
An easy and formal method for generating structural
high leverage policy in system dynamics models

Showing H. Young, Associate Professor
Chia Ping Chen, Doctoral Student

Department of Business Management
National Sun Yat-Sen University, Kaohsiung, Taiwan

Fax: 886-7-5252367; E-mail: syoung@mail.nsysu.edu.tw

Abstract
Designing high leverage policy is a very crucial and challenging step in system
dynamics approach.  However, very limited formal methods were developed in this
area.  Literature showed three kinds of these methods: the algorithm method, the
mathematical method, and the guideline method.  The algorithm method is easy to use
and suitable for nonlinear models, but can only obtain “parameter policy”, not
“structural policy”.  The mathematical method can obtain “structural policy”, but is
not easy to use and not suitable for nonlinear models.  The guideline method uses
guidelines induced from some special cases to design policy; it is easy to use, but its
generality is very weak.  The objective of this research is to develop an easy and
formal method for generating structural high leverage policy in system dynamics
models.  The idea of the method came from our experimental studies of microworlds.
In which we observed that if the subjects repeatedly play a microworld by trial and
error, they could often implicitly learn how to control the microworld even when they
did not know the underlying structure.  This kind of cognitive behavior is useful for
controlling system dynamics models.  So we imitate it to develop a conceptual
framework for generating structural high leverage policy.  And then we follow the
conceptual framework to direct the development of our method.  In short, this kind of
cognitive behavior has two major activities: selecting information and organizing
information.  We adopt the genetic algorithm as the mechanism for selecting
information.  This algorithm is suitable for searching huge solution domain;
probabilisticly searching with natural selection, but without blind search; being able to
obtain global satisfactory, not local optimal solution.  We adopt the back-propagation
algorithm as the mechanism for organizing information.  This algorithm is a kind of
artificial neural network with learning capability, and has showed its effectiveness in
system control.  The actual operation of this method is as follows.  First, we use the
conventional optimization algorithm to obtain the optimal trajectory of decision
output, so called the open-loop solution.  Then we use a hybrid software of genetic
algorithm and back-propagation algorithm developed in this research to find out a
decision function that produces approximation to the optimal trajectory, what is called
close-loop solution.  In the hybrid software, genetic algorithm is used to find out the
independent variables of the decision function from the observable level variables in
the system dynamics model, and back-propagation algorithm is used to generate the
functional relationship among the independent variables.  We have applied the method
to the model developed by Forrester in his paper “Market Growth as Influenced by
Capital Investment”.  The result showed that the performance of the policy obtained
by our method is better than that of Forrester’s policy.



Introduction

It seems crucial and challenging to design a high leverage policy for improving

the system behavior in system dynamics area. However, very limited formal methods

were developed in this area. This study developed a formal and easy method

combining the genetic algorithms and the artificial neural network to obtain a high

leverage closed loop policy.

Table 1 shows the position of the literature about the formal methods obtaining

the high leverage solution in system dynamics. We positioned these according to two

dimensions: one is the solution level, the other is the approach.

Table1: The category of the formal methods about designing the high leverage policy

Approach

Solution level

Optimal algorithm Mathematical method

from the control theory

Guideline from

simulation experiments

Open loop ∗Burns & Malone(1974)

∗Bradford Group(e.g.

Coyle, 1985)

Wire

This study’s method

∗Talavage(1980)
∗Mohapatra &

Sharma(1985)

∗ Macedo(1989)

∗Ozveren &

Sterman(1989)

Closed loop

Wire and

flow

∗Graham(1977)

∗Franco(1990)

System’s boundary

The three solution levels are open loop solution, closed loop solution and

system’s boundary. The open loop solution means that the solution function has not

the variables from the system. If the system is fluctuated by some little impact, the

open loop solution without information feedback can not adjust itself to the new state.

So it’s not robust. The closed loop solution means that the solution function has the

variables from the system. The system’s boundary solution means that the solution

may lie outside the structure, or be generated from reconstructing the structure.

