
 
Learning in and about Simple Dynamic Systems 

 
 
 

Pål I. Davidsen 
J. Michael Spector 

Marcelo Milrad 
 

Department of Information Science 
University of Bergen, N 5020 Bergen, NORWAY 

Tel +47 55 58 4134 / Fax +47 55 58 4107 /Email: davidsen@ifi.uib.no 
 
 

Abstract 
 

System dynamics-based interactive learning environments (ILEs) have been developed 
to address shortcomings in policy design and decision making with regard to complex 
systems. A primary purpose of these ILEs is to identify effective learning strategies for 
these domains. Typically, these ILEs are themselves complex, but little is understood 
about how we come to understand complex, dynamic domains. It is, therefore, difficult 
to identify causes for improved learning. We begin with the design of learning support 
for simpler dynamic system and present an instructional design strategy based on 
principles of graduated complexity and problem-based learning. Our methodology 
addresses the need for simple, understandable representations of complex realities. To 
establish that this design methodology is effective, it is necessary to conduct learning 
studies across a number of dimensions of complexity with variations in the design of the 
associated learning environments. We demonstrate examples of the design methodology 
and present preliminary results. 
 
 

Introduction 
 
The system dynamics community is firmly committed to and believes in the value of 
using system dynamics in order to improve understanding of complex, dynamic systems. 
Much has been written about the uses of systems dynamics to support learning in and 
about complex systems (see, for example, Sterman, 1994). Unfortunately, there is 
insufficient evidence to establish that or how system dynamics has contributed in 
significant ways to improved understanding. Moreover, what has been shown to be 
effective with system dynamics students and practitioners has not been established to be 
generally effective outside the system dynamics community. What is lacking is an 
instructional design methodology to support the design of system dynamics-based 
learning environments. 
 
In order to make progress in this regard, we believe that the appropriate place to begin is 
with the design of learning support (i.e., instruction) for simpler dynamic systems. The 
focus of this paper, therefore, is on an instructional design methodology to facilitate 
learning in and about simple systems. The paper is primarily conceptual in nature, 



drawing on lessons learned from the system dynamics literature as well as from the 
cognitive psychology and instructional science literature. We have applied the principles 
illustrated here in a number of learning environments and will also present preliminary 
findings. 
 
In order to develop an appropriate instructional design methodology for system 
dynamics-based learning, it is necessary to identify a number of relevant assumptions 
and then to elaborate a perspective on learning appropriate for supporting understanding 
in and about dynamic systems. We share with most system dynamicists the general 
belief that system dynamics has much to contribute to understanding complexity. 
Specifically, we shall assume that a learning environment that integrates system 
dynamics models and simulations can facilitate learning. We are especially interested in 
supporting those who are not system dynamicists in coming to understand dynamic 
systems. As a consequence, our first two assumptions are as follows: 
 
1. System dynamics can be used to facilitate understanding dynamic systems. 
2. One need not become a system dynamicist or skilled system dynamics modeler in 

order to understand a particular complex system. 
 
The learning perspective which informs our thinking is based on principles derived from 
cognitive psychology, learning theory, and instructional design. The learning perspective 
we find most appropriate is based on notions derived from situated and problem-based 
learning (Barrows 1985, Lave 1988, Lave & Wenger 1990), especially as informed by 
cognitive flexibility theory (Spiro et al. 1987, 1988). Instructional design methods and 
principles consistent this learning perspective can be derived from elaboration theory 
(Reigeluth & Stein 1983) and cognitive apprenticeship (Collins et al. 1989). 
 
In the course of elaborating these principles for the design of system dynamics-based 
ILEs, we shall indicate why such principles are relevant and how they can inform a 
design rationale. We shall pay special attention to the concepts of a unit of instruction 
(which has a single and identifiable learning objective) and a learning module (a 
collection of related units of instruction). We shall call our instructional design approach 
model-facilitated learning (MFL). Our fundamental argument is that MFL is an 
appropriate methodology to support the design of system-dynamics based learning 
environments for complex domains. We shall illustrate MFL for a simple dynamic 
system, because we believe that will make the methodology most clear and is in fact 
consistent with one of our primary design perspective, graduated complexity (Spector & 
Davidsen 1998). 
 
A third assumption we share with many persons designing system dynamics-based 
learning environments is that a deep understanding of dynamic systems is based on an 
understanding of the relationships between structure and behavior. To put it differently, 
understanding how a complex system behaves involves being able to provide causal and 
structural explanations for observed system behavior, and, further, being able to 
anticipate and explain changes in those underlying causes and structures that may occur 
as the system evolves over time. This kind of understanding is not acquired easily nor is 
it likely to be acquired from observations of either real or simulated behavior (Dörner 
1996). Additional support is required. This paper elaborates one way to conceptualize 
and design such support. 



