
System Dynamics Models and the Object-Oriented
Paradigm

Warren W. Tignor PhD
Kimmich Software Systems, Inc.

7235 Dockside Lane
Columbia, Maryland 21045 USA

(410) 381-6009/(410) 381-5865 (fax)
wtignor@kssi.com

Abstract

The System Dynamics (SD) community recognizes that our craft, while powerful, is
neither well-understood nor growing in popular acceptance. As we approach the
gateway to the next millennium, we need to take the time to consider alternatives to
our present approach to spreading the System Dynamics message. Generally, System
Dynamicists will agree that their modeling work could benefit from more universal
acceptance and understanding among its customers. If customers better understood
the products developed for them, models would be prevalent and applied more
diligently after delivery as opposed to, allegedly, often being set on the proverbial
shelf to gather dust.

Introduction

To address the increasingly systemic problems faced by customers, there is a need to
address numerous interrelated issues, e.g., the Greenhouse Effect, global population
growth, and international finance. Yet, many System Dynamicists acknowledge that
our field has not achieved wide recognition enabling discussion with customers of
systemic topics such as these. Rather, customers continue to address very complex
topics and make decisions using linear thinking and intuition as the norm.

System Dynamics and Software Engineering

It appears that our colleagues in the Software Engineering field, with regard to their
craft, face many of the same issues as System Dynamicists. Their issues may actually
be greater than ours with regard to customer acceptance and “buyin” of delivered
products, at least measured in contract dollar value. Granted that feedback-based
dynamic models may not be software engineering’s forté; however, both System
Dynamicists and Software Engineers in general develop “software-based” solutions to
problems, i.e. models of things. Both professions seem to suffer the same dilemma of
a lack of general customer and professional community acceptance.

In fact, to its credit, the Software Engineering field has documented evidence of the
failure rate of its projects. Gibbs (1994) says that despite 50 years of progress, the
software industry remains years or possibly decades short of the mature engineering
discipline needed to meet the demands of an information-age society.

The Standish Group (Rational University, 1998) research shows that approximately
30% of software industry projects are canceled before completion. An estimated 50%

of the projects started cost nearly 190% of their original estimates. In 1995, the
Standish Group estimated that American companies and government agencies spent
$81 billion for canceled software projects. These same organizations were estimated
to pay an additional $59 billion for software projects that were completed but
exceeded their original budgets. Similarly, Arthur Anderson (Rational University,
1998) reported more than $300 billion was spent on commercial software activities in
the U.S. and that only 8% resulted in software that was delivered and worked!

To remedy this problem, the software engineering community is adopting the Object-
Oriented (OO) paradigm. Since the object-oriented paradigm captures system and
software engineering work product in customer “language” for software engineering,
it may be applicable to System Dynamics models as a means of gathering and
communicating the requirements and the design of models. Assuming that
“communication” is at least part of the reason that the SD customer doesn’t
understand System Dynamics models, perhaps a more universal customer-focused
“language” would improve the communication?

Leveraging the object-oriented paradigm to System Dynamics models could lead to
benefits such as more universally understood models, although the models themselves
would remain embedded in the causal loop, and stock and flow language essential to
the principles of System Dynamics. The object-oriented paradigm and Universal
Modeling Language (UML) offer an opportunity as a meta-language for the definition
and design of System Dynamic models.

The OO paradigm captures system and software engineering work product in
frameworks of packages, classes, objects, and methods. The language of the customer
is captured by Use Cases as a statement of need and concept of operation. Leveraging
the OO paradigm to System Dynamics models will lead to benefits such as better
understood: models, software design, and reusable software model libraries

Hypothesis

The remainder of this paper will address the hypothesis that what the Software
Engineering industry is doing through the use of the OO paradigm and UML to start to
remedy its problems will apply to System Dynamics modeling. OO and UML will
provide a basis of communication with the customer and among System Dynamicists
as a meta-language for models.

Background

Interestingly, our colleagues in the discrete simulation and modeling world have
already recognized the opportunity to use the OO paradigm and UML, and they are
acting on it. Braude (1998) applied recent advances in object-oriented research to
propose a “class-level” framework for discrete simulations. Schöckle (1994) took an
“object-oriented” approach in his work with modeling systems.

Braude (1998) says that there has been relatively little sharing of code or design for
discrete simulation systems. Sharing, if any, has typically occurred at the tool level by

means of commercially available graphics-based environments for building
simulations (Braude, 1998).

Based on the maturity of the OO paradigm and the adoption of UML, he believes that
the time has arrived to attempt to design a standard framework for discrete
simulations, Braude (1998). He cites the definition of an application framework as a
reusable, “semicomplete” application that can be specialized to produce custom
applications, (Fayad & Schmidt, 1997).

