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Abstract 

 
We propose an approach that introduces a relational, dynamic  and multidimensional 
conception of flexibility in manufacturing systems. In this approach, two inquiries 
must be introduced by the analyst: what is the field of variations on which flexibility is 
going to be observed? and, what is the field of tensions grouping the resistences to 
changes on the field of variations? In order to obtain an operational model of 
flexibility, the analyst must define the current and the expected states of the observed 
system and construct a model of the factors of tension's influences on its state. Thus, 
three flexibility dimensions are proposed: the degree of adjustment, the effort and the 
time necessary to achieve this adjustment. It is our contention that the model 
construction substends the analyst's conjecture about a system's inner logic 
calculating the expected states.  
 
Key words: flexibility, multidimensional approach, field of variations, field of 
tensions, manufacturing. 
 
1. Introduction 
 
Because an organization needs several types of flexibility, there are multiple 
definitions and evaluation schemes. The origins of this diversity may be linked to the 
variety of uncertainty factors, the possible time perspectives or the different possible 
dimensions to evaluate for flexibility (Gerwin,1993; Carlsson,1987). Consequently, 
there are several operational difficulties in achieving an unambiguous understanding 
of notions of flexibility (Pereira,95): intuitive definitions; misclassification, 
misdefinition and misevaluation; single-dimensional and transversal approaches, etc. 
 
We propose an approach in which the system's flexibilities are specified by means of 
a frame of analysis. Our intention is to define clearly and simply what flexibility is, 
what a dimension of flexibility is and how it must be evaluated. Our aim is to 
characterize flexibility in a relational, multidimensional and dynamic way. We argue 
that this perspective conduces researchers and practitioners to an unambiguous 
definition of flexibility which enables them to better evaluation schemes.  
 
The paper is organized as follows: in Section 2 our approach and the relevant 
concepts to be used are introduced. In Section 3, we introduce a single-line push-
based manufacturing ordering system. Subsequently, in Section 4 we characterize 
flexibility in that ordering system to examplify our approach. Finally, the conclusions 
are presented in Section 5.  
 



2. The proposed approach 
 
The flexibility is the capability of a system to adapt to changes that occur in its 
environment. This intuitive definition brings two questions: adaptation to what? and 
how?  In order to answer these questions, we are going to consider the system as any 
logical and/or a physical device which we might wish to evaluate for flexibility. In 
according to Maturana and Varela (1984), the adaptation degree is properly a subject 
of an observer who evaluates the congruence between the system and its environment. 
In this evaluation he/she actually uses an implicit or explicit deviation function which 
tells him or her how much the system is adapted to its environment. Consequently, the 
adaptation capability will be attributed by an observer to a modelled system and then, 
the system flexibility will be a model-related property also.  
 
For a given system's model, an observer will be compelled to investigate what is to 
change in the environment and the system, what is to be defined as the congruence 
between them, what is to be defined as the deviation function and how he can measure 
this deviation.  
 
2.1 The field of  variations 
 
Let S  be the field of variations, representing the set of states in which an observer 
accords to characterize the behaviour of a system and its environment through the 
trajectories that they take in. Let's suppose that he accepts to model SR ⊂  as the 
subset of realizable states of the system. Also, he defines E  as the set of the states in 
which the environment moves.  
 
Now, let SsEeRs ttt ∈∈∈ *,,  be the observed current state of the system, the 

observed current state of the environment and the expected current state of the system, 
respectively. We will suppose that the observer assumes the existence, in the system, 
of a logic L such that:  

),,(),( **
ttttt sssseL −=              (1) 

i.e., given ts  and te , the L  logic allows to determine the expected state and the norm 

between *
ts  and ts . Then, we can say that the system is in partial equilibrium when 

),0,(),( *
ttt sseL =  or not in partial equilibrium if 0* ≠− tt ss . 

 
Definition 

If 0* ≠− tt ss , then flexibility is the property that tends to realize the partial 

equilibrium in the system.  
 
Thus, a flexible system has the capability to adjust its current state in response to the 

deviation tt ss −*  and the observer models the relationship between the system and its 

environment by the construction of a logic L . Note that, in this perspective, the 
system does not adjust to the environment, but to the L -defined expected states.  
 
Let ** ,, fd ssD !=  be the succession of expected states as determined by L  between 

two arbitrary periods d and f . In general, RD ⊄ . Additionally, let fd ssF ,,!=  be 



the succession of states adopted by the system when it seeks to adjust to the D  
succession. Whatever an adjustment degree would be defined, it should consider a 
measure of similarity between D  and  F . 
 
