
Resource Dependence in

Product Development Improvement Efforts

Nelson P. Repenning

Department of Operations Management/System Dynamics Group
Sloan School of Management

Massachusetts Institute of Technology
E53-339, 30 Wadsworth St.
Cambridge, MA USA 02142

Phone 617-258-6889; Fax: 617-258-7579; E-Mail: <nelsonr@mit.edu>

December 1997

version 0.5

DRAFT FOR COMMENT ONLY - NOT FOR QUOTATION OR CITATION

 Support has been provided by the National Science Foundation, grant SBR-9422228,
The Center for Innovative Product Development at MIT, the Harley-Davidson Motor
Company and the Ford Motor Company. Thanks to Drew Jones for providing useful
comment on early versions of the model. Special thanks to Don Kieffer of Harley-
Davidson for providing the catalyst to this study.

For more information on the research program that generated this paper, visit our World
Wide Web site at http://web.mit.edu/jsterman/www/.

Abstract

Managers and scholars have increasingly come to recognize the central role that design
and engineering play in the overall process of delivering products to the final customer.
Give their critical role, it is not surprising that design and engineering processes have
increasingly become the focus of improvement and redesign efforts. In this paper one
hypothesis for the difficulty of making the transition between existing and new
development processes is developed in the form of a simulation model. The starting
point for the analysis is the observation that in an organization in which multiple products
are being developed, scarce resources must be allocated between competing projects in
different phases of the development process. The scarcity of resource creates
interdependence; the performance of a given project is not independent of the outcomes
of other projects. Resource dependence among projects leads to the two main ideas
presented in the paper: First, the existence of resource dependence between projects,
coupled with locally rational decision making leads to an undesirable allocation of
resources between competing activities, and second, this error is self-reinforcing.
Strategies for mitigating these undesirable dynamics are also considered.

1. Introduction

Managers and scholars have increasingly come to recognize the central role that design

and engineering play in the overall process of delivering products to the final customer.

Researchers analyzing a wide range of business problems have arrived at a similar

conclusion; the high leverage point for improving many manufacturing organizations lies

in product design engineering. Wheelwright and Clark (1992) and Clark and Fujimoto

(1991) both argue that a firm’s product development capability is a significant

determinant of its performance in a wide range of areas including productivity, quality,

cost, and flexibility. Zangwill (1993) suggests the ability to quickly deliver innovative

product to market is the single biggest factor separating top firms from the rest.

Wheelwright and Clark (1992:xi) write “Time after time that search [for the determinants

of firm performance] led us to product design, the engineering organization, and the

speed and effectiveness of the development process as the explanation for superior

performance.” Similarly, Dertouszos, Lester and Solow (1989) find that weaknesses in

the area of product design and engineering are partially responsible for the low growth

rate of productivity in American industry.

Give their critical role, it is not surprising that design and engineering processes have

increasingly become the focus of improvement and redesign efforts. A variety of authors

suggest ways to develop new products faster, cheaper, and with higher quality.

Wheelwright and Clark (1992) focus on the role of general managers and Wheelwright

and Clark (1995) re-frame their earlier work for senior leaders. Ulrich and Eppinger

(1995) provide a detailed, operational perspective, and Zangwill (1993) list seven key

factors that characterize the processes used by the top performers. These are not purely

theoretical efforts. All of these books are based on the detailed study of many firms and

their attempts to improve their development processes. Many companies have, at one

time or another, undertaken a serious effort to redesign and improve their product

development processes (Repenning 1996, Krahmer and Oliva 1996, and Jones 1997 are a

few examples).

Yet, while much has been written about the structure of the ideal development process,

less has been said about how to implement these ideas. Simon (1962) and Weick (1979)

draw a useful distinction between recipes and blueprints. Blueprints describe the ideal

structure of a given system, process or organization, but give no information about how it

might be constructed. In contrast, recipes, Weick writes, “...provide the means to

generate structures that have the characteristics you want.” In the product development

context, much of the research has focused on better blueprints; new processes that, if

implemented, provide higher capability. Less has been written about constructing recipes

that create the structures outlined in those blueprints. For example, Wheelwright and

Clark (1992), Wheelwright and Clark (1995) and Zangwill (1993) each dedicate only one

chapter to the challenges of implementing the blueprint outlined in the rest of their books.

Given the lack of knowledge about recipes for improving PD it is not surprising that

many improvement efforts fail to produce substantial results. Repenning and Sterman

(1997), Repenning (1996) and Jones (1997) document cases in which firms invested

substantial time, money and energy in developing a new product development process yet

saw little benefit from their efforts. While many within both companies studied agreed

that the new process constituted a better way to develop products, the usage of the new

process was sporadic at best. In the introduction of their second book Wheelwright and

Clark (1995) discuss the difficulty that many organizations experienced trying to

implement the suggestions from their first volume (Wheelwright and Clark 1992).

Unfortunately, in many firms, the new development process, which may have cost

millions of dollars to develop, is little more than a three ring binder book sitting on a

shelf gathering dust. Designing a new development process is only half the battle. Once

the new process has been designed, managers must find a way to ensure that the new

process is actually used. The question currently facing many senior manager is, in the

words of Weick (1993), “...given a blueprint, what recipe will produce it?”

The process of implementing large scale organizational change has been studied

extensively by behavioral scientists and a massive literature has developed on the subject

(for overviews see e.g. Van de Ven and Poole 1995; Huber and Glick 1993; Kanter, Jick

and Stein 1992). Unfortunately, whereas product development scholars have focused

almost exclusively on blueprints, organizational scholars have focused on generic change

processes. Less attention has been paid to how change efforts in product development

processes might differ from those in other functions such as manufacturing. Dean and

Bowen (1994:408) write “...management theorists may have gone too far in emphasizing

socio-behavioral over process and technical factors in explaining variation in

performance....researchers rarely extended their theories to the social and technical

aspects of organizational and process design.” To take full advantage of the substantial

progress made in process design, a better of theory of process improvement is needed, one

that integrates both the technical and behavioral aspects of product design and

engineering.

Resource Dependence and the Tilting Hypothesis

In this paper one hypothesis for the difficulty of making the transition between existing

and new development processes is developed. The starting point for the analysis is the

observation that in an organization in which multiple products are being developed,

scarce resources must be allocated between competing projects in different phases of the

development process. The scarcity of resource creates interdependence; the performance

of a given project is not independent of the outcomes of other projects. Instead, a

decision to change the level of resources devoted to a given project affects every other

project currently underway and, potentially, every project to come.