There are three kinds of approaches: the algorithm methods, the mathematical

methods and the guideline methods. The algorithm methods are most friendly for

users, and they can deal with the nonlinear system, but they can not obtain the closed

loop solution. The mathematical methods almost originated from the control theory,

they are difficult for the users without advanced mathematical background. They can



not directly deal with the nonlinear system, however they can obtain the closed loop

solution. The guideline methods induce guidelines from some special cases; they are

easy to use, but their generality is very weak.

From the users’ viewpoint, the algorithms methods are easy to use, so this

study’s method will base on these, but can obtain the closed loop solution, that is,

positioning on the gray cell in Table 1.

Method

Imitating human brain

According to our past research about human beings making decision in the

microworld, we found the subjects’ performance increased through many times

practice in the microworld experiments, although they may not know the underlying

structure of the microworld (e.g., Young et al., 1991; Wang and Young, 1992; Young

et al., 1993; Young et al, 1994; Young and Wang, 1995; 1996). The finding shows

that human brain seems to be an effective controller for the microworld with the

characteristics of dynamics complexity. So this study’s method will imitate the human

brain.

Working hypothesis of human brain

We now construct a working hypothesis about the human brain how to operate in

the microworld according to our observation in experiments and some literature

(Forrester, 1961; 1964; 1968; Sterman, 1989; Morecroft, 1988). Then we will develop

the study‘s method based on the working hypothesis.

Fig. 1-(a) shows the working hypothesis of human brain. There are two layers in

human brain: one is the superficial cognitive activity; the other is the deep cognitive

mechanism. Both layers are influenced by the whole system objectives, for example,

the growth of system, the stable of system, or making a profit, and so on. We can

identify and observe at least three superficial cognitive activities in the microworld

experiments. They are screening, interpreting, and organizing in sequence. When

human being interacted with the microworld, his brain screened, interpreted, and

organized the information of the system state of the microworld, and then made

decision, which led to changes of the system state of the microworld. The changed

system state produced new information and make the interaction continue.

The underlying layer of the superficial cognitive activities is the deep cognitive

mechanism. The behavior that the subjects adopted to improve performance in the

microworld is a kind of implicit learning. The operation of neural network of human

brain may account for the implicit learning by some research (e.g. Cleeremans, 1993).

We take this hypothesis to develop this study’s method.



The conceptual framework of the method

Fig. 1-(b) shows the conceptual framework of the method, which is based on the

working hypothesis of human brain. In the conceptual framework, we use the genetic

algorithm and the artificial neural network to serve as the underlying mechanism of

the screening activity and the organizing activity respectively.

The genetic algorithm is a kind of the optimal search algorithms. It imitates the

natural evolution and hereditary to search the potential solution space and obtain the

optimal solution. The potential solution space is analogous to the population of some

being. The objective function is analogous to the natural environment. According to

the principle of evolution- survival of the fittest, the survival individuals can produce

their child generation through mating, crossover, and mutating. After some number of

generations, the process converges. The best individual hopefully represents the

optimal solution. The advantage of the genetic algorithm is that it is suitable for

searching huge solution domain; probability searching with natural selection, but

without blind search; being able to obtain global satisfactory, not local optimal

solution (the reader is referred to Goldberg (1989) for further details of the genetic

algorithm).

The artificial neural network imitating the neural network of the human brain

consists of numbers of the processing elements. The processing element imitating the

neuron is the most basic operator in the artificial neural network. Its operation is to

sum up all inputs value weighting by each connecting weight, and then transfer the

sum value to an output value. This study adopted the back-propagation algorithm--a

kind of artificial neural network. The network architecture of this algorithm is that the

network consists of numbers of layers, and the layer consists of numbers of the

processing elements. The layers between input and output of the network are called

the hidden layers. Every processing elements of the same layer can not connect each

other. The stimulus information propagates forward element by element through the

network, and emerges at the output layer of the network as an output value. The error

information is the gap between the output vale and the desired value, and propagates

backward layer by layer through the network, and adjusts every connecting weight.

The advantage of the back-propagation algorithm is that it can serve as a substitute of

human brain; its effectiveness for system control is supported by some evidences; and

it can approximate any continuous function to map input value to desired output value

(the reader is referred to Haykin (1994) for further details of the artificial neural

network).