2.2 The field of tensions 
 
Let the factors of tension be the set of one or more factors of  resistance to change 
which imply an effort and time interval for the adjustment. Let  S

iΩ  be the set 

defining the variations of the factor of tension ni ,,1 !=  when the field of variations 

S  is considered. We define the field of tensions as "
n

i

S
i

S

1=
Ω=Ω . Additionally, we 

define the level of tension by a function T  such that SST Ω→: . Therefore, any 
system state transition on S  implies a change of the level of tension. Because of 
resistences, this change occurs with an effort and a time interval. Thus, those time and 
effort must be considered in relation to a specific adjustment situation, what we call 
the longitudinal approach, and not independently of it, what we call the transversal 
approach.  
 
2.3 The dynamical and relational flexibility 
 
In a dynamic approach, the observer models the logic L  to produce a succession D  
of expected states. Also, the system's responses to these demands are defined as a F  
succession, tracing the actual system moves. Whatever the transition of a ts  state to a 

tts ∆+  state be in F , it demands effort and time. Therefore, we say that the system  

dynamically adjusts to the demanded changes defined by the D  succession.  
 
The static approaches in the literature propose to relate the transition efforts to the R  
set (cf. Section 2.1). In such perspectives, we can't correctly associate dynamic efforts 
or time to R . In our approach, only a specific environmental process may explain 
time and effort of adjustment of the system. We claim that this is a congruent 
dynamical approach to conceive flexibility. Thus, we propose a change of perspective 
that relates F  (and not R ) to the system's efforts and times of transition. This implies 
moreover that flexibility is a relative property: it depends on a well specified 
environment. The following section presents an example to illustrate how this 
approach may be used.  
 
3. Example: a push-based manufacturing ordering system 
 
3.1 Introduction 
 
In this section, in order to illustrate the proposed approach, a model of one push-based 
manufacturing ordering system is introduced. The push ordering method is well 
known in the literature and different articles have been dedicated to model, evaluate 
and simulate it (Krajewski et al.,1987; Shingo,1983; Molet,1993; Takahashi et 
al.,1994; Pereira,1995). First of all, we are going to consider the ordering method as a 
management system working over a single-line manufacturing system's model. 
Thereby, we introduce the later and the involved variables. Then, the push model is 
defined.  
 



3.2 The basic manufacturing system model 
 
Let us suppose a single-line manufacturing system composed by a set of 
manufacturing stages and stockage sites in between. This system is represented in 
Figure 1: 
 

 
 

Figure 1. A single-line manufacturing system 
 
In Figure 1, the rough arrows indicate the product flow direction which is regulated, 
in quantity and delay, by production orders )2,1( =iOi  on each manufacturing stage 

iP ; additionnally, the production rates regulate the stockage sites iB . A specifical 

manufacturing management method establishes a regulation model to define these 
orders. In this way, two methods will be distinct if the production orders are 
calculated in a different manner (Crespo,1992). In order to introduce the model, we 
present below the variable notations:  
 

i  : index, !,2,1=i , 
t  : the time interval, 
τ  : the manufacturing delay, the same on each stage, 

tD  : the demand rate on stockage 0B , during t , 
i

ittD +,
ˆ  : the it +  demand estimate, calculated at the end of t , 

i
acctD ,

ˆ  : the sum of the demand estimate (SDE), calculated at the end of t , for the stage 

iP , 
i
tD̂∆  : the marginal change of SDE, calculated at the end of t , for the stage iP, 

i
tO  : the production order on the stage iP, 
i

tP  : production rate on stage iP during t  placed on stock 1−iB at the beginning of 

1+t , 
i
tB  : stock level of iB   at the end of t , 
iS  : security level of iB , 

i
tEC  : work-in-process level on stage iP, calculated at the end of t , 
iLT  : accumulated manufacturing delay between stages iP and 1P. 