 
Broadly stated, we adhere to a principle we have called graduated complexity (Spector 
& Davidsen 1998), according to which learners are confronted with increasingly 
complex aspects of a problem. This principle is necessary due to the need to begin with 
simple, cognitive representations of complex realities. In the development of ILEs, 
implementation of this principle leads to graduated transparency and support for learner-
directed evaluation. Yet another assumption, consistent with the principle of graduated 
complexity, is that learning is most effective when interactions are cognitively engaging. 
The design of cognitively engaging interactions and activities around system dynamics 
in order to support learning is, therefore, the primary focus of this paper. First, however, 
we wish to briefly review the relevant learning and instructional design theories. 
 

Theoretical Background 
 
As already indicated, we derive our model facilitated learning (MFL) perspective from 
learning and instructional theories. That these theories are reasonably well established 
and articulated but have not been embraced by the system dynamics learning 
community is somewhat disturbing. Situated learning (Lave 1988) is a general theory 
of knowledge acquisition which is based on the notion that learning (stable, persisting 
changes in knowledge, skills and behavior) occurs in the context of activities that 
typically involve a problem or task, other persons, and an environment or culture. This 
perspective is based on observations indicating that learners gradually move from 
newcomer or novice status (operating on the periphery of a community of 
practitioners) to advanced or expert status (operating at the center of the community of 
practitioners). As learners become more advanced in a domain, they typically become 
more engaged with the central and challenging problems that occupy a particular 
group of practitioners. 
 
Situated learning has been most directly and successfully applied in the domain of 
medical training. The medical community has embraced the notion of problem-based 
learning, which is a particular application of situated learning theory (Barrows 1985). 
In the last twenty years, the medical community has gradually recognized that 
physicians gain diagnostic skills and understanding as a consequence of treating 
patients, not as a consequence of traditional medical training. In order to promote the 
acquisition of diagnostic skills and understanding, many medical training curricula 
now integrate clinical problems and experience into the education of physicians. 
Typically, small groups of learners encounter actual clinical problems and they work 
individually and together to develop a diagnosis and recommended treatment plan. 
The learning typically proceeds in five stages: problem presentation, problem analysis, 
problem synthesis, problem abstraction, and problem reflection (Barrows 1985). 
These stages are derived from clinical practice and integrate collaborative interactions 
that naturally occur among specialists in such settings. These stages are consistent 
with our notion of graduated complexity and fit nicely into the general instructional 
design guidelines provided by cognitive apprenticeship and elaboration theory. The 
particular stages that are emphasized in terms of our units of instruction described 
later in this paper are analysis, synthesis and abstraction. 
 
Learning in complex and ill-structured domains places significant cognitive demands 
on learners, as appropriately recognized by the medical community. Ill-structured 



domains include those which do not remain constant over time, those which involve 
variables and constraints which are not well-defined, and those which are influenced 
in not easily predictable ways by a number of internal and external factors. According 
to cognitive flexibility theory (Spiro et al. 1987, 1988), understanding in such domains 
requires the following: the ability to construct multiple representations (mental 
models) of a problem; the ability to relate apparently disconnected parts of a system; 
and, the ability to integrate information on a holistic level (to view problem and 
system features as interconnected rather than as compartmentalized). As a 
consequence, learning to support the acquisition of such understanding should be 
designed so as to promote multiple representations, to promote appreciation of the 
underlying complexity of the system, and to promote the ability to interrelate various 
components of the system. Moreover, learning should be supported with a variety of 
problems and cases. Cognitive flexibility theory shares with situated and probem-
based learning the view that learning is context dependent, with the associated need to 
provide multiple representations and varied examples so as to promote generalization 
and abstraction processes. Additionally, cognitive flexibility places particular 
emphasis on the importance of learner-constructed representations. In MFL, this 
would mean that learners are provided the opportunity and challenge to become model 
builders and experiment with those models. We agree that this is an appropriate 
activity for advanced learners, but model building and construction is not always 
required in order to understand dynamic systems. Moreover, we believe that the units 
of instruction to be illustrated are appropriate pre-cursors to model building activities. 
 
Elaboration theory (Reigeluth & Stein 1983) is an instructional design theory, 
consistent with many cognitive learning principles, which argues that units of 
instruction should be designed in accordance with clear and consistent elaboration 
sequences (e.g., simple to complex, depth first, breadth first, etc.). The basic 
presupposition is that sequencing of units of instruction is a fundamental instructional 
design task that should not be taken lightly. The first item in an elaboration sequence 
should be an epitomizing example. An epitomizing example need not and should not 
demonstrate all of the complexity of the final targeted learning outcome, but it should 
be rich enough to provide learners with an appreciation for the scope and complexity 
of the problems associated with a particular learning module (collection of units of 
instruction). The goal behind a well-articulated elaboration sequence is to help the 
learner develop stable cognitive structures that can accommodate increasingly rich and 
complex subject matter. The particular elaboration sequence which we believe 
generally appropriate for complex domains is one that progresses from the relatively 
simple to the more complex, and we have already referred to that as graduated 
complexity. It should be noted that there some educational researchers draw on these 
same theories and argue that learners should not be provided simplified versions of 
real systems, and that some other elaboration sequence should be supported, or even 
that learners should be left to develop their own elaboration sequences. We find 
insufficient evidence to adopt such an extreme position. In other words, we do believe 
that there is a need to support and facilitate learning (i.e., to design instruction). 
 