The operational framework of the method

The learning of back-propagation algorithm is a kind of supervised learning. The

supervised learning must provide the neural network with a set of desired sample for

adjusting output error. However, the conceptual framework does not have the

mechanism to produce the target decision value. So we add the optimal algorithm into

the conceptual framework to resolve above problem. Fig. 1-(c) shows the operational

framework of the method, which is modified from the conceptual framework.

Fig.1-(a): The working hypothesis about human brain interacting with microworld

Fig.1-(b): the conceptual framework of the method



Fig.1-(c): the operational framework of the method

The operational process--two stage

According to the operational framework, we can further develop the operational

process. There are two stages in the process. The first stage is to obtain the open loop

solution of the system by the optimal algorithm. The second stage is to obtain the

closed loop solution based on the open loop solution by GNN (Genetic Neural

Network software, combining genetic algorithm and artificial neural network. We will

discuss more about it later).

How to obtain the open loop solution

There are two kind of the open loop solution: the trajectory solution, and the

constant value. In order to obtain the trajectory open loop solution, we adopt Fourier

series to substitute original policy acting on the sensitive variable. The Fourier series

can approximate any function. We use Powell algorithm (Vensim provides the

function) to estimate the optimal parameter value of the Fourier series.

As to the objective function, we use L2-gain as the objective function of the

stable oriented models. L2-gain is defined as Eq.(3), in which the numerator represents

the norm of output variable, and the denominator represents the norm of input



variable.  If L2-gain is less than 1, then the system between input and output dissipates

energy (Schaft, 1992). According to Lyapunov’s direct method, if a system dissipates

energy, then the system will approach stable. We use conventional norm H2 as the

objective function of the growing oriented models. Eq.(1) is the objective function,

the first term of the right-hand side represents the profit, the second represents the

cost, and the third represents the growth potentiality.

How to obtain closed loop solution

We use GNN based on the open loop solution to obtain the closed loop solution,

which mathematical implication is shown in Fig.2. Given the desired trajectory of the

decision point and the optimal trajectory of the other variables in the system, the

problem is to obtain some variables and the functional relationship between these

variables and the decision variable. So we develop GNN to solve the problem.

The illustration of GNN

We combined the genetic algorithm and the artificial neural network to develop

GNN software. Fig.3 shows the calculating process. Firstly, a group of sets of

variables are randomly produced to be the variables of potential closed loop solution

function by the genetic algorithm. Then the artificial neural network adjusts the

functional relationship among the variables until the error between the function output

and the desired decision value can not be decreased. Last, the genetic algorithm

selects some sets of variables from original group according to the final error of each

function. Meanwhile, the genetic algorithm uses these sets of variables to produce

another sets of variables through mating, crossover, and mutating. Then GNN

continues to run next cycle until the genetic algorithm converged.

We can use an imaginary experiment to illustrate the calculating process of

GNN. Let us imagine that a group of subjects play the same microworld, but they are

restricted to look at different sets of information. These subjects play repeatedly until

their performance can not be improved. The researcher selects some sets of

information based on the subject’s performance, and changes these to new sets of

information through the operations of mating, crossover, and mutating. Then the

experiment uses new subjects and new sets of information to run next iteration.

When we obtain the variables of the closed loop solution function by GNN, we

can base on the variables and the open loop solution to obtain the connecting weights

of the variables by any artificial neural network software.  With the variables, the

connecting weights, and the network architecture, we can construct a high leverage

policy.



Fig.2: The mathematical implication of the method about the second stage

Fig.3: The calculating process of GNN

Result

In the following we apply the method to two different types of model: the

growing oriented model--Forrester’s market growth model (Forrester, 1968), and the

stable oriented model--Forrester’s customer-producer-employment model (Forrester,

1961). The operational process and every step results are summarized in Table 2.



Table 2: Operational process and each step results

Stage General operational
process

Growth Model:
Forrester’s market growth model

Stable Model:
Forrester’s customer-producer-

employment model
Select one sensitive
decision variable.
Cancel the policy acting
on the decision variable.

PCR: production capacity
ordering

LDF: labor desired at factory

Set up the objective
function.