 
Therefore, a set of basic equations must be defined: 
 
a) The stock level on site 1−iB :  
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b) Production rate2 on stage i :  
 

i
t

i
t OP τ−= .                (3) 

 
The variable τ  indicates the necessary delay before the production quantity arrives 
to the stockage site.  
 

c) The sum of the demand estimate (SDE): 
 

Noted i
acctD ,

ˆ , this variable is defined by ( 00 =LT ):  

∑
+

=
++ −=

1

1
,, 1

ˆˆ
τ

j
jLTtt

i
acct iDD .                         (4) 

 
d) The work-in-process level: 
 

Noted i
tEC , this variable represents the production quantities ordered to the stage 

iP , between τ−t  and 1−t , arriving to stockage site 1−iB  after 1−t : 

∑
=

+−−=
τ

τ
1

1
j

i
jt

i
t OEC .                (5) 

 
3.3 The push method 
 
Actually, the push method is a demand-estimate-based system: the production order 
for each manufacturing stage is calculated considering to a demand estimate function; 
whereas, in other methods like the pull systems (in its ideal-type conception; 
Pereira,1995) the production order on each stage is calculated only by the real demand 
rate. In this section, we will present the necessary equations to model the former. In 
Section 4, we will use these equations to determine the flexibility dimensions. 
 
Proposition: 

Let 1
,1

1
,

1 ˆˆˆ
acctacctt DDD −−=∆  be the marginal change of SDE for the first stage, 

calculated at the end of t . If this manufacturing stage is managed under the 
push method, the production order is given by  

.,ˆ 11 tDDO ttt ∀∆+=      (6) 
 

Dem:  
 
1) The production order equation at the end of  t  is given by (Pereira,1995) 

.),(ˆ 1001
,

1 tECBSDO ttacctt ∀+−+=         (7) 

Then, subtracting 1
1

1
−− tt OO  we have  

 



.ˆ 1011
1

1
ttttt ECBDOO ∆−∆−∆=− −       (8) 

 
Additionnally, it is easy to show 
 

tttt DPBB −=− −−
1

1
0

1
0 ,       (9) 

.1
1

1
1

1
1

1
−−−− −=− τtttt OOECEC                 (10) 

 

2) Therefore, the equations (9) and (10) finally imply  ,ˆ 1111
ttttt PODDO −+∆+= −τ  

which demonstrates the proposition. ! 
 
In a push method, the equations for production orders in the upstream stages have a 
similar structure to the first stage, but they include a delay on the real and estimated 
demand; the next proposition establishes it. 
 
Proposition: 

Let τ)1( −− itD  be the demand rate on the first stage at the end of  τ)1( −− it  and 
j

jitD τ)(
ˆ

−−∆  be the marginal change of SDE, calculated for the stage 

)1( ijj ≤≤ . If the stage i is managed under the push method, the production 
order is given by  

∑
=

−−−− ∆+=
i

j

j
jitit

i
t DDO

1
)()1(

ˆ
ττ .                 (11) 

Dem: 
 
Let us consider a recurrent procedure: 
 
1) 1=i : The equation 6 establish the truth value for the first stage. 

 
2) )1( >= mmi : The recurrence hypothesis says: 

∑
=

−−−− ∆+=
m

j

j
jmtmt

m
t DDO

1
)()1(

ˆ
ττ . 

3) 1+= mi : In general, the production order for the stage i is defined by 
(Pereira,1995) 
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i
t DPO ˆ1 ∆+= − ,                 (12) 

 

Then, one has 11 ˆ ++ ∆+= m
t

m
t

m
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t
m
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which demonstrates the proposition. ! 
 



4.  Flexibility in push methods 
 
The results obtained in the precedent section will serve us to specify the constructs representing the 
flexibility dimensions. Thus, in the following sections, we develop our framework. Firstly, the field of 
variations and one adjustment measure are defined. Secondly, the field of tensions, the effort and the 
time dimensions are defined and analyzed.  
 
4.1 The field of variations: an adjustment measure 
 
Actually, in a manufacturing system, we may define several fields of variations, each one related to one 
kind of expectations: the coupling of, production and demand rates, real and desired stock or real and 
desired work-in-process (Forrester,1969). Additionnally, several objectives may be defined for the 
ordering system and it may be evaluated in relation to the success or failing to reach them 
(Lenard,1995). Thus, the first choice to be made by the analyst is what is to count as the field of 
variations?  In this particular instance, we will select the common space of changes of demand and 
production rates. Thereby, let ℜ=S  be this space. We are going to consider the demand rate process 
as the D  succession of expected states and the production rate process as the F  succession of the 
system responses (cf. Section 2.1). Then, to define an adjustement measure we must find a similarity 
function for the demand and production signals. 
 
