
Component-Based Modelling and Simulation: A Case for 
Simulation Software Architecture 

 
Ddembe Williams and Michael Kennedy 

School of computing,  
South Bank University 

103 Borough Road,  
London, SE 1 OAA, U.K,  

Tel: 0171 815 7460 Fax: 0171 815  
E-mail: d.williams@sbu.ac.uk; kennedms@sbu.ac.uk 

Key words: Components, Complex Systems, Object-Oriented Development Simulation 
Software, System Dynamics. 

Abstract 

This paper reports the results of an initial study into the utility of the application of 
Component-Based Programming (CBP) techniques to the development of a System 
Dynamics (SD) simulation model. Many problems being examined by SD techniques 
are complex and thus time consuming. Object-oriented (OO) and visual simulation 
technology (VST) are becoming increasingly important in software development but, 
although OO component reuse in software engineering is about 10 years old, this 
concept is new to SD simulation software. SD simulation software has greatly improved 
in usability and user acceptance in recent years, although the modelling process is still 
tedious particularly for people new to SD. This is often due to a lack of experience in 
the conceptualisation process and in gaining understanding of the problem domain. 
The paper further suggests that there are potential benefits in using a CBP architecture 
in SD modelling as it leads to shorter development and simulation time, higher user 
acceptance of and greater confidence in the models developed. 

1.0 Introduction 

This paper reports results of an initial study into the utility of a component-based 
simulation environment. This describes our experiences with the application of CBP 
(using C++ Builder) to the development of a SD simulation model. Due to recent 
advances in object-oriented and visual simulation technology, they are becoming 
increasingly important (Balci et al, 1997; Brown, 1996; Umar, 1997) in software 
development.  

Although traditional system dynamics simulation software has greatly improved in 
usability and user acceptance, the modelling process is still tedious particularly for 
people new to SD, due to their lack of experience in conceptual process and 
understanding of problem domain. The concept of reusable SD model components for 
visual simulation illustrates how a visual simulation model can be used to develop SD 



model with no programming experience, and in a short development time. (Umar, 1997; 
Miller et al, 1998; Balci et al, 1998; Harrel and Hicks, 1998 and Mackulak et al, 1998). 

Results of the study indicate that simulation software can utilise the benefits of Object-
Oriented Programming. Component-based simulation software in SD has the potential 
of adding capabilities to maximise reuse of model parts or even whole system 
depending on complexity of the system in question.  

The benefits identified in this study of using ActiveX and C++ component-based 
simulation in the software can lead to short development and simulation time higher 
user acceptance and confidence in system dynamics simulation models. Programming 
languages have evolved constantly over the last three decades and along with this 
evolution has come several programming styles aimed at reducing the cost and time of 
program development. The rest of the paper is divided in five sections. Section two 
describes the current simulation software available, while section 3 introduces the 
concept of component-based programming. Section four discusses our learning 
experience in using component-based simulation architecture and section five provides 
the summary and concluding remarks. 
 
2.0 Current Simulation Software 
 
The 1960s saw a great progress in the development of both analogue and digital 
computers and complex simulation studies became a reality. In the early days of 
computer based simulation, analogue computers were used for the simulation of 
continuous systems whilst digital computers were used for discrete event systems 
(Matko et al, 1992). Analogue computers were used to simulate continuous systems 
because they allowed the representation of continuous variables by continuous 
properties such as voltage and current (Pidd, 1992).  
 
Current simulation software used in modelling systems that are predominantly 
continuous in nature are called SD software packages. The term “simulation software” 
is used in a broad sense to describe simulation languages and software packages or 
"simulators". 
 
2.1 Simulators 
 
Law and Kelton, (1991) describes a simulator as a computer package that allows the 
simulation of a system contained in a specific class of systems with little or no 
programming. Schmidt, (1986) identifies simulators as possessing a main program and 
a library of subroutines which the user introduces to carry out desired function in the 
simulation program. We contend that simulator are extendable if the user knows the 
base language well enough to create new subroutines which can be appended to the 
simulators library of subroutines.  
 