According to cognitive apprenticeship (Collins et al. 1989), one elaboration sequence 
which should be supported follows the path of the learner from novice to more 
experienced practitioner. Specifically, those new to a challenging domain require 
more initial support and guidance than more experienced persons. Consequently, there 



should be a variety of support structures to scaffold learning processes and assist new 
learners in developing appropriate representations of problem domains. As we shall 
illustrate, causal loop diagrams and stock and flow diagrams can provide relevant 
scaffolding. As learners become more sophisticated, the burden is shifted to the 
learner to provide explanations for observed problematic behavior. Consistent with 
cognitive flexibility theory, learners may even construct and test their own system 
dynamics models as part of the learning process. In this paper, however, we do not 
illustrate such units of instruction, although as already stated, we do believe that they 
can facilitate learning, especially for more advanced learners. We briefly address this 
issue in the next section and then turn to an elaboration of our units of instruction for a 
system dynamics-based ILE. 
 
To summarize our overall learning and instructional perspective, we adopt the basic 
notion from situated and problem-based learning that concepts are best learned in a 
context of used – a problem setting in which it is then necessary for the learner to 
apply and use the relevant concepts. Such learning should improve retention by 
providing a clear and relevant context and it promotes transfer of learning to work-
task situations by providing relevant aspects of a learning situation which can be 
realistically compared with real world settings. 
 
Piaget (1929) argued that children pass through four identifiable stages of mental 
development: sensorimotor, pre-operational, concrete operational, and formal 
operational. There is a clear progression in these stages from physical action towards 
abstract reasoning. We believe it reasonable to extend the last two stages to adult 
learners. For a particular topic, learners may begin with concrete operations, physically 
manipulating objects in order to solve specific problems. As these operations are 
mastered, they can then progress to more abstract representations and solve increasingly 
complex problems. This is consistent with the notion of graduated complexity already 
presented. One such elaboration sequence for a set of MFL learning modules for an 
entire curriculum might be as follows: 
 
1. Start with concrete operations. Introduce a specific problem in the context of 

manipulating physical things. The board game version of the Beer Game is typically 
used for such purposes. This physical manipulation of orders and shipments and 
inventories provides a setting in which the concepts of delays and feedback 
mechanisms are then introduced. This fits well with the classical notion of problem-
based learning -- introduce concepts in a problem setting, especially one involving 
concrete objects which can be manipulated. In this context, the problem to be solved 
is how to place and fill orders in order to avoid excess, inadequate or badly 
oscillating inventory. 

2. The next stage towards formal operational understanding is to introduce the first 
level of abstraction, still within the context of solving specific kinds of problems. 
This can be accomplished by asked students to engage in some kind of hypothetical 
reasoning. The problem to be solved then becomes something like this: What would 
happen if X does this, and Y does that, and Z remains constant, all within the context 
of the Beer Game. This shifts the problem-solving context into something more 
appropriately supported with a dynamic or interactive simulation so that alternative 
scenarios and hypotheses can be tried out. This kind of learning is more abstract and 
can be characterized as inquiry-based learning to indicate that it is a different form of 



problem-based learning than that associated with the first and more concrete stage. 
A management flight simulator such as Beefeater or Peoples Express supports this 
stage of learning as has been demonstrated by a number of researchers (see, for 
example, Sterman 1994). At this stage, it is important to begin to form a holistic 
view of a system, and causal loop diagrams can help facilitate this process. 

3. A higher level of understanding occurs when a learner is able to explain why things 
happen the way they do in a complex system. The focus of this kind of learning is 
not only to be able to predict what would happen under different circumstances but 
to be able to explain exactly why they will happen that way. In stage two, one 
formulates what one believes to be a reasonable hypothesis in response to an inquiry 
about a complex system and then checks to see if the hypothesis fits observed 
behavior (either in a simulation or in a real setting). In this more formal operational 
stage, learners are asked still more challenging questions about causes for and 
reasons underlyling observed and hypothesized behavior. This might be called 
policy-based learning to distinguish it from the second stage. At this stage it is 
important to introduce some representation of a system's structure so as to make 
clear exactly what kinds of feedbacks and delays exist within the system.  