In Figure 2,  three manufacturing stages are managed in a push ordering system. We may observe that 
there is no a great similarity between the production curves and the demand process, represented by a 
rough line3. 
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Figure 2. Production rates in a push ordering system (three stages) 
 
In contrast, in Figure 3, the same three stages are managed in a pull ordering system. In this case, we 
may appreciate an astonishing similarity between curves, excepting the sliding effect caused by the 
production delay. According to these examples, an appropriate measure for the adjustment may be a 
similarity or dissimilarity demand-production indicator. However, it is important to take into account 

the production delay. In fact, we know that i
t

i
t OP τ−= .  
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Figure 3. Production rates in a pull ordering system (three stages) 
 

Then, the difference (cf. Equation (11)) ∑
=

+−−− ∀∆=−
i

j

j
jitit

i
t tDDP

1
)1( ,ˆ
ττ  may give us an idea of the 

gap between the expected state τitD −  and the system's response i
tP .  In general, the production rate is 

defined by  i
tit

i
t DP θτ += − ,  where i

tθ  depends on the ordering system. In other words, the distance 

variable between the production and demand rates corresponds to τθ it
i

t
i
t DP −−= . Then, we define 

the adjustment degree of the stage i , in relation to the  demand rate, by the following expression (the 

condition tiEDE i
t

i
t ,,0][0]ˆ[ ∀=⇒=∆ θ , must be satisfied): 

.1,
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)( ≥= i
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V

t

i
ti θϑ               

(13) 
Now, we have τττ )11()1( jitjit −−+−−=−+− , then, in order to obtain a developed 

expression for the adjustment degree, we can establish: 

∑
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=
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−
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)1(

1 ,1,ˆ
i

j

j
jit

i
t iD ττθ              

(14) 
which will lead to 

.2,ˆ1 ≥∆+= −
−
− iDi

t
i
t

i
t ττθθ     

  
Note that a pull method is characterized by the absence of the demand estimate term, that is, 

tii
t ,,0 ∀=θ  (Pereira,1995). Also, we may consider an hybrid ordering system in which the first 

stage is managed in a push method and the upstream stages in pull. In Table 1, the i
tθ 's for these three 

ordering systems are presented. It should be noted that the push method induces an upstream 
propagation of the demand estimate signal.  
 

Stage Push Hybride Pull 
1=i  1ˆ

τ−∆ tD  
1ˆ

τ−∆ tD  0  

1>i  i
t

i
t D ττθ −

−
− ∆+ ˆ1

 
1−

−
i
t τθ  0  

 
Table 1. Distance to demand rate in different ordering systems. 

Indeed, Table 1 suggests that, it suffices to determine the variances for the push method and the other 
methods are resolved. Thus, the variance on the stage 1>i , for the push ordering system, corresponds 

to )ˆ,cov(2)ˆ()()( 11 i
t

i
t

i
t

i
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i
t DDVVV ττττ θθθ −

−
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−
− ∆+∆+= . Using the equation (14), let us define the 



following terms: 
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In according to these expressions, the adjustments degrees are specified in the Table 2. 
 

Stage Push Hybride Pull 
1=i  G  G  0  

1>i  
i

i H+−1ϑ  
1−iϑ  0  

 
Table 2. Adjustment degree in different ordering systems. 

 
When the manufacturing system is managed in a push method, the upstream stages potentially raise the 
dissimilarity between production and demand rates. As a result, the stages are not synchronized, 
whereas, in the pull or the hybrid methods, they are.  These are the evident behaviours showed in 
Figures 2 and 3. Another conclusion may be obtained. It should be pointed out that the production-
demand distance measure depends on delay τ . In consequence, the higher the τ  delay, the slower the 
ordering system will adjust production rates.  
 
4.2 The field of tensions: the effort and time consequences 
 

Muramatsu et al. (1985) have proposed an amplification measure, )()( t
i

t DVPV ,which should 

characterize flexibility in a manufacturing stage. The desirable management systems satisfy 

,1 1 nAmpAmp ≥≥≥ ! where Ampi (i= 1,...,n). Indeed, the amplification evaluates the relative 

average raise or decrease of production rate. In fact, in a single time interval, several lot-related setup 
operations may occur. In that case, a lot-sizing problem may be resolved in which one of constraints 
imposes the demand satisfaction (Spence y Porteus,1987). Thereby, the amplification ratio indicates the 
opportunity cost incurred by the ordering system when it fails to determine the optimal production rate. 
Then, the  adjustment effort increases with the non unitary amplification.  
 