Resource dependence among projects leads to the two main ideas presented in the paper:

First, the existence of resource dependence between projects, coupled with locally

rational decision making leads to an undesirable allocation of resources between

competing activities, and second, this error is self-reinforcing. The structure of the

product development system, rather than correcting the initial error in resource allocation,

amplifies it, creating a vicious cycle that drives the system to a low performance level

The phenomenon is termed the ‘tilting’ hypothesis to capture the idea that the distribution

of resources among projects is likely to be skewed towards those closer to introduction

into the market place and that this bias is self-reinforcing. Thus, once the distribution of

resources begins to ‘tilt’ towards the projects closer to its launch into the market, the

imbalance is amplified to the point where much of the organization’s resources are

focused on ‘fire-fighting’ and delivering current projects, little time is invested in up-

front activities for future projects.

The tilting hypothesis has important implications for the implementation of new tools and

processes. Up-front activities such as documenting customer requirements and

establishing technical feasibility play a critical role in many suggested blueprints for

product development (Wheelwright and Clark 1992, Ulrich and Eppinger 1995, Zangwill

1993). Organizations stuck in the ‘fire fighting’ mode allocate most of their resources to

fixing problems in products late in their development cycle. Introducing tools such as

Quality Function Deployment (Hauser and Clausing 1988) have little value if they do not

get used. Prior to taking full advantage of many of these innovations, particularly those

that focus on the early phases of the development process, the allocation of resources

between current and advanced projects must be redressed. In fact, as will be discussed

below, the naive introduction of new tools and processes to an existing organization may

actually worsen the resource imbalance rather than improve it.

There is, however, a simple, easily implementable, policy that greatly increases the

organization’s robustness to resource tilting. The policy is one example of the class of

limiting strategies proposed in Repenning (in progress). The essence of limiting

strategies is the progressive elimination of the system’s ability to compensate for its root

cause problems which, in turn, spurs efforts to make fundamental improvements. In this

case, a limiting strategy can be implemented in the form of a resource allocation rule.

Such a policy does entail important trade-offs between robustness and ideal state

performance, but is quite desirable when the possibility of creating improvement via new

tools or processes is introduced.

The rest of the paper is organized as follows: in section two the basic model is developed

and analyzed. In section three the possibility of improving the process through the use of

new tools is introduced. Section four contains discussion, and section five presents

concluding thoughts and future research directions.

2. A Model of Resource Dependence

Model Structure

Overview

The model represents a product development system in which a new product is

introduced to the market every twelve months. Twenty-four months are required to

develop a given product, so the organization always works on two products at once. New

development projects are introduced into the system at twelve month intervals coinciding

with the product launch date. The product in the second year of the development cycle

(meaning its launch is less than twelve months away) is called the current product, and

the product in the first year of the development cycle is called the advanced product.

A development project is composed of tasks. Although in real product development

systems there is a variety of different activities, in the model all of these are aggregated

into one generic activity. Similarly, there is only one type of resource needed to

accomplish these tasks, engineering hours. These assumptions represent a substantial

simplification of any real world process. As will be shown below, however, the model is

still capable of generating quite complicated behavior.

There are four key assumptions embedded in the structure of the model:

• The product launch date is fixed. Every twelve months the current product
is introduced to the market regardless of its state. There may, for example,
be known defects in the design, however the product is still introduced.

• Any time a development task is completed, there is some probability that
it is done incorrectly. If so, then it can be corrected through re-work.
There is also some chance that re-work is done incorrectly, thus generating
more re-work.

• The probability of doing a task incorrectly is higher for current work.

• Engineering headcount is fixed. Engineers can adjust for changes in the
work load by reducing the number of hours they spend per task.

While there is not sufficient space to give an equation by equation description of the

model, the key structures and formulations are discussed below. Readers interested in

more detail can contact the author.1

Work Accumulations and Flows

The basic stock and flow structure of the model is shown in figure 1. Rectangles

represent an accumulation of development tasks in the system. There are four

accumulations in each of the advanced and current phases. The solid arrows represent the

entry of new projects into the advanced phase and the exit of current products to the

market and are only active at the annual advanced-current transition. The solid arrow at

the top left of the figure represents the introduction of new tasks into the development

system which accumulate in the stock of advanced tasks not completed.

1 . The model is written using the VENSIM software produced by Ventanna Systems Inc. A run-only
version of the model can be downloaded from <http://web.mit.edu/*****>

Advanced
Work

Current
Work

Task in Testing
Launched

Tasks in Rework
Launched

Current Tasks
Launched

Current Tasks
Reworked

Advanced
Tasks

Reworked

Advanced in
Test to Current

in Test

Advanced
Completed to

Current
Completed

Advanced Rework
to Current

Rework

Advanced Not
Completed to
Current Not
Completed

Current Tasks
Failing Testing

Current Tasks
Passing Testing

Current Tasks to
be Reworked

Current Tasks
Completed

Current Task
Completion Rate

Current Tasks in
Testing

Current Tasks Not
Completed

Advanced
Tasks Failing

Testing

Advanced Tasks
Passing Testing

Advanced Tasks
to be Reworked

Advanced Tasks
Completed

Advanced Task
Completion Rate

Advanced Tasks
in Testing

Advanced Tasks
Not Completed

Advanced Tasks
Introduced

Figure 1: Arrows with valve symbols represent the flow of tasks in the system. Solid
arrows represent the entry and exit of tasks to and from the product development process.
Flows with double lines represent the continuous flow of work within a given model year.
Flows represented by dotted lines represent the annual transition of advanced work to
current work.

The double line arrows represent the continuous flow of work between the stocks within

the advanced and current phases. The stock of advanced tasks not completed is drained

by the advanced task completion rate. Once completed, tasks accumulate in the stock of

advanced tasks in testing. If a task passes the test, meaning it was done correctly and is

not defective, it flows to the stock of advanced tasks completed. Tasks failing testing

flow to the stock of advanced tasks requiring rework. Once reworked, tasks flow back to

the stock awaiting testing.

The dotted arrows represent the annual transition of advanced work to current work.