 
It is at the third stage that transparency becomes important for system dynamics-based 
ILEs, and it for this stage that we provide elaborated units of instruction consistent with 
the MFL perspective. By transparency we refer to the notion that learners need to be able 
to see through an interface to a high level representation (e.g., a causal loop diagram) 
through to deeper structures and causal mechanisms (e.g., stock and flow diagrams). Just 
as there has been a progression from simple and concrete to more complex and abstract 
when going from stage 1 to stage 3, within stage 3 we can image a similar progression 
from simpler representations to more complex representations, consistent with our 
principle of graduated complexity. The emphasis in the remainder of this paper is on the 
first level of elaboration within stage 3 of a system dynamics-based learning 
environment. 
 

Learning by Modeling and Learning with Models 
 
There is a general consensus among system dynamicists that learning that results from 
modeling a reality is more effective that learning that results from the use of a model 
that is made to represent reality (synthetic reality). There are a number of interesting 
questions to be addressed when making such a comparison, and it is not our intention to 
argue one way or the other on that issue. Probably, there is insufficient empirical data to 
support a definitive argument either way. One main point is, however, that modeling in 
the face of reality is quite a different exercise than experimenting with an existing model 
as if it represented such a reality. Our main questions are in which learning contexts and 
in which ways might synthetic realities be used to support and facilitate learning. 
 
One way to compare these two learning approaches (by modeling versus with models) is 
by to challenge the learner to understand the synthetic reality in just the same way the 
modeler is challenged to understand reality. In that case, a synthetic environment should 
help us emulate the situation that a learner might later face as a modeler (consistent with 
the learning perspective already presented). In principle, one can come a long way, 
synthetically, towards providing such a realistic context for modeling. In that case, the 
synthetic reality is represented in the form of a model that is valid in the sense that the 



assumptions included serve as the basis for learning just as well as the facts of reality 
would have. This ensures that the learning gained from such a model is relevant and 
applicable to the reality it represents. In short, we accept the notion from situated 
learning that the learning context should be realistic and authentic. Furthermore, we 
accept the notion from the system dynamics community that identifying and 
understanding causal structures are critical for learning about dynamic systems. 
 
In many ways, existing ILEs do not provide an appropriately rich environment to 
facilitate this kind of learning. Too often, ILEs do not provide a view of or access to an 
underlying causal model. Thus, learners cannot benefit from an explicit model centered 
approach to learning. We do believe that people, when confronted with an ILE, either 
consciously or sub-consciously, seek to capture or reconstruct that synthetic reality in 
some kind of mental representation, a representation that is internal, hidden (even from 
the learner), individual and intermittent. In the design of ILEs, little has been done to 
elicit an explicit representation of such mental models, although according to cognitive 
flexibility theory (Spiro et al. 1987, 1988) developing multiple mental representations is 
critical to understanding complex systems. In existing ILEs few tools and techniques 
have been made available to the learning for that purpose. In principle, however, there is 
nothing preventing us from furnishing the learner with such modeling tools and 
techniques. Moreover, model-based ILEs provide the learner with a synthetic reality 
that, in ways that are well known, offer a number of advantages to experimenting with 
and learning from reality (e.g., cost and time efficiencies). Moreover, providing learners 
with explicit models should facilitate their ability to construct their own models and 
internal representations. This premise is fundamental to our model facilitated learning 
(MFL) perspective. 
 
As indicated, we are not arguing that emulating a formal modeling process is the only 
way by which we can learn about a complex, dynamic domain. There are other strategies 
for learning that could, conceivably, be successful. We do assume, however, that they all 
involve some kind of representation or modeling activity, at the very least the 
construction of a mental model. For that purpose, according to MFL, learning should be 
situated in a real or synthetic, complex, dynamic environment. 
 
In the following discussion, we will focus on learning based on a synthetic reality (i.e., 
model-facilitated learning). This implies that we can assume that the designer of a 
model-based ILE fully understands (see below) that synthetic reality, and, based on 
that insight, can provide ILE support according to the principles of MFL to facilitate 
learning at different stages in a learner’s development. In reality-based learning, the 
instructional designer is forced to rely on other methods. 
 
 

Considerations behind the design of an Interactive Learning Environment 
 
The point of departure for a system dynamics based activity is a problem, a conflict that 
exists between what is desired and what exists. The embodiment of such a conflict may 
range from a pure curiosity to be satisfied to the state trajectory of a system that does not 
follow an expected or a predetermined path. The real reference attributes with which the 
conflict is associated, are represented by the reference variables in a system dynamics 
model. The model is intended to represent the problem at hand. It is an expression of our 



understanding of that problem. To be more specific, the model embedded in a learning 
environment is intended to represent the system underlying that problem, and should  
generate the problem (reference) behavior. The reference variables are expected to 
reproduce the reference behavior, exhibited by the reference attributes, under the 
influence of the underlying model. If it does so for the right reasons (Barlas, 1996), the 
model can be said to embody a theory for why the problem exists. In system dynamics, 
such a problem identification is considered a prerequisite for problem solving. You need 
to understand the problem before you can set out solving it. 
 
