 
will be pointed out and briefly illustrated.  Explicating both the empirical evidences 
and theories should substantially inspires significant research questions. 

 

4.1.  Theories of Experts in Dynamic Decision Making  
In summary, the empirical findings about decision makers’ factors may be 

relatively consistent.  Computing skills have been rejected to influence on task 
performance and argued to be irrelevant since computerized simulation environments 
are exactly designed for ordinary decision makers without computing skills.  Few 
evidences have shown any single indicators of cognitive style and test intelligence to 
be explanatory for dynamic decision behavior.  The DDM research analyzing 
individual differences also conclude that task expertise is less effective than providing 
decision strategies, although it is still unclear whether and how task expertise may 
help dynamic decision makers acquire verbal knowledge and develop decision 
strategies.   

Introducing ten different aspects of expertise that have been taken in various 
research fields, Sternberg (1995) proposes a view regarding expertise as a prototype.  
That is, experts are defined depending on the problem domain and associated task 
characteristics.  For example, competitive weather forecasters are valued by providing 
more accurate prediction for the weather tomorrow.  Effective radiologists should be 
good at making correct biopsy recommendations for patients with suspicious lesions 
in their mammograms.  Thus different task characteristics may be attached to 
expertise in different problem domains: Are the decisions repetitive? Is the correct 
answer existent and accessible? Are decision aids available?  These task 
characteristics, as explicated in Shanteau (1992), should also be taken into account to 
define an expert. 

In this perspective, the literature has not established the theory of experts in 



 

  

dynamic decision making provided the defining characteristics of dynamic decision 
tasks.  A series of questions has to be explored: What dimensions of capability, either 
general (cognitive / learning style, test intelligence, and generic problem-solving 
ability) or specific to dynamic tasks, define an expert of dynamic decision tasks?  
What are the generic task characteristics attached to a dynamic decision task in 
addition to the specific domain knowledge, such as social welfare administration 
(Maxwell, 1995) or capital management (Sterman, 1989a)?  How can these generic 
task characteristics be observed?  Are effective dynamic decision makers, regardless 
of task domains, really outstanding in these task characteristics?   

 

4.2.  Theories of Task Complexity 
Several indicators of dynamic task complexity have been examined previously, 

among which lagged effects and positive feedback gains account for two major 
sources of dynamic complexity.  The foregoing empirical evidences have mostly 
demonstrated their detrimental influence to task performance and learning, especially 
positive gains.  As argued, nevertheless, negative feedback loops with stabilizing 
functions may be another source of complexity – perhaps decreasing task difficulty.  
The interaction between positive and negative feedback loops may produce mysterious 
systems behavior that can not be easily anticipated (Forrester, 1968).  Adding lagged 
effects just make a task system more difficult to be managed.  Finally, goal structures 
(A1 to A5 in Table 2) based on task property (Table 1) is also an unexplored issue of 
task complexity.  In typical complex dynamic tasks, such as social welfare system 
(Maxwell, 1995) and fire-fighting task (Brehmer, 1995), all these factors contributing 
to task complexity – positive gains, negative stabilizing force, lagged effects, goal 
structure, and their interactions – have been built in task equations.  However, there is 
still no unified “complexity metric” for complex dynamic decision tasks.  Based on 
the preceding review, the literature resolves this issue by two convenient approaches: 
singling out these indicators, particularly lagged effects and positive gains, and using a 
relatively simple task. 

This may hinder the progress of the DDM research substantially.  At first, the 
effect of any predictor can not really be confirmed since task complexity is always a 
potential lurking variable, particularly for those full-fledged complex dynamic tasks.  
For instance, providing decision makers with complete information about the 
relationships of variables may work well to improve their performance in a simple 
computer person task (e.g., Berry and Broadbent, 1988), but fail in a social welfare 
task (e.g., Maxwell, 1995).  This is a more compelling reason why the DDM 
researchers should enhance and accumulate knowledge by doing experiments based 
on the same tasks.  Several task systems have been used frequently in this fashion, 
such as capital management (e.g., Sterman, 1989a), sugar production (Berry and 
Broadbent, 1984), computer person (Berry and Broadbent, 1984), and fire fighting 
(Brehmer, 1990) tasks.  