It is clear that any variable contributing to the production costs may be considered as a factor of 
tension4: the facility availability for processing, the nominal and relative time setups, the direct setup 
cost, the fixed cost, the unit cost of production, the production lot-size, the opportunity cost of capital 
(DeGroote,1994).  
 

Now, we know that i
t

i
t OP τ−=  and (cf. Equation (12)): 
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(15) 
Thus, an expression for the variance of production rate may be found.  
 
Proposition 

Let us consider a push ordering system and a stationary stochastic demand process satisfying 

the equation (15), then the variance of the production rate i
tP  is given by: 
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Dem: 
 

1) When 1=i , one has )ˆ,cov(2)ˆ()()( 111
ττττ −−−− ∆+∆+= ttttt DDDVDVPV . Nevertheless, the 

stationarity hypothesis implies   
 

)ˆ()ˆ( 11
tt DVDV ∆=∆ −τ , 

)ˆ,cov()ˆ,cov( 11
tttt DDDD ∆=∆ −− ττ  . 

 

2) In the same manner, one concludes on the variance for i
tP  when 1>i . ! 

 
It can be seen that the amplification ratios for the manufacturing stages may be deduced. Moreover, 
with this result, it is easy to find the variances expressions for the pull and hybrid cases. Next, to do 
this, let us define the following variables: 
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The ordering systems behaviour (see Table 3) is very similar to the patterns found for the adjustment 
degree. It should be noted, however, that the amplification ratio is not null for the pull method. Again, 
the push method introduces an additional term in the upstream direction, whereas the hybrid ordering 
system introduces an initial term A  which propagates upstream in the manufacturing line.  
 

Stage Push Hybride Pull 
1=i  A+1  A+1  1  

1>i  
i

i BAmp +−1
 

1−iAmp  1  

 
Table 3. Amplification ratio  in different ordering systems. 

 
Because of the potentially higher amplification of the push ordering system, we establish that, under 
the specified conditions,  this method induces a larger adjustment effort than the other two (Takahashi 
et al.,1994). 
 

5. Discussion  
 
We have proposed an approach that introduces a relational, dynamic  and multidimensional conception 
of flexibility in manufacturing systems. In this approach, we define two fields of analysis: the field of 
variations and the field of tensions. In our approach, any  analysis, evaluation or definition of a specific 
system flexibility, must begin by introducing two important inquiries: what's the field of variations on 
which flexibility is going to be observed? and, what is the field of tensions grouping the factors 
imposing resistences to changes on the field of variations? In order to obtain an operational model of 
flexibility, the analyst (observer) must define the vectors of the current and the expected states of the 
observed system. A model of the factors of tension relationships and their influences on the state of the 
system must be achieved to determine the adjustment degree, the effort and the time of this adjustment. 
It is our contention that the model construction substends the analyst's conjecture in a system's logic 
which calculates the expected states of the system.  
 
In the example of manufacturing ordering system, we have shown the necessity of a correct definition 
of the field of variations. Subsequently, we have proposed that, in the manufacturing ordering example, 
our adjustment degree measure differs from those presented in other articles (Kimura and Terada, 
1981; Muramatsu et al.,1985; Takahashi et al.,1987; Takahashi et al.,1994) because the amplification 
ratio is better aprehended as an effort indicator and not as a production-demand adjustment measure. 
Additionnally, we have shown that the time factor is directly considered in the adjustment and 



amplification ratios. A further analysis of time aspect may be found in Pereira (1995). The inner logic, 
in our case the defined push, pull or hybrid methods, strongly determines the flexibility evaluations. 
Thus, in Sections 4.1 and 4.2 we show that adjustment and amplification ratios depend on the demand 
estimate functions: the push and hybrid methods are very sensible to these functions, meanwhile the 
pull method is sensible only to the real demand rate.  
 
We conclude that, in the manufacturing ordering system example, the proposed approach establishes a 
well structured framework to define and evaluate flexibility. 
 
1    This research is supported by a DIUT  project, at the Universidad de Talca.  
2  Here, we suppose that there is no production shortages. 
3 The demand curve corresponds to an AR(1) random processus, autocorrelated ( 8.0=λ ), and the 

production delay is a constant number ( 1=τ ). 
4  An analysis model from these factors goes beyond the scope of this article. A flexibility approach to 
this problem  has been undertaken in Pereira (1997). 
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