Understand is a key concept here as in other sciences. What we need to understand is the 
relationship between structure and behavior, - how the behavior characteristics arise 
from the structure and how the structure that essentially dominates the behavior, varies 
in response to the behavior exhibited over time. The ultimate target for learning in 
system dynamics is such an understanding acquired for the purpose of management. 
Such management might take the form of strategy development, policy design or, 
simply, decision making and implementation. Consequently, learning includes the 
application of systems understanding to the identification of a strategy, a policy or a 
decision that modifies the reference behavior of the system to a goal behavior. 
 
By “complexity” in system dynamics we usually mean structural complexity. This 
implies that complexity is associated with the characteristics of the relationships that 
constitute the system structure. Implicit is the fact that we find it difficult to analyze 
dynamic systems that are characterized by a complex structure; i.e. to infer behavior 
from knowledge about the system structure. For the same reason, we find it difficult to 
synthesize dynamic systems for a particular purpose. When challenged to define the 
concept “complexity”, we typically list feedback, delay, non-linearity and, possibly, 
uncertainty and vagueness, -- and we do so in a random order. We believe that this 
characterization leaves out the most significant feature of dynamic systems that 
contributes to complexity, the integration process. Consequently, our interactive learning 
environments are designed with particular emphasis on the integration processes that 
take place. 
 
We also believe that a process that leads up to an understanding of complex, dynamic 
systems must rely on an alternation between analysis and synthesis. This implies that we 
must repeatedly synthesize models of component structures and subsequently analyze 
them in terms of their behavior. The process of synthesizing a model must be designed 
so as to ensure that the model never develops beyond the point of our ability to 
understand. For most purposes, the model is useless beyond that point. Consequently, it 
is of outmost importance to identify procedures to ensure that this constraint is being 
satisfied. We assume that it is not possible to understand a model as a whole unless we 
understand each of its components.  The implication is that we always need to 
understand the model components we use before we synthesize them. It is a necessary, 
yet not sufficient condition to ensure that we understand the result of the synthesis. Such 
a packet of structure and associated behavior can be considered a unit of analysis or a 
unit of synthesis, depending on which mode of investigation we are in, related to the 
specific problem at hand.   
 
A model results from a synthesis and, associated with that, there is, ideally, an 
understanding of that model, i.e. an understanding of the relationship between the model 



and the characteristic set of behavior patterns that potentially can be generated by the 
model. (Note that a complete systems understanding may not necessarily result from a 
modeling exercise). If we abstract from the specifics of that model and behavior, we 
obtain a generic model and the associated behavior, a general unit of investigation that 
potentially can be transferred and reapplied in a variety of contexts.  
 
Each learning environment that we design should enable the learner to uncover a 
problem in accordance with the principle of graduated complexity. For that purpose we 
develop a number of Units of Instruction (UoI). They generate a behavior relevant to the 
problem at hand and do so for the right reasons, - i.e. based on a structure that has been 
proven valid. This implies that they reflect the current systems understanding. Each step 
of the way, the learner is expected to acquire and retain an understanding of the 
relationship between the structure and the behavior presented in the current UoI. For us 
to assess the level of competence, the learner is challenged to develop a policy so as to 
govern the system covered by a single unit of instruction.  
 
So, what do these units of learning look like in a complex, dynamic environment and 
how do we identify them? And how do we utilize them for learning purposes? We have 
been struggling with these issues for a number of years and this is a brief report on some 
of our findings and suggestions. Since our results are preliminary, rather than presenting 
the them in the form of a theory, we would like to illustrate our line of thinking through 
the utilization of a generic manpower management model, - one that is being utilized in 
our system dynamics program. As such, our suggestions can be considered a 
contribution to the ongoing discussion regarding how to learn from using system 
dynamics and how to utilize system dynamics for teaching purposes. Note that many of 
our suggestions are far from original and must be considered an endorsement of current 
system dynamics practice. We do, however, annotate the procedure suggested with our 
own rationale.  
 
In association with ILEs, we suggest some investigative principles be developed as part 
of a method for model facilitated learning (MFL). Such principles cannot determine the 
outcome of the investigation. There are two reasons for that: (1) Several of the principles 
will typically be conditioned upon the investigator’s findings. (2) Even when these 
conditions are determined, the principles may still be open-ended and must be applied 
with discretion. In particular, there will be a large number of opportunities for branching 
out in such an investigation and, presumably, it is not always obvious which branch to 
follow. In fact, at each stage of the investigation of a problem, we can engage in a 
number of activities, one of which we need to select at any point in time. Yet, we do 
expect that principles of this kind will provide guidelines that improve the likelihood of 
a successful investigation. The examples provided are snapshots along the way to the 
learner’s understanding of a system.  
 