Each stock of advanced tasks has such an outflow. At the transition between model

years, the entire contents of each advanced work stock is transferred to the corresponding

stock of current work. The task flow in the current work phase is identical to that in the

advanced portion. Completion of new tasks drains the stock of current tasks not

completed and increases the stock of current tasks awaiting testing. Tasks either pass the

test, in which case they flow to the stock of current tasks completed, or fail and move to

the stock of current tasks awaiting rework. Once reworked, tasks return to the stock of

those awaiting testing. At the end of the model year all current tasks completed are

introduced to the market, regardless of their state. These outflows are represented by the

solid black arrows.

Defects

Figure 2 shows the structure used to track the number of defective tasks in the stock of

tasks awaiting testing. Each time a task is completed or re-worked there is some

probability that the task will be done incorrectly and be defective. The new task and

rework completion flows are represented by the light gray flow icons. The number of

defects introduced through new work or re-work is determined by multiplying the flow of

tasks by the probability that a given task is done incorrectly. Once a task is completed or

re-worked, its associated defect flows into the stock of defects in advanced testing.

Dividing this stock by the total number of tasks currently in testing determines the

fraction of defective tasks in testing, which, in turn, determines the rate of tasks passing

and failing. Tasks that fail testing remove one defect from the stock of defects in testing

while tasks that pass testing remove no defects from the stock. In real systems there are

both type I and type II errors, however, in the model testing is assumed to be perfectly

accurate. The formulation is based on the coincident flow structure commonly used in

System Dynamics simulation models (Richardson and Pugh 1981). If the launch date is

reached and some tasks remain untested, they are still introduced to the market. The

number of defective products introduced to the market will be used as the key measure of

the system’s performance.

<Advanced Tasks
Passing Testing>

<Advanced Tasks
Failing Testing>

<Advanced
Tasks

Reworked>

<Advanced Task
Completion Rate>

<Defects Per Advanced
Task Passing Test>

<Defects Per Adv Task
Failing Test>

Fraction
Defective in
Advanced

Testing

<Advanced Tasks
in Testing>

Defects Removed
From Adv Testing

Defects from
Advanced Tasks

Reworked

Defects from
Advanced Tasks

Completed

Defects Per
Advanced Task

Reworked

Defects Per
Advanced Task

Completed

Defects
Introduced in

Advanced Testing

Defects in
Advanced

Testing

Figure 2

Allocation of Engineering Capacity

The critical decision function in the model is the allocation of engineering capacity

between the four types of development work 1) new current tasks (CW), 2) current re-

work (CR), 3) new advanced tasks (AW), and 4) advanced re-work (AR). The allocation

of effort between these categories is determined via a two step process. First, an

indicated completion rate (ICRi) is determined for each type of work. The indicated rate

of work completion is calculated by dividing the stock of work to be completed by the

number of months remaining until product launch. Thus

ICRi=Work Remaining/# of months to product launch

The formulation represents a decision process in which engineers look at the work to be

completed and allocate it evenly over the time remaining. All four of the indicated rates

are formulated identically except for the rate of current work completion where the

denominator, instead of being the number of months until launch, is the number of

months until a prototype deadline (assumed to be six months prior to the product launch).

Second, once the indicated completion rates are determined, the actual rates are

calculated. Two rules are used, 1) new work takes priority over re-work, and 2) current

work takes priority over advanced work. The actual rate of current work completion

(ACWR) is the minimum of the maximum development capacity (MDC) and the

indicated completion rate for current work (ICRCW).

ACWR=Min(MDC,ICRCW)

MDC is the maximum rate at which development work can be completed, and is equal to

the total number of available engineer hours, AEH, divided by the minimum number of

hours required per task (MHT):

MDC=AEH/MHT

MDC does not measure the rate at which development work can be done properly, but the

rate at which work can be completed when engineers are working as quickly as is

possible and skipping all steps that do not directly contribute to finishing the design.

Such skipped steps might included documenting work and testing new designs.

If, after completing the current new work, there is capacity remaining, then that capacity

is allocated to current rework. The actual rate of current re-work (ACRR) is equal to

minimum of capacity remaining, MDC-ACWR, and the indicated rate of current re-work

(ICRCR):

ACRR=Min(MDC-ACWR,ICRCR)

Capacity allocated to advance work and advanced re-work is determined in a similar

fashion. First, the capacity that can be allocated to all advanced tasks (CAT) is

determined by subtracting the capacity allocated to current tasks from the normal

development capacity (NDC). NDC is the rate at which engineers can complete tasks

when they are following the prescribed development process. Thus,

CAT=Max(NDC-(ACWR+ACCR),0)

The maximum function is important because the rate of work completion can exceed the

normal development capacity if the organization has more work to do than is possible

under normal operations and completes that work by cutting corners and skipping

development steps-- MDC>NDC. If CAT is greater than zero, then the remaining

development capacity is allocated to advanced work and then advanced re-work. Normal

development capacity is equal to the available engineer hours (AEH) divided by the

normal hours required per engineering tasks (NHT):

NDC=AEH/NHT

This formulation embodies an important assumption: Advanced work does not get

completed unless the current work rate is less than the normal development capacity. If

the normal development capacity is not sufficient to complete all the outstanding current

tasks, the engineers will reduce their time per tasks to reach the required work rate.

However, this does not happen for advanced work. If the organization is working beyond

normal capacity, advanced work is simply not done.

Steady State Model Behavior

This section describes the model’s steady state behavior. In all runs the base task

introduction rate is 1,500 per year.2 All tasks are introduced in one time step when there

are twelve months to product launch.

Base Case

Figure 3 shows base case behavior for advanced and current tasks yet to be completed.

Advanced Work Remaining
1,500

750

0
180 192 204 216 228 240

Months

New Tasks tasks
ReWork tasks

Current Work
500

250

0
180 192 204 216 228 240

Months

New Tasks tasks
ReWork tasks

Figure 3

At each twelve month interval 1500 new tasks, constituting a new development project,

are introduced. Advanced work is completed at a constant rate throughout the year so the

level of advanced tasks to be completed declines linearly. Most new tasks are completed

in the advanced phase and only a small number (less than 50) are sent to the current phase

uncompleted. The level of re-work to be completed grows during the advanced phase as

tasks done incorrectly are discovered through testing. The small number of uncompleted

tasks received in the current phase are quickly completed. Approximately 300 tasks

requiring rework are also received from the advanced phase. The rate of re-work

completion rises through the year as the product launch date approaches and the

organization increasingly focuses on current work in the hope of re-working all the

defective tasks before product launch.