Another implication of the confounding effect of task complexity leads to the re-
evaluation of the general conclusion that human decision makers are essentially 
dynamically deficient in dealing with dynamic decision tasks based on the 
misperception of feedback hypothesis (e.g., Sterman, 1989a, 1989b; Diehl and 
Sterman, 1995).  Simply put, the reason why people fail in dynamic decision making 
is just that tasks are really difficult.  More precisely, task complexity may serve as a 
ceiling of task performance, provided that both task complexity and task performance 



 

  

can be measured and their relationships can be derived.  In this respect, the lens model 
equation appear to be a promising tool (Cooksey, 1996).  Based on Brunswik’s lens 
model framework, decision makers’ judgmental accuracy can be derived based on two 
linear regression models composed of the relevant cues capturing human judgment 
and task predictability.  The lens model equation then suggests that, if both linear 
regression models can account for most variance of human judgment and task 
predictability, decision makers’ judgmental accuracy will always be less than task 
predictability.  That is, provided that a task is better approximated (measured by task 
predictability) by a linear regression model, decision makers tend to perform better 
(measured by judgmental accuracy).  If a task is hard to be approximated, decision 
makers would suffer from degraded performance, a ceiling set by the low task 
predictability.  In this vein, human’s dynamic deficiency as claimed by many DDM 
studies should be reconsidered on the basis of task complexity.  An attempt to 
demonstrate this argument has been conducted by a meta-analysis of the literature of 
expert judgment in static tasks (Stewart and Hsiao, 1997). 

 

4.3.  Theories of Mental Models 
All decision aids, prescriptions for dynamic decision behavior, would remain 

mysterious if no description and theories can be provided to predict and explain how 
these decision aids interact with human’s cognitive activities.  For instance, based on a 
series of experiments, Berry and Broadbent (1984, 1987, 1988) and the studies along 
the same line (e.g., Hayes and Broadbent, 1988; Stanley et al., 1989) have 
distinguished the mental constructs of implicit (unselective) and explicit (selective) 
learning modes.  In addition, task knowledge can accordingly be separated into 
explicit (verbalizable) and implicit knowledge.  A prominent factor that can affect 
learning modes is lagged effects (task salience), either built in task structure or 
induced by experimental manipulations.  When the relationships of variables can be 
directly perceived, decision makers tend to evaluate decision rules and explicit 
hypotheses of decisions and outcomes based on their current state of task knowledge.  
In other words, the explicit learning mode dominates.  As the task become less salient 
– because of greater lagged effects and/or other predictors, such as positive gains – the 
number of evaluations for the explicit hypotheses becomes unmanageable.  In this 
situation, decision makers may adopt the implicit learning mode by which large 
numbers of paralleled contingencies involving decisions and resultant outcomes are 
stored.  Decisions are generated based on a mental “look-up table” based on which a 
particular set of conditions (e.g., previous decisions, outcomes, and other relevant 
cues) give rise to a particular response (Broadbent et al., 1986).  The operation is 
similar to a general pattern-matching process.  Finally, both implicit and explicit 
mental models work together in the whole decision-making process and contribute to 
task knowledge acquisition in some form. 

Mental models may also be conceived as an iterative process of information 
acquisition and information combination.  Sterman (1989a, 1989b) and other authors 
(e.g., Diehl and Sterman, 1995) have been able to match empirical data with certain 
regression models approximating the decision rules adopted by decision makers 
implicitly.  Yet Kleinmuntz (1993) demonstrates that two structurally distinctive 
linear models used to approximate decision heuristics can produce two sets of systems 
behaviors with only a minor difference.  Provided that human decision makers can not 
always apply their decision rules consistently, it is quite difficult to adjust one model 



 

  

against the other.  An explanation provided to account for dynamic decision behavior 
is rational allocation of limited cognitive resources.  Following this line, decision aids 
are primarily designed to decrease decision efforts that decision makers have to 
expend.  To illustrate, the provision of task structure information would reduce 
subjects’ cognitive resources to build up task structure.  Pre-task instructions on 
decision heuristics similarly equip subjects with handy information combination rules 
to generate decisions.  Note, however, that the theoretical paths connecting task 
structure information, decision heuristics, task performance, and task knowledge 
remain unsettled based on the empirical evidences reviewed previously. 