 
1. Challenge the learner to identify and characterize the reference mode of behavior, 
in short called the reference behavior  
 
As we uncover a system, that system will be represented in a model. The system attri-
butes will be represented by variables, and their properties by values. The reference 
mode of behavior is assumed to identify a problem. By implication, there is a preference 



associated with each of these system attributes, called target attributes, that defines the 
reference mode of behavior. In a model, they are represented by target variables. Target 
attributes are interrelated by the structure of an underlying system. To uncover the 
problem, we need to identify that system, called the target system. A model of the 
system, a target model, is a record of our findings. The model structure is assumed to 
inter-relate the target variables the same way the system structure inter-relates the target 
attributes. In the subsequent discussion, we will simplify our terminology and refer to 
variables, whether we discuss the system attributes or the model variables. Since this 
is common in system dynamics literature, we expect no confusion. 
 
As our example, the learner is presented with a case in which the production rate in a 
manufacturing company is increasing. Yet the growth is considered insufficient to 
meet demand, reflected by an order rate. Consequently, the production rate is defined 
as a target variable and its trajectory a component in the reference behavior that can be 
compared to the behavior of the order rate as illustrated in figure 1. 

 
Figure 1: Reference behavior as compared to goal behavior. 
 
 
2. Challenge the learner to identify the preference variables, each associated with a 
target variable and uncover the underlying preference structure.  
 
Since a problem is assumed to exist, there is a preference associated with some target 
variable. Consequently, we ask the learner to define a preference variable associated 
with each target variable. In system dynamics, the preference variables are often 
identified by the prefix desired, e.g. DesiredProductionRate. A preference variable can 
be a constant. Typically, however, its value varies relative to other variables in the 
system. A structure that relates a preference variable to other variables is called a 
preference structure. In our example, the learner is expected to define the desired 
production rate, DesiredProductionRate, as a key preference variable associated with 
the key variable ProductionRate.  
 
A preference structure is a preferred relationship between a (sub)set of preference 
variable and, possibly, other variables (i.e. between the values they take). A preference 
variable may be related to variables in the environment exogenous to the target model 
uncovered so far. The implication is that the system is preferred to adjust to that 
environment. In our example, we prefer the production rate to follow our expectations 
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regarding an exogenously generated order rate, OrderRate. If we disregard expectation 
biases, the implication is that the DesiredProductionRate should be equal to the 
OrderRate. 
 
As we shall see, preference variables can be related to other preference variables and 
to parameters and variables in the target system so as to adjust to that system as well. 
Note that the fact that the order rate is considered exogenous does not imply that it will 
remain so forever. In fact, the gradual uncovering of a system, implies that we establish 
temporary boundaries to support our investigation. Consequently, variables that are 
initially defined as parameters (constants) or exogenous variables (generating time-
dependent trajectories exclusively), may later be incorporated in the model to serve as 
endogenous variables. 
 
The educational purpose of identifying the preference variable is to explicitly establish 
a goal behavior that can be compared to the reference behavior as early as possible in 
the learning process. The discrepancy between the two is what will trigger and drive 
the learner through an investigation into the underlying system.  
 
 
3. Challenge the learner to identify the structure underlying each the target variable 
and the associated preference structure 
 
In the form of a precedence analysis, the learner is expected to trace the causes 
underlying the behavior of the target variable. This may uncover variables that are 
themselves preference variables or that influence such variables.  
 
In our example, the target variable, ProductionRate, is influenced by the size of the 
workforce, Workforce, and the productivity, Productivity, of that workforce, -- one 
multiplied by the other. As illustrated in figure 2, neither workforce nor productivity is 
currently mirrored by preference variables.  
 

 
 
Figure 2: Desired and actual production rate. 
 
The learner is now challenged to infer a secondary preference from the key preference. 
This way, he can create a mirror system of preferences to the target system. The 
educational value of that is that it allows him to identify the systemic implication of the 
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original key preference in the form of secondary preferences and compare this implica-
tion, i.e. the desired state of affairs in the target system, to the actual one. Thus it is 
possible to identify the origin of discrepancies between the preferred and the actual 
values of the original preference variables. This refers to the diagnostic approach of 
problem based learning. 
 
The implication of preferring a certain production rate, given a certain productivity, is to 
prefer a certain workforce, DesiredWorkforce. Alternatively, the implication of prefer-
ring a certain production rate, given a certain workforce, is to prefer a certain 
productivity, DesiredProductivity. The first one of these alternatives is illustrated in 
figure 3. 

 
 
Figure 3: Desired and actual workforce.  
 
When we set the potential preference variable, DesiredProductivity equal to 
Productivity, we imply that Productivity is determined by the target system itself in such 
a way that there is no explicit preference currently associated with that variable. 
Consequently there is no intent to change its value. Moreover, this implies that the 
desired workforce will be determined based on the actual productivity. 
 