Figure 4 shows the average defect level in the advanced and current re-work phases and

the allocation of resources between the two phases. The defect fraction in advanced work

starts at 40% and declines for the first 9 months of the year. It then increases slightly as

the advanced re-work completion rate drops. The fraction of defective tasks in the

current phase drops dramatically throughout the year, from 30% to less than 5%

improving the quality of the finished product substantially.

Fraction of Tasks Defective
.4

.3

.2

.1

0
180 192 204 216 228 240

Time (months)

Advanced Phase defects/task
Current Phase defects/task

Fraction of Work Dedicated to Current Programs
1

.5

0
180 192 204 216 228 240

Months

Fraction of Work dimensionless

Figure 4

At the beginning of the year approximately 25% of the total capacity is allocated to

current programs. The allocation remains constant for the first half of the year and then

increases as product launch date approaches. The shift in the allocation of resources leads

2 . The model is simulated using the Euler integration method and runs in months with a time step of .25. In

to an increasing rate of defect reduction in the current phase. The base case depicts a

development organization that does the vast majority of its initial development work

while the product is in the advanced stage. However, due to low process capability, a

significant fraction of that work is done incorrectly. During the current phase many of

those defects are corrected through re-work.

Sensitivity Analysis

The model’s behavior has been analyzed extensively and a wide range of sensitivity tests

have been conducted. Only a few of these tests will be shown here. Readers interested in

more detail can consult the accompanying technical report, Repenning (in progress).

Figures 5 and 6 show the steady state behavior of the model as the task introduction rate

is systematically varied. Figure 5 shows how the allocation of resources between the

current and advanced phases changes as the task introduction rate is increased. The

behavior is highly non-linear. At task introduction rates of 1500 tasks or less the vast

majority of resources are allocated to the advanced phase. As the task introduction rates

increases beyond 1500 the allocation changes dramatically. The response surface has a

steep face, and for small increase beyond 1500 the behavior changes dramatically. At a

task introduction rate of 1700 the behavior suddenly changes and the vast majority of

resources are allocated to the current phase.

each case, it is run for one hundred and eighty months to eliminate transients.

Figure 5

0

120
240

360

1000

1250

1500

1750

2000

0

0.25

0.5

0.75

1 F
ractio

n
 o

f R
eso

u
rces to

 C
u

rren
t W

o
rk

Month
Task Introduction Rate

0.75-1

0.5-0.75

0.25-0.5

0-0.25

Figure 6

Figure 6 shows the impact of resource loading on the fraction of defective products

introduced to the market. The response surface is even more uneven and shows three

distinct regimes. Below introduction rates of 1500, the impact of additional tasks is

small, the surface has a relatively flat slope. At approximately 1600, the defect

introduction rate increase dramatically, and the surface is almost vertical. The change

occurs due to the re-allocation of resources caused by the increased work rate. At high

0 12
0 24

0 36
0

10
00

12
50

15
0017

5020
00

0

0.04

0.08

0.12

0.16

F
ra

ct
io

n
 D

ef
ec

ti
ve

MonthAnnual Task Introduction Rate

0.12-0.16

0.08-0.12

0.04-0.08

0-0.04

task introduction rates, resources are increasingly allocated to the current phase where the

chance of doing a task incorrectly is higher. Beyond the face, the defect introduction rate

increases with the task introduction rate, now at a much steeper slope. The increased

slope stems from the workload being beyond the system’s capacity and additional loading

reduces the ability of the organization to complete iterations of the re-work cycle.

The system’s response to increases in loading is highly non-linear. Resources are

assumed to be finite, so it is not surprising the performance changes with an increased

task load. More interesting, however, is how the performance degrades. Under

conditions of extreme scarcity, the best performance is achieved by doing all the work in

the advanced phase, since the chances of doing a task incorrectly are lower. However, the

physical structure combined with the myopic decision rule that favors current projects

leads to just the opposite outcome, all the work is done in the current phase. Additional

work causes the resource distribution to ‘tilt’ is the wrong direction, reducing the

system’s capability to create defect free products.

Wheelwright and Clark (1992) discuss the problems associated with overloading a

development system. They call the phenomenon the ‘canary cage’ problem: too many

birds in a cage reduces the available resources, food, water and space, and none of the

animals thrive. Similarly, in product development, they argue, too many development

projects leads to a poor allocation of resources and mediocre products. The model both

operationalizes and expands upon the canary cage story. The resource allocation rule

implicit in their model allocates resources evenly across all projects. The formulation

presented here is an alternative, resources are allocated to projects closer to their launch

date. It also expands the ‘canary cage’ logic by introducing tilting. Increasing the

number of projects in the system has two impacts. First it reduces the resources allocated

to any one project and second, it changes the distribution of resources, favoring those

closer to launch. Thus, not only are there too few resources, but overloading causes them

also to be allocated in an undesirable way.

Transient Behavior

Pulse Test

A particularly instructive test of the model’s transient behavior is to introduce a one time

increase in the amount of development work introduced each year. In each of the runs

presented in this section, the pulse increase takes place at month 192. Figure 7 shows the

effect of different pulse sizes on the average fraction of work that is allocated to current

programs and Figure 8 shows the fraction of defective products introduced to the market.

Fraction of Resources to Current Programs
1

.5

0
180 204 228 252 276 300

Months

Base Case
Pulse=250
Pulse=500
Pulse=750
Pulse=1000

Figure 5

Fraction Defective Products in Use
.075

.0375

0
180 204 228 252 276 300

Months

Base Case
Pulse=250
Pulse=500
Pulse=750
Pulse=1000

Figure 6

In the base case, approximately 25% of the total resources are allocated to the current

phase. A one time increase in the work rate of 250 changes causes the fraction of current

work to immediately grow and then slowly return to the base case behavior. The results

are quite different, however, for larger pulses. When the pulse size is 1000 units the

fraction of capacity dedicated to current work immediately jumps to near 100% and does

not return to the pre-pulse behavior. Similarly, if the pulse size is 750 units, the fraction

of current work migrates towards 100%, albeit more slowly than with the larger pulse.

For large changes, the system shows a significant amount of irreversibility: once it

reaches the point where a large fraction of work is being done in the current phase, it

never returns to its pre-pulse behavior. Once resources are ‘tilted’ towards current work,

the initial change is self-reinforcing and the system does not recover to its pre-pulse

behavior.

Figures 9 and 10 help explain why this is the case.