 

4.4.  Theories of Information Feedback 
Decision aids through information feedback can also be interpreted along the 

rationale of limited cognitive resources.  Sanderson’s work (1989) to visualize the 
variables’ algebraic relationships and make them more understandable has been 
expanded by the research on ecological interface design in dynamic decision making 
(Vicente, 1996).  Sengupta and Abdel-Hamid (1993), as reported previously, have 
been designed and tested the differential impact of outcome feedback, feedforward, 
and cognitive feedback.  Future research may explore which components of cognitive 
feedback, as conceptualized by Balzer et al. (1992), really help in dynamic decision 
making.   

Another promising research line related to information feedback points to 
cognitive continuum theory (Hammond et al., 1987). The theory presumes that 
correspondence of task continuum and cognitive continuum, both of which can be 
characterized as continuums from perfect analytic to perfect intuitive modes, would 
lead to better task performance.  To illustrate, the capital management game in 
Richardson and Rohrbaugh (1990) requires decision makers to place weekly capital 
investment and hence may lean toward a analytic task environment – refer to 
Hammond (1987) for task continuum index to as the measurement.  In this context, 
based on cognitive continuum theory, decision makers would receive more helpful 
information feedback if the information can be designed to stimulate their cognitive 
process to think through the task more analytically – measured by cognitive 
continuum index. 

 
5.  CONCLUDING  REMARKS 

 
Several limitations for the current literature review should be recognized.  

Firstly, the sampled English DDM research is assumed to be representative to the 
population literature of dynamic decision making and complex problem solving.  
Cross-checking the categories of the evaluative criteria (Table 2) and predictors (Table 
3) with those produced by the previous literature reviews surveying the European 
literature is a safeguard for the assumption.  Secondly, the current review depends 
heavily on the empirical studies conducted by laboratory experiments.  There have 
been insightful attempts to broaden the methodological paradigm.  For example, 
Kluwe (1995) provides two approaches to conducting single case studies for the CPS 
research.  The first is the theory testing approach where researchers start with a theory 
or a model of dynamic decision behavior and single case studies can be employed to 
test the theory.  The second is the theory construction approach where a series of 
single case studies may be conducted to build up assumptions and models for further 



 

  

investigations. 
Proper application of single case studies is helpful for transforming the 

prevailing consulting practice that endeavors to build learning environments and 
microworlds as corporate training programs into an abundant source of the DDM 
hypotheses.  On one hand, the evaluative criteria, predictors, and hypotheses of the 
DDM research reported above provides the theoretical foundations for designing 
learning environments.  For example, the graphical presentation of information as a 
part of cognitive feedback has demonstrated to be constructive.  On the other hand, 
establishing learning environments to facilitate decision making may be actually 
regarded as building hypotheses about whether and how combining a certain set of 
decision aids functions.  This may be the most distinct aspect between the DDM 
research and the consulting practice on building learning environments.  Whereas the 
DDM research manipulates and examines the descriptive and prescriptive evidences 
independently, the consulting practice has to design learning environments containing 
multiple predictors of dynamic decision behavior, for example, incorporating 
information feedback and verbal instructions on task property and decision heuristics 
in a single microworld.  Provided that rigid tests for these blended hypotheses are 
extremely difficult if not totally impossible in practice, laboratory experiments can be 
conducted for this purpose.  As a conclusion, the interaction between the practice of 
learning environments and the academic research of dynamic decision making should 
be further encouraged. 