 
 



2.2 System Dynamics Simulation Software 
 
Simulation software designed for the developments of SD simulation models offer 
some common approaches to model building. In general, these tools enable model 
development through graphical specification of required relationships among variables 
(STELLA/ithink, Vensim, Powersim), or by the implicit writing of equations in text 
editors (COSMOS & COSMIC, Dysmap2, Dynamo). They also provide built-in 
functions which covers a wide range of simulation, mathematical and logical, statistical  
and analytical tools in the form of tables, graphs, animation, flow charts, or reports 
which explains simulation results. Some offer additional functionality for model 
sensitivity testing and optimisation (Coyle, 1996). 
 
2.3 Object-Oriented Programming 
 
The Object-Oriented paradigm views a program as a collection of discrete objects that 
are self-contained data structures and methods that interact with other objects. It 
provides a way of dividing a program into modules by using objects as building block. 
The concept of reuse is central to object-oriented programming and this is achieved 
through inheritance.  Whilst there are pure object-oriented languages such as Eiffel and 
Smalltalk, there are also hybrid-languages such as C++ which provides all the crucial 
elements for applying the object-oriented paradigm, and there are others which are 
categorised as object based because they contain some aspect of encapsulation inside 
objects that can be created from a set of existing classes, but does not provide the 
mechanism for creating new classes. An example of an object-based language is Ada 
95.  
  
3.0 Component-Based Programming (CBL) 
 
The concept of reuse is central to CBP is a visual programming style that involves the 
use of independent, pre-fabricated software units called components, and these 
components are objects which encapsulates data, method and events, ready for use in an 
application (Borland, 1997). CBP is implemented in Integrated Development 
Environments (IDE), based on programming languages, which are Object-Oriented in 
nature. It offers a simplified way of programming through its collection of pre-
fabricated components, and other programming features, which typifies an IDE. These 
environments are also recognised for their capacity for rapid application development 
(RAD). CBP is not entirely free of code writing, as there is usually the need to augment 
the behaviour or extend the functionality of a component to suit application needs. It is 
also the case that the incorporation and use of these components sometimes necessitate 
additions to the syntax of the programming language on which they are based. The 
technology of component creation appears to fulfil the software industry’s need for true 
reusability as described by Cox (1990). The standards in place, such as the Object 
Management Group’s [OMG] Common Object Request Broker Architecture [CORBA], 
(which provides common interfaces and descriptions for objects), and Microsoft’s 
Component Object Model (COM) which provides a specification for using objects 



produced by various vendors within a single application).    
  
By adopting a CBP approach in the development of a SD simulation model, this work 
aims to identify any improvements it may offer over the normal style of programming 
which would make the programming approach to computer simulation modelling 
comparable to, or more advantageous than the use of a Simulator. For this purpose, C++ 
Builder has been chosen as the implementation tool. 
 
3.1 Overview to C++ Builder  
 
Borland International describes the C++ Builder as a visual programming environment 
where 32-bit Windows applications can be designed, developed and debugged. The 
style of programming supported by C++ Builder is widely known as CBP. Telles (1997) 
describes it as a true Rapid Application Development (RAD) tool for the C++ Windows 
programming world. The OO concept of reuse is central to CBP. C++ Builder offers 
programmers a dual approach to programming using the C++ language. It offers the 
opportunity to program within an Integrated Development Environment that allows 
programs to be written, edited, compiled and linked, all within a single application, and 
it also offers CBP in which components are used in applications to ease the 
programming task and cut down on development time. Standards established for the 
creation of components require that they are universal and transferable from system to 
system regardless of language. In order to allow for the creation of components which 
may be used on other platforms, and facilitate the use and manipulation of components 
from other platforms in C++ Builder applications, additions were made to the C++ 
syntax. Figure. 1 shows an editor, a form, the object inspector, the component palette 
and the tool bar in the start up screen of C++ Builder.  
 

     
               Figure 1.  The Start up Screen of C++ Builder 
3.2 Components in C++ Builder 
 
The C++ Builder describes a component as an object in code. Visual Component 



Library (VCL) contains different types of objects, some of which are not components. 
Components in C++ Builder are identified as any class, which is directly descended 
from the TComponent class. Objects, which are not components, are derived directly 
from TObject, the ancestor class at the top of the VCL hierarchy.  
 