Total Advanced Work to Be Completed
3,000

1,500

0
180 204 228 252 276 300

Months

Base Case tasks
Pulse=750 tasks

Total Current Tasks To Be Completed
1,500

750

0
180 204 228 252 276 300

Time

Base Case
Pulse=750

Figure 7

After the pulse there are now 2000 changes to be completed rather than 1500 in the

advanced phase. In the first year following the pulse, approximately the same number of

new advanced tasks are completed. However, at the model year transition, 500 additional

tasks move to the current stage uncompleted. In the second year, even fewer tasks are

completed and more are moved to the current phase unfinished. Over the succeeding

years progressively less advanced work is done, and by month 300 the vast majority of

advanced work remains uncompleted for the entire year.

In the current phase there is no change after the first year. In the second year, however,

500 more tasks are received uncompleted (the 500 that did not get done in advanced work

in the previous year). In subsequent years, as the advanced work completion rate

declines, more and more work enters the current stage uncompleted, amplifying , rather

than attenuating, the effect of the initial pulse.

Figure 10 shows the source of the amplification. As the fraction of work done during the

current phase grows, the amount of new work done in the current phase increases. More

work done in the current phase leads to more defects introduced and creates more current

re-work. In the first year after the pulse, the fraction of current tasks defective increases,

and more resources are needed for the current phase due to increased re-work. The stock

of current rework grows substantially due to these extra changes. In the following year it

is smaller, but grows over time as more defects are introduced due to the higher fraction

of new work done in the current phase.

Fraction of Current Tasks Defective
.5

.25

0
180 204 228 252 276 300

Time (months)

Base Case defects/task
Pulse=750 defects/task

Current Rework to be Completed
1,000

500

0
180 204 228 252 276 300

Time

Base Case
Pulse=750

Figure 8

The growth in current rework increases the resources dedicated to the current phase

further starving advanced programs and creating more re-work in subsequent years.

Figure 10 shows the fraction of all current tasks that are defective. In the base case, this

fraction declines monotonically as the re-work loop works to improve quality. In the

pulse case, this fraction grows in the beginning of the year as new defects are introduced

through the completion of new current tasks. Once the current work is completed then

the re-work loop reduces the defect level dramatically. However, although it is not totally

apparent from the figure, the defective fraction does not reach the same value that it does

in the base case. The end result, as shown in figure 8, is that a greater number of defects

are introduced into the market.

The pulse test shows an important property of the system. Although the pulse occurs

only once, if it is large enough, it can push the system into a new steady state behavior in

which the ability to produce products without defects is permanently reduced. This key

feature is due to resource dependence and tilting. Without resource dependence between

the advanced and current phases, the impact of the pulse would only be felt until all

changes were completed and the product introduced, then the system would be re-set and

return to its steady state behavior. However, because additional work done in the current

phase reduces the resources allocated to the advanced phase, the system does not re-set

itself. Instead the pulse has a permanent effect on system behavior. To use an analogy

from stochastic processes, the high re-work, high stress, crisis mode of development

represented in the model by a high fraction of work dedicated to the current project is an

absorbing state. Once the system enters this regime, it does not leave unless some

additional intervention is made.

3. Introducing Process Improvement

The model provides one explanation for why organizations often operate in a high stress,

high rework mode. A common response to such a mode of operation is to introduce some

modifications to the engineering and design process. Such changes include new tools to

reduce the probability of introducing a defect and speed the re-work cycle, and

specification of a modified sequence of development steps including appropriate

checkpoints and reviews. In this section, additional structure is added to the model to

capture the introduction of new tools and processes. Introducing a new tool or process is

assumed to have two impacts on the system. First, the new technology reduces the

probability of introducing a defect in all types of work. However, the full benefit of the

tool is not realized until the organization has developed experience using it; there is a

delay between beginning to use a new tool and receiving its full benefit. Second, using

the new technology makes completing each development task take longer. The increase

in task duration is designed to capture the fact that new tools and processes generally

require time to be learned and have additional documentation and reporting requirements.

The model is parameterized in such a manner that the reduction in the probability of

introducing a defect more than compensates for the increase in task duration. Thus, if the

firm can gain the necessary experience, adopting the new methodology increases the total

capability of the development system.

Model Structure

The introduction of a process improvement initiative is captured in a simple way. First,

there is assumed to be a threshold allocation of resources to the advanced phase required

to achieve the full benefit of the new tools. For the purpose of this model it is assumed to

be 75% (the average value in the base case). The organization’s current adherence to the

methodology (CAM) is then calculated by dividing the current fraction of resources

(FRA) dedicated to the advanced phase by the threshold value (FRA*). Thus:

CAM=MIN(1,FRA/FRA*)

The rate of defect introduction is determined by the organization’s average adherence to

the methodology (AAM). AAM is a weighted average of the current adherence. The

average number of changes completed over the three previous model years is used as the

weighting factor. Thus, AAM equals:

AAM(t) =

CIR ⋅CAM − CRR ⋅ AAM()ds
t 0

t

∫

CIR − CRR()ds
t0

t

∫

where CIR is the change introduction rate and CRR is the change retirement rate. CRR is

simply assumed to be a first order exponential delay of CIR with a time constant, τ, of

three years. Thus CRR equals:

CRR(t) =

CIR −CRR()ds
t0

t

∫

τ

The impact of the new methodology on capacity is captured by changing the equation for

normal development capacity (NDC). Once the new technology is introduced, NDC

equals:

NDC=AEH/DHT

where DHT represents the time required to complete a task while following the

methodology.

Model Behavior

The new development methodology is introduced in the model in month 192. Figure 10

shows the consequence of introducing a new methodology under three different

assumptions about the necessary change in normal development capacity. In the first, the

methodology requires no more time than the current operating procedure and thus normal

capacity is not reduced -- NHT=DHT. In the second the methodology increases the

required time per task from 300 to 350 hours, and in the third, the time required per task

is increased to 400 hours.

Fraction of Work to Current Programs
1

.5

0
180 204 228 252 276 300

Months

Base Case dimensionless
300 hrs/change dimensionless
350 hrs/change dimensionless
400 hrs/change dimensionless

Fraction Defective Products in Use
.05

.025

0
180 204 228 252 276 300

Months

Base Case defects/task
300 hours/change defects/task
350 hours/change defects/task
400 hours/change defects/task

Figure 9

If the methodology entails no sacrifice in capacity (case #1), then the fraction of work

devoted to current programs decreases immediately after the methodology is introduced.