Another limitation for the current study concerns the research paradigm for 
dynamic decision-making research.  Almost all experimental studies reviewed here 
employ a conventional research paradigm – independent variables (predictors of 
dynamic decision-making behavior, as those in Table 3) explain or predict dependent 
variables (evaluative criteria of dynamic decision-making behavior, as those in Table 
2).   A promising alternative is to examine the hypotheses based on a dynamic 
feedback perspective for dynamic decision-making behavior.  Maxwell (1995: 14) 
provides an example in this regard.  Two sectors have been identified in the diagram: 
the system sector in which the task model operates, and the sector of mental activity in 
which the mental model resides.  The states of the system are perceived and assessed 
by the mental model, which in turn develops the means, ends, and means-ends 
components and determine the next action.  Then these components of the mental 
model will also be modified according to decision maker’s judged adequacy for both 
the outcome of the action and the interpretation of the system states.  There is no study 
yet to examine the feedback theory of dynamic decision-making behavior as a whole 
set of inter-connected hypotheses. 
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TABLES  AND  FIGURES 
(In order of appearance in the text) 

 

Table 1: Background Information of the Reviewed Empirical Studies 
 

Studies 
Reviewed 

 

Task Descriptions 
(Task Domain, Task Property, and Decisions Required) 

 
 
Bakken (1993) 

 
- A stock management task in general. Real estate (Hernandez, 1991) and oil 

tankers (Randers, 1984) market models 
- Two forecasts and two decisions have to be made for both games. 
- Task property: delay, nonlinearity, and positive loops 
 

Berry and Broadbent 
(1984) 

- A sugar production game.  Single decision needed. 
- A computer person game.  Single decision needed. 
- Task property: delay 
 

Berry and Broadbent 
(1987) 

- A sugar production game (Berry et al., 1984) with a single decision 
- A computer person game (Berry et al., 1984) with a single decision 
- Task property: delay 
 

Berry and Broadbent 
(1988) 

- Experiment 1: A computer person game (Berry et al., 1984) with a single 
decision 

- Experiment 2: a game as in Experiment 1 plus a bus and a train task with a 
single decision.  

- Task property: delay 
 

Brehmer (1990) - A fire-fighting simulation game DESSY in real time mode 
- A single decision needed 
- Task property: delay, nonlinearity, and positive loops 
 

Brehmer and Allard 
(1991) 

- A fire-fighting simulation game DESSY in real time mode (Brehmer, 1990) 
requiring a single decision 

- Task property: delay, nonlinearity, and positive loops 
 

Brehmer (1995) - A fire-fighting simulation game FIRE FIGHTING in real time mode 
- A single decision 
- Task property: delay, nonlinearity, and positive loops 
 

Brehmer and 
Svenmark (1995) 

- A fire-fighting simulation game D3FIRE in real time and interaction modes 
- A single decision  
- Task property: delay, nonlinearity, and positive loops 
 

Broadbent and Aston 
(1978) 

- ECONEX: A game simulating British economy 
- Multiple (three) decisions needed 
- Task property: delay 
 

Broadbent, 
FitzGerald, and 
Broadbent (1986) 

- A city transportation system and economy game (Broadbent et al., 1978) 
- Multiple (two) decisions  
- Task property: delay  
 

Diehl and Sterman 
(1995) 

- A stock management task in general (Sterman, 1989b) 
- Making a single decision. 
- Task property: delay, nonlinearity, and positive loops 
 



 

  

Studies 
Reviewed 

 

Task Descriptions 
(Task Domain, Task Property, and Decisions Required) 

 
Hayes and Broadbent 

(1988) 
- A computer person game (Berry et al., 1984) with a single decision 
- A game of random letter generation for the secondary task for the second 

and third experiments. 
- Task property: delay 
 

Hogarth and 
Makridakis 
(1981) 

- A marketing strategy game with multiple (more than five) decisions 
- Task property: delay, nonlinearity, and positive loops  
- An interactive game 
 

Jansson (1995) - Moro: Welfare development of a developing region 
- Multiple (25) decisions can be placed. 
- Task property: delay, nonlinearity, and positive loops 
 

Kampmann (1992) - A game of market strategy  
- Multiple (two) decisions 
- Task property: delay, nonlinearity, and positive loops 
 

Kleinmuntz and 
Kleinmuntz 
(1981) 

- A medical decision making task with a single decision 
- Task property: delay, nonlinearity, and positive loops 
- Monte-Carlo simulation 
 

Kleinmuntz (1985) - A medical decision making as in Kleinmuntz et al. (1981) with a single 
decision 

