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Abstract

Serial production lines are a fundamental type of production system of great

importance. When the line is mechanised, both machine breakdowns and interstage

storage can significantly affect the efficiency of a production line. Machine

breakdowns can cause line stoppage. Interstage storage helps to provide material for

downstream machines in the event of a machine breakdown, and thus reduces the

adverse effect of machine breakdowns. Despite an extensive research literature on the

design and analysis of production line systems, analytical models and results for

studying the effect of machine breakdowns and interstage storage remains limited.

With rapidly increasing complexity in studying large systems, a new approach based

on the system dynamics for modelling, simulation and analysis of such systems is

proposed. Our system dynamics model reflect the essential features to be found in

typical plant configurations and allow us to consider the expected throughput of

material under different operating policies.



Introduction

Many typical industrial plants are very complex in nature. They tend to consists of

processing stages (or units) together with buffer stocks (or tanks) with many or all of

the units being subject to failure. Also, it quickly becomes apparent that units cannot

always be operated independently of one another due to the presence of full or empty

tanks which necessitate adjustments to flow-rates. A complete description of a

particular plants is seen therefore, to depend on many factors. These can include such

aspects as the nature of the chemical processes involved, a detailed operating policy to

be employed in respect of the plant, details of planned maintenance sessions and so

on. Thus, it appears that any attempts at modelling individual plants are likely to falter

if we seek to include all aspects of the particular plant involved. The resulting model

would be so complex as to be intractable.

We therefore set up simplified models which aim to reflect the essential features to

be found in typical plant configurations. We concentrate our attention on such

aspects of plant behaviour as the failure and repair characteristics of units, capacities

of tanks and maximum operating rates of units.

Methods of analysis

The two principal approaches which have been employed to date in the solution of

the type of model under consideration are the analytical approach and the simulation

approach. Other approaches have been advocated by Cheng (1972), Cheng and

Jones (1981,1983) and Jones (1987). However, these will not be discussed in any

detail in this paper as we propose to concentrate on the simulation approach.

The analytical approach proves to be very difficult for all but unrealistically simple

models. By the very nature of the solution method, each model has to be treated



individually so that such minor changes as the introduction of new parameter values

means that a completely new analysis has to be undertaken. Thus, even though

several authors have discussed this approach, particularly in the context of optimal

control, few examples appear in the literature.

The simulation approach, on the other hand, is a well tried method which is capable

of giving excellent results.

The model to be considered in this paper consists of just two processing units

(UNITS) together with a finite storage facility (TANK), arranged in series as shown

in Figure 1.

Fig. 1. Single-tank series production system

Clearly this is a very simple model and few industrial processes can be represented as

simply. However, it is easy to see that quite complex manufacturing plants can be

represented realistically by using the model of Figure 1 as a building block; networks

of such elements, involving series, parallel and branching components, can be

established and, given a suitable development environment, simulated.
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Units

A unit may be subject to failure in which case it must be repaired or replaced. This

means that at any given time t, a unit may be working, or capable of working, or it

may have failed and be undergoing repair. Thus, we may think of a particular unit as

being in one of two states, working or failed. We therefore refer to a unit which is

working as being UP, or in state 1; a failed unit is said to be DOWN, or in state 0.

We assume that a unit Ui has a maximum possible workrate, or rating, αi. Then at

some time t, its actual workrate ri(t) will satisfy the inequality 0≤ ri(t)≤αi. We note

that ri(t) can be zero either due to Ui being down or because of congestion downline

of Ui; for example a tank may be full and a unit may have failed so that we must set

ri(t)=0. Similarly, we may need to set ri(t)<αi in order to balance input and output

in respect of a tank which is empty or one which is full, depending on the ratings of

the units. Finally, we need to know something concerning the failure rate of a unit

Ui and also the time to repair of a failed unit. Thus, we define

P(Ui fails in (t, t + δt) |Ui up at t) = µi δt + o(δt)

P(Ui up in (t, t + δt) |Ui up at t) = 1 -  µi δt + o(δt)

and for a unit which is down at time t

P(Ui has repair completed in (t, t + δt) |Ui down at t) = λi δt + o(δt)

P(Ui  repair is not completed in (t, t + δt) |Ui down at t) = 1 -  λi δt + o(δt).