As more work is shifted to the advanced phase, fewer defects are introduced and less re-

work is required enabling an even larger fraction of work to be completed in the advanced

phase. If the cycle works in this, virtuous, direction, the fraction of products introduced

with defects decline significantly. In case #2, the decrease in development capacity

caused by the new methodology initially causes the fraction of current work to increase.

The change is, however, only temporary. After three model years, the fraction begins to

decline and the new methodology again leads to a substantial reduction in defects

introduced.

Case #3 shows different behavior. Whereas in cases #1 and #2 the introduction of the

new methodology leads to an improvement in system performance, in case #3 it leads to a

substantial reduction, even though the model is parameterized so that the new

methodology, if fully adopted, leads to an improvement in capability. Figure 11 shows

that in case #3, the system evolves to the point where the vast majority of the work is

done in the current phase.

Figure 12 helps explain the different outcomes.

Total Advanced Work to Be Completed
1,500

750

0
180 204 228 252 276 300

Months

300 hrs/change tasks
350 hrs/change tasks
400 hrs/change tasks

Figure 10

Total Current Work to Be Completed
1,500

750

0
180 204 228 252 276 300

Months

300 hrs/change tasks
350 hrs/change tasks
400 hrs/change tasks

Figure 11

In both cases #2 and #3, fewer advanced tasks are completed in the years following the

introduction of the new methodology. As a consequence, more work is moved to the

current phase uncompleted. As in the earlier cases, more work in the current phase leads

to a higher defect introduction rate (figure 9). In case two, this change is temporary. As

the positive benefits of the new methodology kick in, the defect introduction rate falls,

fewer resources are needed for the current phase and the advanced work completion rate

begins to rise. As the advanced work rate rises, adherence to the methodology increases

and system performance improves as the positive feedback loop works in the desired

direction.

Fraction of Current Changes Failing Testing
1

.5

0
180 204 228 252 276 300

Time (months)

300 hrs/change defects/task
350 hrs/change defects/task
400 hrs/change defects/task

Average Adherence to Methodology
1

.5

0
180 204 228 252 276 300

Time (months)

300 hrs/change dimensionless
350 hrs/change dimensionless
400 hrs/change dimensionless

Figure 12

In contrast, in case #3 the advanced work completion rate does not recover. Instead, as

more work is shifted to the current phase, the defect introduction fraction rises creating

even more current work. In this case, the initial transient is large enough that the system

never recovers. The decline in performance is reinforced as an increasing fraction of

resources are allocated to current programs and adherence to the methodology declines.

Unlike cases #1 and #2, the system does not make the transition to the desired state.

Instead the behavior is very similar to that of the pulse test described above. In case #3,

the introduction of the new methodology actually makes performance worse rather than

better. The introduction of a new methodology, when it entails a large decrease in initial

capacity, creates behavior very similar to the pulse test discussed above. The transient

behavior leads to a new steady-state in which the system performance is clearly degraded.

Rarely do those who promote new methodologies worry that their introduction may make

the system worse rather than better. In an environment with resource dependence,

however, this is a possibility.

Limiting Strategies

The simulation experiments show how introducing a beneficial new tool or process in an

environment with resource dependence can worsen the situation trying to be improved.

In this section a policy for mitigating these effects is proposed. A simplified feedback

representation of the feedback structure of the model is show in figure 15. There are two

main loops that drive the dynamics. The balancing loop, labeled B, represents the

organization’s desire to launch a product with few defects. There is a goal for the defect

level which is compared to the current state. If the comparison generates a positive gap

(meaning more defects than desired), additional effort is allocated to the current product.

As the resource level dedicated to the current product is increased, the defect level is

reduced and the gap is closed.

R
B

Defect Level in
Advanced

Project

Resources
Allocated to the

Advanced
Phase

Resources
Allocated to the
Current Phase

Gap

Defect Level
in Current

Project

Desired Quality
of Current Work

+

-

-

-

+

-+

Figure 13 Arrows indicate the direction of causality. Signs (‘+’ or ‘-’) at arrow
heads indicate the polarity of relationships: a ‘+’ denotes that an increase

in the independent variable causes the dependent variable to increase,
ceteris paribus (and a decrease causes a decrease). That is, X→+Y ⇔
•Y/•X > 0. Similarly, ‘-’ indicates that an increase in the independent

variable causes the dependent variable to decrease; that is, X→
-
Y⇔ •Y/•X

< 0. See Richardson and Pugh 1981.

Allocating additional effort to fix defects in the current project also reduces the effort

allocated to the advanced project. Fewer resources allocated to the advanced phase

means that projects will have defects needing correcting when they enter the current

phase. These links create the reinforcing loop labeled with the R. This loop makes the

resource dependent product development system unstable and prone to tilting. If the loop

works in the virtuous direction, the system is driven towards higher capability. If the

loop works in the opposite direction, the system is driven to low levels of capability.

The introduction of a new methodology, if it increases the initial time required per task,

can unintentionally ignite the downward spiral represented in the loop R. The reduction

in capacity caused by the increase in hours per task reduces the amount of work

accomplished in the advanced phase. If less work is accomplished in the advanced phase,

more must be done in the current phase to achieve the desired quality level further

starving the advanced product and creating the downward spiral of capability. The poor

behavior is caused by the myopic decision rule used to determine the allocation of

resources between the current and advanced phases. Favoring the project nearest to

launch produces undesirable behavior when resources are scarce.

To complement the introduction of the new methodology, a new implementation strategy

is added. An organization has a number of ways to compensate for its low process

capability including fixing defects as they occur and investing in long run improvements

that eliminate the defects in the first place. Frequently both paths cannot be pursued

simultaneously and the organization must allocate scarce resources between fixing

current problems and preventing future ones. Repenning and Sterman (1997) discuss in

some detail why there is a strong bias in many organizations towards correction. To

counteract this bias, Repenning (in progress) introduces the concept of limiting

strategies. Limiting strategies are based on a simple idea: effective implementation of

new improvement methods focused on prevention requires progressively eliminating the

organization’s ability to use the short-cut correction methods. The archetypal example of

such a strategy is the use of inventory reduction to drive fundamental improvements in

machine up-time and yield in manufacturing operations. As the amount of material

released to the production system is reduced, operators and supervisors are less able to

compensate for low yield and up-time by running machines longer and holding protective

buffer inventories. In such a situation the only way to meet production objectives is

through fundamental improvements.