- Task property: delay, nonlinearity, and positive loops 
- Monte-Carlo simulation 
 

Kleinmuntz and 
Thomas (1987) 

- DOC medical decision making task built on as in Kleinmuntz et al. (1981) 
with a single decision 

- Task property: delay, nonlinearity, and positive loops 
 

Mackinnon and 
Wearing (1980) 

- Welfare administration simulation game 
- Multiple (three) decisions are required 
- Task property: delay, nonlinearity, and positive loops 
 

Maxwell (1995) - A social welfare model (JOBS) based simulation game 
- Make multiple (six) decisions.  
- Task property: delay, nonlinearity, and positive loops 
 

McGeorge and 
Burton (1989) 

- A sugar production game (Berry et al., 1984) 
- A single decision needed 
- Task property: delay 
 

Paich and Sterman 
(1993) 

- A market strategy game 
- Multiple (two) decisions have to be made.  
- Task property: delay, nonlinearity, and positive loops 
 

Richardson and 
Rohrbaugh 
(1990) 

- A capital investment simulation game STRATEGEM-2 (Sterman, 1989a) 
requiring a single decision 

- Task property: delay, nonlinearity, and positive loops 
 

Sanderson (1989) - A city transportation system (Broadbent et al., 1986) with a single decision 
- Task property: delay 
 



 

  

Studies 
Reviewed 

 

Task Descriptions 
(Task Domain, Task Property, and Decisions Required) 

 
Sengupta and Abdel-

Hamid (1993) 
- A software project management game 
- A single variable decision: staffing level of a software project 
- Task property: delay, nonlinearity, and positive loops 
 

Stanley, Mathews, 
Buss, and Kotler-
Cope (1989) 

- A sugar production game (Berry et al., 1984) 
- A computer person game (Berry et al., 1984) 
- Both game require a single decision 
- Task property: delay 
 

Sterman (1989a) - A capital investment simulation game STRATEGEM-2 based on Sterman 
(1987) 

- Make a single decision: capital order. 
- Task property: delay, nonlinearity, and positive loops 
 

Sterman (1989b) - A stock management game: Beer Game 
- Make a single decision on beer order. 
- Task property: delay, nonlinearity, and positive loops  
- An interactive game 
 

Trees, Doyle, and 
Radzicki (1996) 

- A capital investment game STRATEGEM-2 (Sterman, 1989a) requiring a 
single decision 

- Task property: delay, nonlinearity, and positive loops 
 

Wang (1994) - A capital investment simulation game STRATEGEM-2 (Sterman, 1989a) 
with a single decision 

- Task property: delay, nonlinearity, and positive loops 
 

Yang (1996) - Two games: 1) market growth model and 2) capital investment game 
STRATEGEM-2 (Sterman, 1989a) 

- A single decision for both games 
- Task property: delay, nonlinearity, and positive loops 
 

Yang (1997) - The prey/predator model with fixes that fail archetype. 
- A single decision 
- Task property: delay, nonlinearity, and positive loops 
 

Young, Chen, and 
Chen (1997) 

- A capital investment game STRATEGEM-2 (Sterman, 1989a) requiring a 
single decision.  

- Task property: delay, nonlinearity, and positive loops 
 

 
 



 

  

Table 2: Evaluative Criteria (Dependent Variables) for Dynamic Decision Making 
 

General 
Category 

Conceptual and Operational Definition (Measure) 
and the Reviewed Studies Using this Measure1 

 
 
(A)Task 

performance 
 
 

 
(A1) Optimizing, maximizing or minimizing, specified measures or benchmarks 

- Cost, the higher the cost, the lower the performance (Sterman, 1989a; Sterman, 1989b; Richardson et al., 1990; Wang, 1994; Diehl 
et al., 1995; Maxwell, 1995; Trees et al., 1996) 