Eq.(1) Eq.(3) or Eq.(4)

Use Fourier series to
replace original policy
acting on the variable.

Eq.(2) and T=150 Eq.(2) and T=350

Use Powell algorithm to
estimate the optimal
parameter value of the
Fourier series.

Powell and
Multiple_start =Vector
A0, .., A7=0 ∈[0, 1e+5]
B1, .., B7=0∈[-1e+5, 0]

Powell
A0=750 ∈[400, 1200]
A1, .., A7, B1, .., B7=0 ∈[-20, 20]

Obtain some open loop
solutions by different
methods or different
objective functions.

Fig.4 Table 4

Open
Loop

Select a satisfactory
open loop solution.

The simulation output of the
heuristic mathematical method
(Young and Chen, 1998) is best.

The simulation output of the
objective function: “min
gain(IAFPC)” is best.

Preprocess the data of
the selected variables
from open loop solution
for GNN.

Selecting 24 variables
Variable
transformation:yi(t)=ln(xi(t))
zi(t)=(yi(t)-yimean)/yis.d.
wi(t)=1/(1+e

-zi(t))
the training data set: 73 patterns
the testing data set: 145 patterns
delete former 5 patterns

Selecting 47 variables
Variable transformation:
zi(t)=(xi(t)-ximean)/xis.d.
wi(t)= 0.1+ [(zi(t)-zimin)/ (zimax-
zimin)](0.9-0.1)
the training data set: 176 patterns
the testing data set: 351 patterns

Set up the parameter
value of GNN.
Run GNN.

Table 5 Table 5

Select the set of
variables with best
performance from the
result of GNN.

GNN converged at the 11th

generation.
From the 11th to 80th, total 5600
sets, we selected the best set of
variables: BL, DRA, DRC,
SEDM, and revenue.

GNN converged at the 8th

generation, and again diverged at
the 21th.
From the 8th to 20th, total 1222
sets, we selected the best set of
variables: DFOF, EDPC, FRFIF,
LLF, and RMPAF.

Closed
Loop

Obtain the connecting
weights of the variables
by any ANN software.
Construct a potential
high leverage policy
with the variables, the
connecting weights, and
network architecture.

Fig. 5 Fig. 6

Reproducing test Fig. 7: good Table 6: goodTest
Robustness test Fig. 8: good Table 7: not good



Table 3: Equations indicated in Table 2

(1)

(2)

(3)

x(t)=BLCPC(t) or CASPC(t) or DQDFPC(t) or IAFPC(t) or MENPC(t)

or

(4)

-M: the heuristic mathematical method; -A: this study’s method

Fig.4: Comparison of the growth model’s open loop solutions between this study’s

method and the heuristic mathematical method developed by Young and Chen (1998).
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Table 4: Comparison of the stable model’s open loop solutions with

different objective functions

result

objective

NPTDF gain

BLCPC

gain

CASPC

gain

DQDFPC

gain

IAFPC

gain

MENPC

max NPTDF 4710010.5 4.5281 1112.3 2.5858 567.34 11.633

min gainBLCPC 3508531.5 0.2828 3.1322 0.2506 0.6646 0.4694

min gainCASPC 3526868.5 1.1696 0.9483 0.428 1.1432 0.5872

min gainDQDFPC 3546074 0.8504 1.9827 0.259 0.7031 0.5127

min gainIAFPC 3521606.3 0.7356 1.9707 0.2096 0.5277 0.4281

min gainMENPC 3560326.5 9.2369 14.112 5.1947 6.8034 0.0036

Table 5: The parameter value of GNN
models

GNN parameter
The growth

model
The stable

model
the parameter of genetic algorithms

population size 80 94
chromosome length 24 47
generation number 80 25
mating probability *crossover probability 0.7*0.6 0.9*0.9
mutation probability 0.01 0.03

fixed or not? fixed fixed
fixed number (fixed) 7 7

chromosome
type

penalty multiplier (fixed) 1.2 1.2
Proportional: convergent pressure 3 1reproduction

methods rank-based: no.1 number
the parameter of neural network

learning rate 0.05 0.1
momentum parameter 0.01 0
noise factor 0 0

error tolerance 0.001 0.001stop criteria
maximum learning cycles 100 500

initialized number 3 1
network architecture-layer number 3 3
neurons number of input layer 24 47
neurons number of hidden layers 3 3
neurons number of output layer 1 1