Schöckle (1994) says that the OO paradigm offers several possibilities not available in
the traditional procedural programming approach, which help to deal with complex
systems:

• OO building blocks are “objects” which encapsulate functions and data.
• Procedural building blocks are “procedures” which only abstract their

functions.

Additionally, the OO paradigm provides concepts for managing complexity not
available in procedural environments: classes, inheritance, polymorphism, and
communication of messages (Schöckle 1994).

Keys to Object-Oriented Technology

Taylor (1990) identifies three keys to understanding the object-oriented paradigm, i.e.,
objects, messages, and classes. According to Taylor (1990), the concept of software
objects came from the need to model real-world objects in computer simulations. For
example, SIMULA, created by O. J. Dahl and Kristen Nygaard of Norway, builds
accurate working models of complex physical systems containing thousands of
objects, Taylor (1990).

An object is software that contains a collection of related procedures and data,
(Taylor, 1990). In the object-oriented approach, procedures go by a special name;
they are called methods. In keeping with traditional programming terminology, the
data elements are referred to as variables because their values can change over time,
(Taylor, 1990).

Real-world objects can have an unlimited number of effects on each other, e.g., create,
destroy, lift, attach, buy, sell. The way objects interact is by sending messages to each
other. “A message is simply the name of an object followed by the name of a method
the object knows how to execute, (Taylor, 1990, p. 19)”. Taylor (1990) adds that if a
method requires any additional information in order to execute, the message includes
that information as a collection of data elements called parameters.

Since most software systems or simulations will have a plethora of objects, methods,
and variable as opposed to a single object with its methods and variables, the concept
of class was created. “A class is a template that defines the methods and variables to
be included in a particular type of object. The descriptions of the methods and
variables that support them are included only once, in the definition of the class. The

objects that belong to a class, called instances of the class, contain only their particular
values for the variables, (Taylor, 1990, p. 20)”.

Software as Simulation

According to Taylor (1990) software makes a computer perform a task. The typical
progression of software development projects reflects this view, e.g., specification of
the problem to be solved, design of a system that solves the problem. The result
usually is a tailored system that performs the original task but is ill suited to handling
any others, even when dealing with the same real-world objects. For example, a
billing system is not able to handle mailings for marketing or reminders for the sales
team (Taylor, 1990). Taylor (1990) says that if you have a good OO model of your
customer’s interactions, the model will be equally useful for billings, mailings and
reminders.

Keys to System Dynamics Technology

System Dynamics is a rigorous method for qualitative description, exploration and
analysis of complex systems in terms of their processes, information, organizational
boundaries and strategies, which facilitate quantitative simulation modeling and
analysis for the design of the system structure and control, Wolstenholme (1990).

In the field of System Dynamics, a system is defined as a collection of elements which
continually interact over time to form a unified whole, (Halbower, 1994). The pattern
of interaction among the system elements is the system’s structure. The term
dynamics refers to the system’s change over time.

From a computer simulation perspective, STELLA is one of many software programs
that provides a graphical interface for observing the quantitative interaction of
variables within a system. STELLA models, like most SD models, are made up of
four building blocks; these building blocks are defined as follows (Halbower, 1994, p.
12):

STOCK - “A stock is a generic symbol for anything that accumulates or drains.”
Water accumulates in a sink; the amount of water in the sink is the stock of water.

FLOW - “A flow is a rate of change of a stock”. A flow is the water coming into the
sink through the faucet and the water leaving the sink through the drain.

CONVERTER - “A converter is used to take input data and manipulate or convert that
input into some output signal”. In the sink example, turning the valve which controls
the water flow in the sink, the converter takes as input the action of turning the valve
and converts that signal into an output reflecting the flow of water.

CONNECTOR - “A connector is an arrow which allows information to pass between
converters and converters, stocks and converters, stocks and flows, and converters and
flows”.

Senge (1990) tells us that a language for talking about the complex structures that
evolve from constructing models from the elements enumerated above is the language
of complexity. He prefers to use system archetypes to “objectify” the fundamental
systemic forces at play.

Simulation as Software

Procedural, non-object-oriented, software is written to solve a specific problem.
Whereas, object-oriented software models a system, (Taylor, 1990). Taylor (1990)
advocates that there is a different mindset underlying object-oriented technology. He
concedes that the technology has spread far beyond its origins as a simulation
language (SIMULA). However, programming with objects still retains the spirit of
real-world simulation, (Taylor, 1990). To Taylor (1990), the design of an object-
oriented system begins with the aspects of the real world that need to be modeled in
order to perform that task. This is in contrast to the procedural approach that starts
with the task to be performed.