VCL is a good example of the use of inheritance, in object-oriented terms. 
TComponent, the ancestor of all components in the VCL provides the minimal 
properties and events necessary for a component to work in the C++ Builder 
environment. Other base classes, which descend from it, have specialised capabilities, 
which are present in all classes, derived from them. For example, all edit-box and 
memo controls are derived from the TCustomEdit base class that encapsulates the 
fundamental behaviour common to all components, which edit text. 
 
One significant characteristic of all components is that they are visual and can be 
manipulated at design time. However, whilst some components remain visible at 
runtime, some do not play any visible role in an application at runtime because they are 
program elements which act either as a placeholder, or an interface for the manipulation 
of underlying data. For example, DataSource is a non-visual (at runtime) component 
that provides a conduit between a dataset and data-aware controls that enable the 
display, navigation and editing of underlying data in the dataset. Non-visual 
components such as these are derived directly from TComponent whilst visual 
components such as Edit Boxes (also know as controls) are derived from TControl, a 
specialised base class derived from TComponent. An another characteristic of CBP is 
the universality advocated for component use and distribution. Some of the components 
are written in Pascal whilst some are outright in ActiveX controls. C++ Builder also 
supports the development, installation and use of new components in its environment.                   
 
3.3 Using C++ Builder Components  
 
Using C++ Builder Components involve the selection of a component from the 
component palette or from the main menu under View/Component List, dropping it 
unto a Form, setting its properties in the Object Inspector and writing an event handler 
(code) in the code editor for any event (listed in the Object Inspector) which the 
component responds to.   To aid flexibility in their application, new components can be 
derived from existing classes to extend functionality, get rid of properties which are not 
required, override methods, or change standard default values. However, this derivation 
cannot be made directly from the component class as existing properties and method 
cannot be changed. A base class of the type from which the component is derived 
would have to be used. For example, if an Edit Box with additional functionality other 
than that provided is required, a new class should not be derived from the TEdit class of 
components; it must be derived from the TCustomEdit base class.  
 
In addition to the VCL, C++ Builder has a standard library of functions and templates 
that form a large part of applications developed in the C++ and some example of their 
use will be demonstrated in the next section.  



 
 
3.4 Developing SD Models with C++ Builder  
 
In programming a simulation model, the modelling process involve the direct writing of 
equations in code form as opposed to the physical assembly of building blocks when 
using certain simulation package. However, it is possible to visually model both the 
equation and simulation interface given the availability of suitable components. 
Currently, C++ Builder has an extensive range of components, some of which are 
dedicated to specific types of application. An extensive collection of components is 
dedicated to use in database development and manipulation, and for Internet 
applications. There is however no components specifically developed for use in SD 
simulation modelling. 
 
As the model variables in SD (except for constants) are dependent on equations which 
makes use of other variables to get their value, it is necessary to initialise the declared 
variables (placing them in the right order of execution) with the appropriate value or 
equation in the Forms constructor, to enable their use in subsequent calculations. The 
initialisation process involves assigning initial values to stocks and constants, and 
equations to flows and converters to set their values. Once initialisation is achieved, run 
time equation is written to set the cumulative value of stock variables. The next step is 
to establish a link to a graphics object that would display the result of calculations 
during model simulation and these forms a major aspect of the simulation interface 
building process.                     
          
 3.5 Simulation Interface Programming 
 
Graphs are the best means for displaying simulation results. C++ Builder offers two 
graph components on the ActiveX page of the component palette but initial 
explorations showed them to be unsuitable for use due to a lack of adequate 
documentation for their application, and the fact that their use within an application 
requires a major deployment of supporting files which must be installed and registered 
on the client’s machine before application installation can take place. Nevertheless, it is 
possible to procure independent components from other source and install them into 
C++ Builder.  
 
To use the procured graph component for simulation purposes, it important to override 
and re-write methods which set graph properties such as lines, tick marks, line points, 
axes values, grids, etc., For example, the method below sets the value of the x-axis grid 
by first checking to see if the value has changed, and if it has, the new values is given to 
the FXGrid data member which holds the x-axis grid value, and the standard repaint 
function is called to repaint the grid.  
 