These definitions, together with the probability of two or more events occurring in

(t, t + δt), ensure that failures occur according to a Poisson process and that time to

repair follows a negative exponential distribution.

Tanks

Each tank Tj has a finite capacity Kj. At any time t, the level of fluid in the tank,

Sj(t) say, will satisfy the inequality 0≤ Sj(t) ≤ Kj. Clearly, the tank may become

empty or it may become full. When either of these states occur, it will be necessary

to adjust the workrate of units connected to the tank.

The problem

Our objective is to consider the expected throughput of material under different

operating policies. One such policy could be to run all units at maximum possible

rates at all times. Clearly, we must be interested in such quantities as the

distribution of stock level in the tanks and also the availability of units.

The analytical approach

The model shown in Figure 1 has been considered analytically by a number of

authors since the early 1960s, starting with Finch (1961) and Miller (1963). There

have subsequently been papers by Cheng (1972), Fox and Zerbe (1973), Murphy

(1975, 1978, 1979), Henley and Hoshino (1977), Wijngaard (1979) and more

recently Malathronas et al. (1983), Jones (1987), Hillier and So (1991) and

Alvarez-Vargas, Dallery and David (1994).



These researchers have approached the problem from differing standpoints and

often some of them appear to have been unaware of existing results obtained by

other workers in this field.

For example, Fox and Zerbe adopt an operating policy which can be described as

“tank-full”; that is, the workrates of the units are arranged in such a way that the

tank always remains full. Others adopt a “do nothing” policy which means that both

units are run until one fails or the tank becomes full or empty when some action

must be taken. Malathronas et al. remark that the latter policy produces a larger

expected output than the “tank-full” policy and is the more realistic of the two. It

would appear that they are unaware of the result due to Cheng (1972) which

establishes the “full-on” policy. This means that all units are operated at the

maximum possible rate at all times. This is the optimal policy for line-tanks models

[see Cheng (1972)]. The line-tanks models are a network configuration consisting

of units and tanks such that every tank has only one input unit and also outputs to

just one unit [see Cheng (1972)].

The various analyses undertaken highlight the complexity of the analytical approach

for this simple model. They all deal with the steady-state solution which tends to be

obtained under simplifying assumptions such as equal ratings, equal failure rates or

equal repair rates of the units.

Jones (1987) has discussed in detail the transient case and its complexity is such

that there is little virtue in reproducing any detail here. Suffice it to say that the

solution for stock level alone involves the solution of a set of four simultaneous

partial differential equations of the type found in single-server queue theory.

Further, if any of the relationship between ratings are altered the equations to be

solved will also alter. That is, each case must be considered on its merits.



We therefore proceed to consider simulation approach but before doing so we

remark on the various events which affect the operation of the system. They are the

failure of  and completion of repairs to units, together with the tank becoming full

or empty and these are the features we must incorporate in our simulation model.

Finally, we indicate in Figure 2 some typical behaviour patterns of stock level with

the passage of time.

Fig. 2. The distribution of stocks

As can be seen from Figure 2, it is possible for the stock level to have the values

zero and K, that is for the tank to be empty or full respectively, for significant

periods of time.
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The POWERSIMTM  Model

The interface is shown in Figure 3, together with an example of a very simple

system. The similarity of the example to the conceptual model of Figure 1 shows

that, POWERSIMTM (Copyright © 1994 - ModellData AS) promises to be a very

useful modelling device for systems such as those which have been described

earlier in the paper.

Powersims application window displays the menus and provides the work space for

any document used within the application.

Fig. 3. User Environment in Powersim - showing the basic structure of Unit-Tank-

Unit model

The completed model, as a structural diagram, is shown in Figure 4a. The expected

throughput of material under the ‘full-on’ policy that is to run all units at maximum

possible rates at all times is shown in Figure 4b.



Concluding Remarks

Experience with POWERSIMTM has shown its unrivalled usefulness as a

development tool for modelling and simulation of production systems. The ability

to debug and verify a model on-line, gaining a feel for how the modelled system

behaves, contributes greatly to the modeller’s understanding. It is felt that it would

be particularly fruitful to carry out participative development together with an

industrial client using the interactive environment.
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