Abstraction and Computer Language

Eckel (1998) discusses programming languages as abstractions, to consider apart from
application to or association with a particular instance. He asserts that the complexity
of the problem one can solve is directly related to the kind and quality of abstraction
(Eckel, 1998). To Eckel (1998), assembly language is an abstraction of the underlying
machine. Languages such as FORTRAN, BASIC and C are abstractions of assembly
language according to Eckel (1998). These languages require one to think in terms of
the structure of the computer rather than the structure of the problem to be solved.
The “programmer” establishes the association between the machine model (the
“solution space”) and the model of the problem that is actually being solved (the
“problem space”), Eckel (1998). According to Eckel (1998), this results in programs
that are difficult to write and expensive to maintain, and as a “side effect” created the
“programming methods” industry due to:

1. The effort required to map the “solution space” and the “problem space”
2. The fact that the mapping is extrinsic to the programming language.

The alternative to modeling the machine, i.e. the computer, is to model the problem
being solved; this is the point of the OO paradigm.

Eckel (1998) states that the OO paradigm goes a step further by providing tools for the
programmer to represent elements in the problem space. This representation doesn’t
constrain the programmer to any particular type of problem. The elements in the
problem space and their representations in the solution space are called “objects”.
The notion is that the program is allowed to adapt itself to the “lingo” of the problem
(customer’s language) by adding new types of objects. This means that when one
reads the artifacts describing the solution, one reads words that also express the
problem in the customer’s language.

UML and Problem Description

When Grady Booch, Ivar Jacobson and James Rumbaugh began crafting the Unified
Modeling Language, they aimed to produce a standard means of expressing design
that would reflect the best practices of industry, and also demystify the process of
software system modeling (Fowler, 1997). They believed that the availability of a
standard modeling language would encourage developers to model their software
systems before building them (Fowler, 1997).

Fowler says that one of the biggest challenges in software development is building the
“right” system that meets the customer’s needs at a reasonable price. To Fowler
(1997), achieving good communication with the customer, and an understanding of
the customer’s world is key to developing good software. To this end, Fowler
recommends the Use Case, a snapshot of one aspect of a system.

Use Case

A good collection of Use Cases is key to understanding what the customer wants,
Fowler (1997). They also present a good vehicle for project planning as they help
control iterative development by identifying the elements of the system as a whole that
can be scheduled for completion over time.

In essence, a Use Case is a typical interaction between a customer and a computer
system, Fowler (1997):

• Captures some user-visible function
• May be small or large
• Achieves a discrete customer goal.

Use Cases are captured by talking to the customer and discussing the various things
that they might want to do with the system or understand about the system. Each
discrete thing the customer wants to do or understand receives a name and
approximately a paragraph of short textual description, Fowler (1997).

Jacobson introduced a diagram for visualizing Use Cases; the diagram is now part of
UML (Fowler, 1997). The Use Case diagram shows the system Actors, where an
Actor is a role that a customer plays with respect to the system, Fowler (1997). Actors
perform Use Cases. Actors do not need to be humans; they can also be an external
system that needs some information from the current system. Actors are not part of
the system, but represent anyone or anything that must interact with the system being
developed, (Quatrani, 1998).

A Use Case diagram is a graphical view of Actors, Use Case, and their relationships
for a system, Quatrani (1998). He says that typically each system will have a main
Use Case diagram which will picture the system boundary (Actors) and the major
functionality provided by the system (Use Cases), Quatrani (1998).

Quatrani (1998), like Fowler (1997), says that the most important role of a Use Case is
one of communication by illustrating the system’s:

• Intended functions (Use Case)

• Surroundings/Interfaces (Actor)
• Relationships between Intended functions and Surroundings/Interfaces

(Use Case Diagram).

The Use Case provides a vehicle for the customer and the developer to discuss the
system’s functionality and behavior, Quatrani (1998, p. 21).

In sum, the collection of Use Cases for a system constitutes all the defined ways the
system may be used (Quatrani, 1998). Quatrani provides a formal definition of a Use
Case as “…a sequence of transactions performed by a system that yields a measurable
result of value for a particular Actor”, (1998, p. 25).

He says that a Use Case consists of:

• A brief description that states its purpose in a few sentences and provides a
high-level definition of functionality

• A documented flow of events needed to accomplish the required behavior.