In our case, we will based the subsequent discussion of the alternative illustrated in 
figure 3. Note, however, that, depending on its purpose, an ILE could allow the learner 
to pursuit an investigation into the productivity of the workforce, whether the workforce 
is considered constant or varying. For the moment, however, we encourage the learner to 
take that alternative path.  
 
The learners choice leads us to a situation where a preference variable is not only related 
to exogenous factors characterizing the environment, but also may be related to 
parameters or variables in the target model. By anchoring a preference variable, such as 
DesiredWorkforce, to a parameter, such as Productivity, the preferred state of affair 
comes to rely on the static characteristics of the target system. By anchoring in a 
variable, our preferences will become dynamically dependent on the behavior of the 
target system. This will be the case if we let the productivity of the workforce vary, say, 
in response to the workforce utilization. So, the value preferred adjusts in response to 
the dynamics of the system. This implies that the preference system is, in part, 
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influenced by the target system. Since the preference system must be expected to 
influence the target system, there is a mutual interdependence between the two. 
 
One of the important reasons for introducing the preferred magnitudes explicitly as 
preference variables in the model of a learning environment is to be able to investigate 
the consistency of the model, representing the target system and the associated system of 
preferences. If all the variables in the model take their preferred values, the equations 
that describe the structure of the system should all be satisfied simultaneously. When the 
workforce matches the desired workforce, for example, the production rate should 
match the desired production rate. If not, the preferences associated with the model 
cannot be satisfied simultaneously due to the constraints of the target system structure. 
From an educational point of view, it is important to understand at the outset whether 
the model is consistent or not. That information sets the expectations regarding whether 
the preferences can be satisfied simultaneously or not, i.e. whether a solution can be 
found or not.  The learner is challenged every step of the way to check consistency. 
 
 
4. Challenge the learner to halt at each stock encountered, to investigate its dynamic 
characteristics, to infer the associated preference and to develop a management policy 
 
From the key variable, we trace back along the causal links until we identify a stock. 
Such a stock is the first clue to the dynamics of the system. A stock is a state variable 
and its level constitutes an element in the state of the system. The stocks are 
accumulators. They change their state over time as a consequence of the influence to 
which they are being exposed. Moreover, they retain their state from one such 
modification to the next. The stock equation is the only kind of equations in system 
dynamics models that span over a time period. Stocks thus constitute the memory of the 
system.    
 
So far, the model developed is static. All relationships are instantaneous. Having 
identified the first stock in the target system, Workforce, the learner moves on to 
investigate the structure that governs its dynamics. Thus he needs to identify the 
associated flows and the rates that govern these flows. Since we originally needed to 
increase the workforce, we start with an inflow of persons and governed by the 
HiringRate.  
 
The accumulation process is the core of the dynamic system and, at the same time, the 
most difficult process to understand. Consequently, at this stage the investigation 
includes a thorough analysis of the behavior of the stock.. Therefore we furnish the 
learner with a simple Unit of Instruction and an associated ILE, illustrated in figure 4 
that enables him to investigate how the workforce responds to a variety of hiring and 
layoff patterns. The goal of such a unit of instruction is for the learner to develop a 
dynamic intuition based on familiarity with integration processes. Since the designer of 
the learning environment is familiar with the behavior pattern potentially exhibited by 
the model upon completion, such patterns of behavior can be used to test the learner’s 
dynamic intuition and prepare him for the subsequent investigation. The Workforce, for 
example, responds with a phase shift to a cyclical hiring and layoff patterns, considered 
common in our case. Therefore, such a pattern should be available among the behavior 
patterns that potentially may characterize the HiringRate. In figure 6 we illustrate a very 



simple control on those rates for that very purpose. As seen in the last button, the learner 
is also allowed to experiment freely with both rates.  
 

  
Figure 4: Investigating the dynamic characteristics of stock and flows. 
 
In this first unit of instruction, the learner is challenged to meet the demand for 
workforce in view of the current order rate. A control can also be assigned to the order 
rate so as to select between the current problem behavior and a variety of synthetic 
conditions, such as steps, oscillations etc. Moreover, a variety of delays can be 
introduced in the hiring and layoff process so as to challenge the learner. The purpose of 
which is to enable the learner to develop a robust hiring policy for a variety of order rate 
patterns so as to firm up his understanding of integration processes. 
 
The learner is, thereafter challenged with a second unit of instruction, where an attrition 
mechanism is in place causing the workforce to leave after an average duration of 
employment (ADE). Moreover, we introduce the current hiring policy that is based on 
the desired workforce. As illustrated in figure 5, this policy determines the preferred 
hiring rate, DesiredHiringRate. The equation governing the policy is of course; 
 

DesiredHiringRate =  
MAX(0, LayoffRate + (DesiredWorkforce – Workforce) / TimeToHireAndTrain) 

 
DesiredHiringRate is a preference variable that relates the preferred to the actual 
workforce in the target system, taking into account the average time it takes to hire and 
train a new member of the workforce, TimeToHireAndTrain, and compensating for the 
attrition. Consequently, it is a policy that adjusts to the current state of affairs in the 
target system. 
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The policy constitutes a negative feedback loop. Based on the understanding of the 
integration process gained from the first unit of instruction, the learner is expected to 
understand the logic behind this policy and is granted the task to change the 
TimeToHireAndTrain within a pair of reasonable boundaries. Thus the learner takes 
part in calibrating a policy already specified.  
 