 
 



 
 
 
Void __fastcall TDGraph::SetXGrid(bool xGrid) 
{         
               if (xGrid !=FXGrid) 
           { 
               FXGrid = xGrid; 
               Repaint(); 
             } 
}   
 
As data members in C++ cannot be accessed directly, the VCL provides properties, 
which are made available for setting in the Object Inspector by declaring them as, 
published, or called only as methods by declaring them as public. The “read” and 
“write” functions used to accomplish this task is demonstrated below.   
 
private: 
    bool   FXGrid; 
public: 
   __property bool XGrid = { read=FXGrid, write=SetXGrid, default=true };  
 
An important property of the graph, which required special attention in its creation 
because it forms a link to the model's data, is the line property. Lines are created by 
linking a series of X and Y points on the drawing canvas and considering that the 
number of points generated by an equation during a simulation cannot be pre-
determined at design time, functions provided by the C++ Standard Template Library 
which reserves memory and have the capability to dynamically increase as needed. This 
concept is demonstrated below.   
 
void __fastcall TDGraph::SetNumberOfLines( int nLines ) 
{ 
      FXPoints.reserve( nLines ); 
      FYPoints.reserve( nLines ); 
      FLineColors.reserve( nLines );                  
      for ( int i=0; i<nLines; ++i ) 
      FLineColors[ i ] = clBlack; 
      FNumberOfLines = nLines; 
} 
 
When changes are made to the underlying data through the Tab Dialogue, clicking on 
the run button on the tool bar can refresh the graph. Figure 2 shows the simulation 
output graph defined in the code above. 
 



                
 
                                            Figure 2. Simulation Output Graph 
 
In the main application, an instance of the graph component is added to the TForm’s 
header file to enable its use, and properties such as the number of axes ticks, decimal 
places, axes values are set for model use. For example, when a simulation time is 
specified by the user, the change has to reflect in the x-axis tick marks, which displays 
the time gradation. To enable this, the maximum time is divided by the DT (unit of 
time) specified and the value is assigned to the NumberXTicks property of the graph 
which redraws itself as the values change.  Through this kind of assignment, model data 
such as the result of calculations are set into the graph’s line property.  
 
3.6 Interface to Model Data 
 
Once the underlying implementation is complete, an interface that facilitates data input 
for onward assignment to graph properties is created using a collection of components. 
The interface is a tab dialogue created with the Page Control component and it is 
designed to group related graph properties together, separate from model properties. 
Components such as the Panel, Label and Bevel are used mainly to set the appearance 
of the dialogue box whilst Edit Boxes serve as the major source of user input. Radio 
Buttons and Check Boxes are used to indicate user choices and ComboBoxes present a 
list of items for users to choose from. To accept input from a component such as an edit 
box and assign the value to a property, it is necessary to write code as shown below. 
 
double xdecimal  = atof(Form3->FilterEdit1->Text.c_str()); 
 
nGraph->NumXDecimals = xdecimal; 
 
In the above code, a variable of the type double is used to accept and store the value of 
the text, which has been input into FilterEdit box1. Because of the generic AnsiString 



type used throughout the VCL, it is necessary to convert AnsiString to character by 
appending the  c_str() function to the end of the FilterEdit box’s Text property. In 
addition to this, the input text, which is really a number, must be further converted into 
the data type (double) of the  NumXDecimal property of the graph object before its 
assignment. Otherwise the direct use of input data produces some very strange results. 
This conversion is performed using the “atof” function from the stdlib.h / math.h 
library. Figure 3 shows the multi-line Model Properties Tab Dialogue.   
 

                    
  
                                    Figure 3.  Model Properties Tab Dialogue  
 
The main interface to the application consists of a Main Menu and a tool bar made up 
of Speed Buttons that are used mainly as shortcuts to the execution of various functions 
within the application. Creating shortcuts to main menu item using Speed Buttons 
involve assigning the event handler of the original menu item, to the On Click event of 
the shortcut button in the Object Inspector.  
 
4.0 Learning Outcomes 
 
In this section we report our experiences gained with modelling with components.  
 