A suggested template to complete a Use Case definition over the course of system
definition follows (Quatrani, 1998):

• N.1 Brief Description of <name> Use Case
• N.2 Flow of Events for <name> Use Case
• N.2.1 Preconditions
• N.2.2 Main Flow
• N.2.3 Subflows (if applicable)
• N.2.4 Alternate Flows

Class Diagram

As Use Cases help communicate about surface things, it is Class Diagrams that look
at the deeper things, Fowler (1997). Fowler (1997) advocates using Class Diagrams
in a conceptual manner, initially treating each class as a concept in a customer’s mind
and in the customer’s language. Later as the design is “fleshed-out” the conceptual
classes transition to physical representations of the solution.

Activity Diagram

Fowler (1997) points out that Activity Diagrams are very useful in cases where
workflow processes are an important part of the customer’s world. Activity Diagrams
support parallel processes and de-emphasize links to classes.

Package Diagram

To build a system roadmap, Fowler (1997) uses Package Diagrams at the high levels
of the design to scope out a Class Diagram. When drawing a Class Diagram for a
roadmap, it takes a specification perspective. Fowler (1997, p. 10) says that it is very
important to “hide implementations” with this kind of work.

Pattern

Lastly, “patterns” describe the key ideas in the system, Fowler (1997). Patterns help
explain why a design is the way it is. The design pattern represents the fundamental
algorithm being implemented by the software, an algorithm that is repeated in many
other designs. Vlissides, J., Helm, R., Johnson, R., & Gamma, E. (1995) characterize
design pattern as a description of communicating objects and classes that are
customized to solve a general design problem in a particular context. The design
pattern names, abstracts, and identifies the key aspects of a common design structure
that makes it useful for creating a reusable object-oriented design.

Summary

To summarize, System Dynamics modeling and software engineering have common
problems of acceptance by customers. The software engineering profession developed
a paradigm, OO, and a modeling language, UML, to help it communicate with its
customers. This paper attempts to draw parallels between System Dynamics modeling
and software engineering with the hypothesis that leveraging the OO paradigm and
UML will improve communication with System Dynamics’ customers and lead to
better acceptance of products. The table below is a brief summary of the OO and SD
“toolset” and their analogous counterparts:

OO/SD Description

of the
Problem

Causal
Diagram

Stock and
Flow
Diagram

Archetype Model Code

Use Case X
Use Case
Diagram

X

Class
Diagram

 X X

Package
Diagram

 X

Activity
Diagram

 X

Pattern X
Code X

Conclusion

Based on the referenced material, there is a strong association between System
Dynamics modeling and software engineering. There are also similar problems with
customer acceptance of the work products generated by both System Dynamicists and

Software Engineers. The OO paradigm and UML, created for Software Engineering,
offers us a tool to improve communication with our customers and among ourselves.
Our colleagues in the discrete simulation field have begun to apply OO and UML to
their problem domain. It appears appropriate to consider the merits of OO and UML
for the System Dynamics field.

Bibliography

Braude, E. (1998). Towards a standard class framework for discrete event simulation.
Proceedings of 31st Annual Simulation Symposium, pp. 4-8.

Eckel, B. (1998). Thinking in java. Upper Saddle River: Prentice Hall.

Fayad, M., & Schmidt, D. (1997, Oct.). Object-oriented application frameworks.
Communications of the ACM 40.

Fowler, M. (1997). UML Distilled: Applying the standard object modeling language.

Reading: Addison-Wesley.

Gibbs, W. (1994, Sept.). Software’s chronic crisis. Scientific American, pp. 86-95.

Halbower, M. (1994, Dec.). The first three hours: An introduction to system

dynamics through computer modeling. (Available at http://sysdyn.mit.edu/road-
maps/rm-toc.html)

Object-oriented analysis and design with C++ student manual (part1 of 2) part# 800-

011426-000, version 3.6: (1998). Rational Software Corporation. (Available
from Rational University, 2800 San Tomas Expressway, Santa Clara, CA 95051)

Quatrani, T. (1998). Visual modeling with rational rose and uml. Reading: Addison-

Wesley.

Senge, P. (1990). The fifth discipline. New York: Doubleday.

Schöckle, M. (1994). An object oriented environment for modeling and simulation of

large continuous systems. (Available at http://www.nmr.embl-
heidelberg.de/eduStep/…erences/OOCNS94/Proceedings/Schoeckle.html)

Taylor, D. (1990). Object-Oriented Technology: A manager’s guide. Reading:

Addison-Wesley.

Vlissides, J., Helm, R., Johnson, R., & Gamma, E. (1995). Design Patterns:

Elements of reusable object-oriented software. Reading: Addison-Wesley.

Wolstenholme, E. (1990). System enquiry: A system dynamic approach. Chicester:
 Wiley & Sons.