- Profit (Kampmann, 1992; Bakken, 1993; Paich et al., 1993; Yang, 1996; Young et al., 1997) 
- Patients’ health conditions (Kleinmuntz et al., 1981) 
- Proportion of patients cured (Kleinmuntz, 1985; Kleinmuntz et al., 1987) 
- Number (percent) of areas lost (Brehmer, 1990; Brehmer et al., 1991; Brehmer, 1995; Brehmer et al., 1995) 
- Difference (percent difference) compared with a benchmark (Broadbent et al., 1978; Mackinnon et al., 1980; Bakken, 1993) 
- Number of decision outcomes better than a benchmark (Broadbent et al., 1986) 

 
(A2) Reaching specified targets 

- Number (percent) of attempts within a range of a specified target (Berry et al., 1984; Broadbent et al., 1986; Berry et al., 1987; 
Berry et al., 1988; Hayes et al., 1988; McGeorge et al., 1989; Sanderson, 1989; Stanley, et al., 1989) 

- Number (percent) of attempts in correct directions to reach the target (Sanderson, 1989; Yang, 1996) 
- Number (percent) of errors of directions to reach the target (Broadbent et al., 1986; Berry et al., 1987) 

 
(A3) Task systems behaviors 

- Number of systems destruction (Yang, 1997) 
- Number of appearances of an archetype “fixes that fail” (Yang, 1997) 

 
(A4) Goals combining two criteria 

- Market share and cumulative net marketing contribution (consistent goals) (Hogarth et al., 1981) 
- Cost and schedule (conflicting goals) (Sengupta et al., 1993) 

 
(A5) Goals combining multiple (greater than two) criteria 

- A composite index based on six indicators (Jansson, 1995) 
 



 

  

General 
Category 

Conceptual and Operational Definition (Measure) 
and the Reviewed Studies Using this Measure1 

 
(B) Learning (B1) Mean scores of pre-game and/or post-game questionnaires on the relationships of variables, including those direct and crossed 

relationships between variables – declarative task knowledge (Broadbent et al., 1978; Berry et al., 1984; Broadbent et al., 1986; 
Berry et al., 1987; Berry et al., 1988; Hayes et al., 1988; Sanderson, 1989; Bakken, 1993; Jansson, 1995; Maxwell, 1995; Trees et 
al., 1996) 

 
(B2) Mean scores of pre-game and/or post-game questionnaires same as (B1), particularly on procedural task knowledge (Hayes, et al., 

1988) 
 
(B3) Number of correctness of mental models aligned with heuristics and goals set forth (Yang, 1996; Yang, 1997) 
 
(B4) Number matching certain types mental models (Sanderson, 1989) 
 
(B5) Performance on transferred tasks (Berry et al., 1988; Hayes et al., 1988; Bakken, 1993; Wang, 1994) 
 

(C)Efforts for 
decision making 

(C1) Amounts of  decision time (Kleinmuntz et al., 1987; Sanderson, 1989; Brehmer, 1990; Brehmer et al., 1991; Sengupta et al., 1993; 
Wang, 1994; Brehmer, 1995; Brehmer et al., 1995; Diehl et al., 1995; Jansson, 1995; Maxwell, 1995; Yang, 1996) 

 
(C2) Amounts of information use for specific information items (Brehmer et al., 1991; Sengupta et al., 1993; Brehmer et al., 1995; 

Jansson, 1995; Maxwell, 1995; Yang, 1996) 
 
(C3) Amounts of discussion among subjects (Hogarth et al., 1981) 
 

(D) Quality of 
decision-
making process 

(D1) Decision scope (number of  different decision rules employed) (Wang, 1994; Young et al., 1997) 
 
(D2) Reliability (fluctuations of decisions) (Sengupta et al., 1993) 
 
 

(E) Decision-
making 
architecture 

 

(E1) Delegation of decision making (Brehmer et al., 1991) 

1: Studies cited in each definition are ordered by time of publication. 