 

 
 
Figure 5: The investigation of a negative feedback loop governing the hiring rate.  
 
 
5. Challenge the learner to encapsulate the unit of instruction and incorporate it into 
his body of knowledge  
 
Having understood the relationship between the structure and behavior in this, second 
UoI, the learner is assumed to recognize the response of this system to any typical input 
patterns of behavior. This implies that he can encapsulate the insight gained in a learning 
packet. In a sense that packet becomes incorporated by the learner as a unit of analysis. 
In the analysis of the model behavior, it is no longer necessary for him to investigate this 
structure in great detail. He understands the first order response of this system to a 
change in the order rate, to a change in productivity, and to a change in the time to hire 
and train the workforce.  
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6. Challenge the learner to diversify and generalize 
 
The next unit of instruction challenges the learner with the following problem: The 
workforce is inhomogeneous and can be split into an experienced and an 
inexperienced workforce, - characterized by very different productivities. The 
implication is that the learner is challenged to make an abstraction from the model 
developed and to question to what extent the structure governing the two different 
workforce segments resembles the structure already developed for the workforce as a 
whole. The implication is that the learner considers the workforce to be a generic 
workforce, that the hiring of workforce is recruitment in general and that attrition 
applies to both. Figure 6 is an illustration of the resulting model. 
 

 
Figure 6: Diversification and generalization.  
 
 
The learner typically recognizes that attrition is equivalent to the recruitment from one 
segment of the workforce to the next so that the two components of the model in figure 
6 can be integrated as illustrated in figure 7. 
 
 

 
Figure 7: Integration. 
 
The learner is challenged to  investigate whether the remaining structure generalizes and, 
in that case, how each component integrates into a model of the workforce as a whole. 
Indeed there are similarities: The learner is expected to recognize that the assimilation of 
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the inexperienced workforce into the experienced one is similar to attrition in general. 
The average duration of employment transfers to the average duration of assimilation, 
i.e. how long it takes for inexperienced workers to reach the productivity of an 
experienced worker. 
 
But this implies that the recruitment of the experienced workforce is no longer governed 
by the desired rate of recruitment of the experienced workforce. Therefore, the learner 
typically halts at this stage. He is being told that recruitment of workers in general can 
only take place through the recruitment of inexperienced workers.  
 
The learner is then directed to the preferences that apply to the system. The original 
preference attribute, DesiredWorkforce, must be diversified into secondary 
DesiredInexperiencedWorkforce and DesiredExperiencedWorkforce, respectively. This 
is no trivial matter and, is in a sense dependent upon the definition of desired workforce. 
The learner is led to apply the productivity of one of the kinds of workforce, say that of 
the experienced workforce. Thus DesiredWorkforce is measured in experienced 
equivalents, i.e. the number of experienced workers that is required.     
 
As in the case of the DesiredProduction leading to a DesiredWorkforce and/or a 
DesiredProductivity, we now face the following situation: The learner could arbitrarily 
prefer a certain amount of experienced workers and let the remaining workload be 
carried by the inexperience workforce. In this case, however, restrictions apply. In an 
interactive learning environment associated with a third unit of instruction, the learner is 
challenged to identify other conditions in the target model that limit the degrees of 
freedom that a workforce manager would be facing in this context.  
 
By operating in that learning environment, the learner comes to the realization that, in 
equilibrium, the ratio between the experienced and the inexperienced workforce remains 
the same. The learning environment also allows the learner to identify the parameters 
that determine this ratio. Thus, based on the assumption that the system is in 
equilibrium, the learner is able to find a closed form expression for the ratio existing 
between the two. As such, the learning environment helps the learner not only to identify 
the equilibrium condition, but also to understand the significance of that condition. 
Moreover, this discovery can be utilized to identify the need for recruitment in view of a 
certain preferred production, DesiredProduction.   
 
 

Considerations behind the design of an Interactive Learning Environment 
 
In this paper, we have presented some of the considerations we typically face while 
designing interactive learning environments for simple domains.  We expect the same 
considerations to apply to the design of environments for complex domains. These 
considerations are rooted in learning theory and lead to the definition and application of 
units of instruction. We are still far from a formal definition of such a unit. Yet we do 
define such a unit to have a clear and simple learning goal, to be based on other units of 
instruction, to facilitate the understanding of the relationship between structure and 
behavior in a system, and to enable the integration of such an understanding into the 
body of reusable systems knowledge held by the learner. 
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