4.1 Learning the Tools 
 
Most of SD simulators provide a clear and well-documented online help facility, which 
is very useful in learning its application to model development. The help facility makes 
extensive use of illustrations to explain functions of various tool features and this visual 
aid helps the learning process immensely. Learning to use C++ Builder for CBP is 
somewhat tedious. It is necessary to become acquainted with the components available, 
their properties, methods and events, and also learn how to use them within an 
application. These components and the vast number of object classes available within 
the VCL are documented in volumes of manuals and in the online help facility. For an 



experienced C++ programmer, learning and using C++ Builder may be a fairly simple 
task but for a user with little previous programming experience, the learning process 
may be time consuming. In our experience, we have found that there is a steeper 
learning curve with CBP, however in our opinion the potential advantages in terms of 
functionality and flexibility of using CBP approach are far greater than the use of 
simulators.  
 
4.2 Skills Level Required 
 
In using current simulators, presuming the modeller has knowledge of the fundamentals 
of System Dynamics simulation modelling, no special skill (programming or 
otherwise), is required to successfully use the tool, other than to learn the specifics of 
features and functionality offered by the package. With CBP using C++ Builder, there is 
still the need to write some code even though the level of functionality, which has been 
built into the components, vastly reduces the level of effort and skill needed. However, 
programming a SD simulation model without components specifically provided for 
such use still require real technical skills and the benefits offered by the Component-
Based approach in other situations therefore does not apply.  
 
4.3 Accessibility and Portability 
 
Programming languages and tools are more widely available in many organisations 
because of their prevalent use in the development of a variety of applications. For this 
reason, a developer is more likely to have access to a programming tool such as C++ 
Builder than to a specialised simulator. When a model is developed with a 
programming tool such as C++ Builder, the model can be installed for use on a wide 
variety of machines as an independent application. With the use of simulator however, 
the final model can only be ported for use to a system which has the simulator software, 
and moving it on to another platform would requires the additional effort and cost 
needed to translate it.   
 
4.4 Relevance of CBP to Simulation Software Architecture 
 
The modelling framework provided by graphical SD simulators directly supports the 
dynamics elements: Levels, Rates and Auxiliaries, and it also enables the specification 
of relationships between these elements through links created by connector object. C++ 
Builder being a generic programming tool that is not geared towards any specific 
application development does not offer features which directly support the fundamental 
principles of SD modelling. However, the C++ language, has constructs, which can be 
used effectively to represent the SD elements.  
 
Using simulators is a fairly simple and straightforward process. However, building large 
and complex models can be very difficult for model owners to unravel and navigating 
the web of connectors between numerous model entities makes them difficult to 
understand. Time is wasted using the building blocks whilst dealing with the problems 



of the model. One very useful feature of simulators is that they provides underlying 
support in the specification of equations, arranging them in the necessary order of 
execution and creating part of the run time equation.  Once the modeller user gets past 
the hurdle of learning to program with components in C++ Builder, programming with 
the tool and its components can be fairly simple, and in true rapid application 
development perspective. A useful simulation model can be put together in a matter of 
few hours. Equation modelling in C++ Builder is entirely the programmer's 
responsibility as there are no component specifically tailored to this use. However, this 
is a straightforward process of writing equations in the code editor and compared to the 
diagramming process in simulators, saving on development time.  
 
4.5 Application Cost of Approaches 
 
There are two aspects that were considered in evaluating costs involved in the 
implementation of each approach, the cost of the software and the model development 
cost in developing a pilot model. Procuring the software for each approach depends on 
whether its application is for commercial or educational use. Taking the educational use 
as an example, it costs about three times more to purchase the simulator software than it 
does to purchase C++ Builder except in case of Vensim, which is free for educational 
use. In the other aspect, project cost will depend on development time, as CBP enables 
rapid application development, model development time with C++ Builder can be said 
to be comparable to that of a simulator, based on our limited experiments to date.  
 
 5.0 Summary and Conclusion  
 
The overall performance and capability of each approach can be evaluated from the 
model produced from each environment. The advantage of dedicated simulation 
packages is in their effectiveness, the ease of simulating a complete or part complete 
model, and the accuracy obtained from a tool that has been specifically developed and 
tested for this purpose. The main argument, against it therefore is the limitations, of 
functionality and flexibility which is an unavoidable part of a packaged solution such as 
these "simulators".  
 