 

  

 



 

  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: A Tentative Research Framework of Dynamic Decision Making 
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Table 3: Predictors (Independent Variables) for Dynamic Decision Making 
 

Category Conceptual 
Definition 

Operational Definition (Measure) 
and Reviewed Studies Using the Measure1 

 
 
(IVA) Decision 

makers’ 
factors 

 
(IVA1) Cognitive style (ability) 

 
 - MBTI (Myers-Briggs Type Indicator) (Maxwell, 1995; Trees et al., 1996) 
- Gregorc Style Delineator (four mediation channels) (Trees et al., 1996) 
- Gordon’s Cognitive Style Indicator (four types) (Trees et al., 1996) 
 

 (IVA2) Task expertise / academic 
training on general task 
knowledge 

 

- Whether subjects have task domain expertise in terms of their academic background (Bakken, 1993) 
- Whether subjects receive a 2-day session involving simulation of the JOBS program (Maxwell, 1995) 
 

 (IVA3) Computing skills - Subjects’ self-rating evaluation about their computer use skills (Trees et al., 1996) 
 

 (IVA4) Practice / task experience - Whether subjects experience repeated trials (not explicitly manipulated) (Broadbent et al., 1978; 
Kleinmuntz et al., 1987; Berry et al., 1987; Berry et al., 1988; Stanley et al., 1989; Brehmer, 1990; 
Brehmer et al., 1991; Bakken, 1993; Sengupta et al., 1993; Paich et al., 1993; Wang, 1994; Diehl et 
al., 1995) 

- Amounts of practice from repeated trials (Berry et al., 1984; Broadbent et al., 1986; Sanderson, 1989) 
- Whether subjects experience a conceptually similar task for the next trial block (Berry et al., 1988) 
 
 

(IVB) Task 
complexity 

(IVB1) Total number of variables - Total number of variables in task systems (Mackinnon et al., 1980) 

 (IVB2) Interaction between 
subsystems 

 

- Whether interaction exists between variables or subsystems  (Mackinnon et al., 1980) 

 (IVB3) Random variation - Whether random variation exists at strategic points in tasks  (Mackinnon et al., 1980) 
 

 (IVB4) Miscellaneous task 
characteristics  

- Initial health, treatment risk, and symptom diagnosticity (Kleinmuntz, 1985) 
- Treatment risk (Appearance or strength) (Kleinmuntz et al., 1987) 



 

  

Category Conceptual 
Definition 

Operational Definition (Measure) 
and Reviewed Studies Using the Measure1 

 
- Levels of price regime (Kampmann, 1992) 
- Types of software project (Sengupta et al., 1993) 
 

 (IVB5) Time delay / lagged 
effects (appearance or strength) 

- Lagged effects (Broadbent et al., 1978; Broadbent et al., 1986; Berry et al., 1988; Paich et al., 1993) 
- Time constants (Sterman, 1989a; Sterman, 1989b; Brehmer, 1990; Brehmer et al., 1991; Kampmann, 

1992; Brehmer, 1995; Diehl et al., 1995) 
 

 (IVB6) Effectiveness of decisions 
on outcomes / task salience 
built in models 

- Treatment effectiveness (Kleinmuntz, 1985) 
- Reducing stability by enlarging effects of a decision on outcomes (Broadbent et al., 1986) 
- Effectiveness of fire-fighting units (Brehmer et al., 1991) 
 

 (IVB7) Frequency of oscillation - Number of peaks of prices (Bakken, 1993) 
 

 (IVB8) Positive feedback and 
gains (appearance or strength) 

- Positive gains built in the task model (Sterman, 1989a; Sterman, 1989b; Kampmann, 1992; Diehl et al., 
1995) 

- Strength of “word of mouth” (Paich et al., 1993) 
- Number of intervals a system falls in the uncontrollable positive loops (Young et al., 1997) 
 

 (IVB9) Real-time simulation tasks 
 
 

- Whether a task system is clock-driven or event-driven (Brehmer, 1995) 

(IVC) Decision-
making 
interfaces and 
environments 

(IVC1) Heuristics (decision rules) 
built in task systems 

- 3 levels: 1) arbitrary consistent, 2) arbitrary-random, and 3) none (left for human judgment) (Hogarth et 
al., 1981) 

- 3 levels of strategies with increasing computational complexity: 1) generate-and-test, 2) heuristic, and 3) 
EU-bayesian (Kleinmuntz et al., 1981) 

- Random vs. schema-driven strategies, 2 levels of information acquisition, 2 levels of base-rate 
utilization, 3 levels of computational complexity (Kleinmuntz, 1985) 