The first step in using a limiting strategy is to identify the key mechanisms through which

the organization compensates for its low underlying capability. In product development

systems one way to compensate for low capability is to redo existing work to correct

defects. In the model, this is represented by multiple iterations through the re-work cycle

prior to product launch. To use a limiting strategy to implement the new methodology,

the allocation of resources to the current phase re-work cycle must be constrained. In the

model this is operationalized in a very simple way. At some point during the current

phase, a design freeze is introduced and, from that date forward, no resources are

allocated to re-work.

In the simulations shown below (figure 16 through 18), both the methodology and the

freeze date policy are introduced in month 192. Figure 16 shows the fraction of work

dedicated to current programs for a variety of freeze date policies. The ‘no-freeze’(freeze

at 0) is identical to the adherence only policy discussed earlier. The system never makes

the required transition to a higher percentage of advanced work (figure 16), and never

develops enough experience with the methodology to reap its benefits (figure 17). The

system’s performance is significantly worse than if the methodology had not been

introduced (figure 18).

Fraction of Work to Current Programs
1

.5

0
180 204 228 252 276 300

Months

Freeze at 0 dimensionless
Freeze at 1 dimensionless
Freeze at 3 dimensionless
Freeze at 6 dimensionless

Figure 14

Average Adherence to New Methodology
1

.5

0
180 204 228 252 276 300

Months

Freeze at 0 dimensionless
Freeze at 1 dimensionless
Freeze at 3 dimensionless
Freeze at 6 dimensionless

Figure 15

Fraction of Products Introduced with Defects
.2

.1

0
180 240 300 360

Months

Base Case
Freeze at 0
Freeze at 1
Freeze at 3
Freeze at 6

Figure 16

The results are even worse if the freeze date is one month prior to launch. The system

fails to make the transition to an increased fraction of work done up-front (figure 16),

adherence to the new methodology never reaches above 50% (figure 17) and an even

higher fraction of defective products are introduced to the market (figure 18).

In contrast to the no-freeze and one month freeze policies, freezing at three or six

produces a different behavior pattern. In both cases the system makes the transition to

the regime in which the vast majority of work is done in the advanced phase (figure 16).

With a six month freeze date this happens quickly, while with a three month date there is

an extended transition period in which the fraction of resource dedicated to the current

project is increased. As a consequence, in both cases the adherence to the methodology

increases monotonically (figure 17). The limiting strategy is effective in insuring the

methodology is implemented.

However, the long run success does come with a cost. The freeze policy creates a

substantial ‘worse-before-better’ dynamic. In both the three and six month freeze cases

the fraction of defective products introduced to the market increase substantially after the

policy is put in place (figure 18). The three month date produces a smaller initial increase

but also a slower transition to the higher capability system. The six month date creates a

substantial increase in the defect introduction rate, but leads to a faster transition to the

new process.

4. Discussion:

a. Dynamic Complexity

Developing new products can be a very complex process. The product being created may

have thousands of components, be composed of new and unproven technologies, and

require significant advances in process capability. The trend towards product

development processes that include participants from areas outside engineering only

increases the level of complexity: a well designed development effort cuts across many

of the traditional functional boundaries within an organization. Dozens of different

departments including sales, marketing, product design, product engineering,

manufacturing engineering, purchasing, and field service and support may be included,

and there can be hundreds, if not thousands of different people whose input is needed to

successfully develop and introduce a new product.

Decomposition is a popular problem solving strategy is such complex situations (Simon

1969), so, given this immense level of detail complexity, it is not surprising that

organizations often treat development projects as independent entities. The rise of the

matrix organization within many product design and engineering departments can be seen

as an attempt to manage the complexity of the process by decomposing the process by

both function and product. However, while an increased focus on projects may help

managers cope with the detail complexity, it has also greatly increased the dynamic

complexity. An organizational structure composed of both projects and functional areas

has high degree of resource dependence. Projects must compete for the scarce attention

of all of the different functional departments.

Many authors have recognized that managers who treat development projects as

independent entities do so at their peril. One of the major thrusts of Wheelwright and

Clark (1992, 1995) is that senior leaders should focus on managing the portfolio of

development efforts rather than individual projects. It has become an article faith among

business writers that managers should focus on whole systems and processes not

functions and specific pieces (Garvin 1995, Senge 1990, de Geuss 1988, Stata 1989).

This shift in perspective is obviously important, but the literature contains less guidance

on how to put such thoughts into action. Unfortunately, more is needed than simply

recognizing that product development processes are complex systems with

interdependent elements. A substantial body of research shows that human decision

makers perform poorly in decision making tasks in dynamic environments (Sterman

1989a, 1989b; Brehmer 1992; Funke 1991). In experiments with even modest levels of

dynamic complexity, subjects are often outperformed by simple decision rules that

account for a fraction of the available information (Paich and Sterman 1993, Diehl and

Sterman 1995).

Decision making processes are the major focus of much of the literature on managing

product development (Wheelwright and Clark 1992). An alternative approach to

improvement is to focus not on the decisions, but on the structure of the process itself.

Numerous authors have argued that senior managers have the most impact on a given

project very early in its life-cycle (e.g. Gluck and Foster 1975). Similarly, the high

leverage point in improving product development processes may lie in improving the

structure of the process rather than the day-to-day decisions made within that structure.

The analysis presented here focuses on one important decision, the allocation of resources

between current and advanced projects. There is a growing body of case study evidence

and theory that suggests that people behave myopically in these contexts, specifically

over-investing in current project and ignoring longer term investments (Repenning and

Sterman 1997, Repenning 1996, Jones 1997). Combining resource dependence and such

myopic behavior creates a system with a number of undesirable characteristics: the

system is not robust to variations in work load, and new tools and processes are difficult

to implement. A limiting strategy, which is operationalized as fixing resource allocation

rather than leaving it to the discretion of the manager, is a simple, easily implementable

solution to this problem that greatly increases the robustness of the process to variations

in workload, and improves the effectiveness of new tools that are introduced.

b. Future Research: Designing Robust Organizations

Placing constraints on the allocation of resources between projects is only one small

example of how processes can be redesigned to be more robust and produce consistently

better results. The methodology of robust design has been widely propagated through the

product development community with great success in many areas. Substantial

improvements have been made in the quality and reliability of many projects through

designs that minimize the sensitivity of the final item’s performance to variations in the

inputs.