The model interface which is easy to understand and use and it provides easy access to 
model equations and properties. It also provides an interesting and entertaining 
simulation environment, which enhances client interaction. However, the behaviour of 
simulation output from the programmed model is currently not satisfactory and as with 
any software development project its accuracy needs to assessed over a period of time 
and modifications made to achieve a level of robustness which would make it reliable 
to use.      
 
This paper has described the application of CBP and a Simulator to the development of 
an experimental SD simulation model. Based on this pilot study, it is possible to 
highlight the potential of CBP the capability and flexibility of the SD approach. It was 
possible to create an interesting simulation environment within a short period of time, 



but it does not fully reflect the extent to which components can change the way in 
which SD models are created.  
 
 
This was due to the current lack of pre-fabricated components tailored specifically to 
this use. In view of this, we propose further work to implement a method for modifying 
existing components for use as simulation components.    
 
It is possible to develop both simple and fairly complex applications with components 
doing very little programming with the use of edit boxes and some other components. 
Programming a SD simulation model requires a greater level of technical skills and, in 
the absence of suitable simulation components, the benefits of component-based 
programming cannot be successfully applied to SD simulation modelling. The level of 
programming required in the use of components depends on the degree of functionality 
built into them. It is therefore possible to develop SD simulation components, which 
would require little or no programming skills.  
 
Acknowledgements 
 
The authors would like to acknowledge the contribution of Angela O'Connor in 
conducting the simulation experiments on which this paper is based. 
 
References 
 
Umar, Imrana., (1997) A process for design and modelling with Components,. In Eds. Y. Balas, Vedat 

and Dicker 15th International Systems Dynamics Conference, Istanbul, Turkey pp 331-334 
Balci, O., A. I. Bertelrud, C. M. Esterbrook, and R. E. Nance. 1997. Developing a library of reusable 

model components by using the visual simulation environ-ment. In Proceedings of the 1997 Summer 
Computer Simulation Conference, 253-258. SCS, San Diego, CA. 

Balci, O., A. I. Bertelrud, C. M. Esterbrook, and R. E. Nance. 1998. Visual simulation environment. In 
Pro-ceedings of the 1998 Winter Simulation Conference, ed. D. J. Medeiros, E. Watson, J. Carson, 
and M. S.Manivannan. IEEE, Piscataway, NJ. 

Borland. (1997). C++ Builder for Windows 95 & Windows NT: Component Writer’s Guide. Borland 
International. 

Brown, A. W., Ed. 1996. Component-Based Software Engineering. IEEE Computer Society Press, Los 
Alamitos, CA. 

Coyle, R. G., (1996) System Dynamics Modelling : A Practical Approach, Chapman and Hall., London 

Harrell, C. and D. Hicks (1998) Simulation software component architecture for Simulation-based 
enterprise applications, Proceedings of the 1998 Winter Simulation ConferenceD.J. Medeiros, E.F. Watson, 
J.S. Carson and M.S. Manivannan, eds., 1717-1721. 

Law, A.M., and Kelton, W.D. (1991). Simulation Modelling & Analysis. McGraw-Hill. 
Mackulak, Gerald T., Frederick P. Lawrence., Theron Colvin (1998) An Effective Simulation Model 

Reuse: A Case Study for AMHS Modelling In Proceedings of the 1998 Winter Simulation Conference 
Eds: D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, 13-16 December, Washington, 
DC 979-984 

Matko, D., Karba, R., Zupancic, B. (1992). Simulation and Modelling of Continuous Systems: A Case 
Study Approach. Prentice Hall International. 

Miller, John A.Yongfu Ge, Junxiu Tao., Component-Based Simulation Environments: JSIM As A case 
Study using Java Beans. In Proceedings of the 1998 Winter Simulation Conference Eds: D.J. 



Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, 13-16 December, Washington, DC 979-
984 

Pidd, M. (1995). Computer Simulation in Management Science. Third Edition. John Wiley & Sons, Inc. 
Schmidt, B. (1986). Classification of Simulation Software. Systems. Analysis. Model Simulation. 3, pp  
Hill, D.R.C. (1996). Object-Oriented Analysis and Simulation Addison-Wesley Publishers Ltd. 