 
 (IVC2) Modes of learning 

induced by lagged effects 
 

- Selective-mode or unselective mode by varying lagged effects of decisions (Hayes, et al., 1988) 
 

 (IVC3) Heuristics-induced goal - 2 types: 1) total assets goal (long-term wholesystem goal) and 2) total assets and order growth goal 



 

  

Category Conceptual 
Definition 

Operational Definition (Measure) 
and Reviewed Studies Using the Measure1 

 
setting that subjects receive 
through verbal instructions 

(short-term subsystem goal) (Yang, 1996) 
- 3 types: prey/predator (whole-system) ratio, prey/predator (whole-system) number, and prey (sub-

system) number (Yang, 1997) 
 

 (IVC4) Task property, strategies, 
and heuristics (decision rules) 
that subjects receive through 
verbal instructions 

- Training / no training concerning task property (Berry et al., 1984; Berry et al., 1987; Berry et al., 1988) 
- 3 levels of task property: 1) no preliminary training, 2) trained with relationships of variables, and 3) 

practicing each pair of relationships separately (Broadbent et al., 1986) 
- 3 levels of expert transcripts: 1) no transcript, 2) block-by-block transcript, and 3) whole transcript 

(Stanley et al., 1989) 
- 5 levels of instructions: 1) no training, 2) expert transcript, 3) memory training, 4) rule construction, 5) 

simple rule (Stanley et al., 1989) 
- 5 types of expert transcripts: 1) no training, 2) initial blocks, 3) final blocks, 4) pre-cutpoint of 

performance, 5) post-cutpoint of performance (Stanley et al., 1989) 
- 2 levels of instructions: 1) systematic-elaborate: variables’ relationship, 2) goal-planning: detailed 

measures of decisions and outcomes (Jansson, 1995) 
- 3 levels of training: 1) causal loop, 2) strategic time plots, and 3) strategic heuristics) (Maxwell, 1995) 
 

 (IVC5) Concurrent verbalization / 
thinking-aloud  

- Whether, while playing the game, subjects are required to verbally describe tasks and heuristics 
employed (Berry et al., 1984; McGeorge et al., 1989; Stanley et al., 1989) 

 
 (IVC6) Increasing task salience - Between trial blocks, instruct subjects with task structures and effects of decisions and time delay (Berry 

et al., 1988; Wang, 1994) 
- Whether subjects are informed with appearance of delay (Brehmer, 1995) 
 

 (IVC7) Degree of decision 
precision required 

 

- Whether subjects are required to place decisions to the first decimal place (Sanderson, 1989) 
 

 (IVC8) Learning inducement - Prior to tasks, instruct subjects to focus on searching for task pattern and structure (Berry et al., 1988) 
- Prior to tasks, induce learning by instructing subjects that learning is crucial and task performance does 

not affect economic reward (Wang, 1994) 
 

 (IVC9) Contents of information - Whether Bayesian strategy is available (Kleinmuntz et al., 1987) 



 

  

Category Conceptual 
Definition 

Operational Definition (Measure) 
and Reviewed Studies Using the Measure1 

 
display - Whether subjects’ previous decisions and outcomes are available (Sanderson, 1989) 

- 3 levels: 1) Feedforward: whether the subjects learned the three formula; 2) cognitive feedback: whether 
the subjects received task information; 3) outcome feedback: project status reports in numerical forms 
(Sengupta et al., 1993) 

 
 (IVC10) Forms of information 

display 
- Whether subjects receive graphical representations of system status  (McGeorge et al., 1989; Sanderson, 

1989) 
- Whether subjects receive formula for decisions (Sanderson, 1989) 
- Whether subjects only receive variables’ names without semantic meanings (Sanderson, 1989) 
- 3 levels: 1) no cue highlighted, 2) all cues highlighted (cue discovery), and 3) all cues highlighted plus 

heuristics (feedforward) (Richardson et al., 1990) 
 

 (IVC11) Decision-making 
architectures 

 

- Whether subjects use hierarchical or networked decision-making (Brehmer, et al., 1995) 

1: Studies cited in each definition are ordered by time of publication. 
 
 
 
 