The core idea of robust design is equally applicable to the design of processes and

organizations. In most cases it is prohibitively costly to run the needed experiments in

actual organizations and, unlike many product development processes, prototyping is not

an option. Thus the development of models to capture the dynamics of such processes is

critical to understanding which policies are robust to changes in the environment and

which are not. The simulation methodology used here provides one means to generate

useful models of organizations and processes focused on improving the design of

organizations (Forrester 1961). Similar methodologies has been used successfully to

improve the performance of a wide range of business systems including preventive

maintenance programs (Carroll, Markus and Sterman 1997), process improvement

programs in manufacturing, (Sterman, Repenning and Kofman 1997, Repenning 1997),

and supply chain management. Much work, however, remains. Developing models to

aid in the understanding and improvement of product development processes, using a

wide range of methods, remains a fruitful and productive area for research.

References

Brehmer, B., (1992). Dynamic Decision Making: Human Control of Complex Systems,

Acta Psychologica, 81,211-241.

Carroll, J., J. Sterman, and A. Markus (1997). Playing the Maintenance Game: How

Mental Models Drive Organization Decisions. R. Stern and J. Halpern (eds.)

Debating Rationality: Nonrational Elements of Organizational Decision Making.

Ithaca, NY, ILR Press.

Clark, K. and T. Fujimoto (1991). Product Development Performance: Strategy,

Organizations, and Management,

Dean, J. W. and D. Bowen (1994). “Management Theory and Total Quality: Improving

Research and Practice Through Theory Development, Academy of Management

Review, 19(3): 392-418.

de Geus, Arie (1988). “Planning as Learning,” Harvard Business Review, March-April,

70-74.

Diehl, E. and J.D. Sterman (1995). Effects of Feedback Complexity on Dynamic

Decision Making, Organizational Behavior and Human Decision Processes,

62(2):198-215.

Dertouzos, M., R. Lester, and R. Solow (1989). Made in America: Regaining the

Productive Edge, The MIT Press, Cambridge, MA.

Forrester, J. W. (1961). Industrial Dynamics. Cambridge, MA: The MIT Press.

Forrester, J. W. (1991). “From the Ranch to System Dynamics: An Autobiography”, in

Bedeian, Arthur (ed) Management Laureates: A Collection of Autobiographical

Essays, JAI Press.

Funke, J. (1991). Solving Complex Problems: Exploration and Control of Complex

Systems, in R. Sternberg and P. Frensch (eds.), Complex Problem Solving:

Principles and Mechanisms. Hillsdale, NJ: Lawrence Erlbaum Associates.

Gluck, F. and R. Foster (1975). “Managing Technological Changes: A Box of Cigars for

Brad”, Harvard Business Review, Sept.-Oct., 139-150.

Hauser, J. and D. Clausing(1988). “The House of Quality”, Harvard Business Review,

Vol.66, No. 3:66-73.

Huber, G.P. and W.H. Glick (1993), Organizational Change and Redesign: Ideas and

Insights for Improving Performance. New York, Oxford University Press.

Jones, A.P. (1997). Sustaining Process Improvement in Product Development: The

Dynamics of Part Print Mismatches, unpublished MS Thesis, Department of Civil

and Environmental Engineering, Massachusetts Institute of Technology,

Cambridge, Ma.

Kanter, R.M., T.D. Jick, and R. A. Stein (1992). The Challenge of Organizational

Change. New York, Free Press

Krahmer, E. & R. Oliva (1996). Improving Product Development Interval at AT&T

Merrimack Valley Works. Case history available from authors, MIT Sloan School

of Management, Cambridge, MA 02142.

Paich, M. and Sterman, J. (1993). Boom, Bust, and Failures to Learn in Experimental

Markets. Management Science, 39(12), 1439-1458.

Repenning, N. (in progress). Improvisational Change, Process Improvement, and

Limiting Strategies. Working Paper Available from author, Sloan School of

Management, MIT, Cambridge, MA 02142.

Repenning, N. (1997b). Successful change sometimes ends with results: Exploring the

Improvement Paradox. Working Paper available from author, MIT Sloan School

of Management, Cambridge MA 02142.

Repenning N. and J. Sterman (1997). Getting Quality the Old-Fashion Way: Self-

Confirming Attributions in the Dynamics of Process Improvement, to appear in

Improving Research in Total Quality Management, National Research Council

Volume, Richard Scott and Robert Cole, eds.

Repenning, N. (1996). Reducing Product Development Time at Ford Electronics, Case

Study available from author, MIT Sloan School of Management, Cambridge MA

02142.

Richardson, G. P. and Alexander Pugh (1981). Introduction to System Dynamics

Modeling with DYNAMO, MIT Press, Cambridge, Ma:

Senge, P. (1990). The Fifth Discipline: The Art and Practice of the Learning

Organizations, Doubleday, New York, NY.

Simon, H.A. (1962) The Architecture of Complexity. Proceedings of the American

Philosophical Society, 106, No.6, 467-82.

Simon, H.A.(1969). The Sciences of the Artificial. Cambridge, MA: The MIT Press.

Stata, R. (1989). “Organizational Learning: The Key to Management Innovation,”

Sloan Management Review, 30(3), Spring, 63-74.

Sterman, J. D. (1989a). Misperceptions of Feedback in Dynamic Decision Making.

Organizational Behavior and Human Decision Processes 43 (3): 301-335.

Sterman, J. D. (1989b). Modeling Managerial Behavior: Misperceptions of Feedback in a

Dynamic Decision Making Experiment. Management Science 35 (3): 321-339.

Sterman, J., N. Repenning, and F. Kofman (1997). Unanticipated Side Effects of

Successful Quality Programs: Exploring a Paradox of Organizational

Improvement. Management Science, April, 503-521.

Van de Ven, A., and M.S. Poole (1995). Explaining Development and Change and

Organizations, Academy of Management Review, Vol. 20, No. 3, 510-540

Weick, K. E. (1993). “Organizational Redesign as Improvisation” in Huber, G.P. and

W.H. Glick (eds.) Organizational Change and Redesign., New York, Oxford

University Press.

Weick, K.E. (1979). The Social Psychology of Organizing, Second Edition, New York,

Random House.

Wheelwright, S. and K. Clark (1993). Revolutionizing Product Development: Quantum

Leaps in Speed Efficiency and Quality, The Free Press, New York, NY.

Wheelwright, S. and K. Clark (1995). Leading Product Development, The Free Press,

New York, NY.

Ulrich, K. and S. Eppinger (1995). Product Design and Development, McGraw-Hill Inc.,

New York, NY.

Zangwill, W. (1993). Lightning Strategies for Innovation: how the world’s best create

new projects, Lexington Books, New Your, NY.