PCO = EXP(LN(OUT/(1-OUT))*1.71877+9.27733)

OUT = 1/(1+EXP(-1*(H1*3.98928+H2*-4.50871+H3*-3.01871)))

H1 = 1/(1+EXP(-1*(W1*0.305184+W2*0.543068+W3*0.363065+W4*1.00581+ W5*0.998152)))

H2 = 1/(1+EXP(-1*(W1*-1.65855+W2*-0.0559+W3*-1.5359+W4*1.50866+ W5*2.67165)))

H3 = 1/(1+EXP(-1*(W1*0.105585+W2*-0.83289+W3*-0.85289+W4*-0.33741 +W5*-0.95505)))

W1 = 1/(1+EXP(-1*(LN(BL)-11.9895)/1.72565))

W2 = 1/(1+EXP(-1*(LN(DRA)-11.2542)/1.72596))

W3 = 1/(1+EXP(-1*(LN(revenue)-15.8594)/1.72596))

W4 = 1/(1+EXP(-1*(LN(DDRC)-0.7363)/0.003451))

W5= 1/(1+EXP(-1*SEDM))

price = 100

revenue = DRA*price

Fig.5: Diagram and equations of the growth model’s high leverage policy

PCO

W5W4W3W2W1

<SEDM><DDRC><revenue><DRA>

OUT

H3H2H1

<BL>



H1 = 1/(1+EXP(-1*(X1*w11+X2*w12+X3*w13+X4*w14+X5*w15)))

H2 = 1/(1+EXP(-1*(X1*w21+X2*w22+X3*w23+X4*w24+X5*w25 )))

H3 = 1/(1+EXP(-1*(X1*w31+X2*w32+X3*w33+X4*w34+X5*w35)))

OUT = 1/(1+EXP(-1*(H1*wh1+H2*wh2+H3*wh3)))

X1 =0.8*((DFOF-x1m)/x1s-y1min)/(y1mm)+0.1

X2 =0.8*((EDPC-x2m)/x2s-y2min)/(y2mm)+0.1

X3 = 0.8*((FRFIF-x3m)/x3s-y3min)/(y3mm)+0.1

X4 = 0.8*((LLF-x4m)/x4s-y4min)/(y4mm)+0.1

X5 =0.8*((RMPAF-x5m)/x5s-y5min)/(y5mm)+0.1

x1m=4.71389282, x2m=30093.22159, x3m=0.698456352, x4m=1.116144058, x5m=3005.067463;

x1s=0.070924391, x2s=1068.491835, x3s=0.007880488, x4s=1.428607458, x5s=113.762688;

y1min=-1.92222158, y2min=-1.524071469, y3min=-1.936169338, y4min=-0.781281136,

y5min=-1.807770392;

y1mm=3.858390322, y2mm=3.101063413, y3mm=3.858390113, y4mm=3.732034352,

y5mm=3.495289642;

w11= 0.171587, w21=-4.985481, w31= 1.218813

w12= 2.758465, w22=-0.780286, w32= 4.973371

w13=-0.724769, w23=-5.785361, w33= 1.145750

w14=-4.233764, w24=-3.310918, w34= 1.346264

w15=-1.145976, w25= 6.089832, w35=-8.820408

wh1= 4.745557

wh2=-6.000803

wh3=-3.972231

Fig.6: Diagram and equations of the stable model’s high leverage policy

LDF

<LLF><FRFIF><DFOF> <EDPC> <RMPAF>

X5X4X3X2X1

OUT

H3H2H1



Fig.7: Result of reproducing test of the growth model

Fig.8: Result of robust test of the growth model

Reproducing test
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Table 6: Result of the reproducing test of the stable model

scenario: 2-year sine curve

NPTDF gainB gainC gainD gainI gainM

original model base run 3345853.5 10.579 7.7413 3.13 2.674 2.0087

original model new policy 3501079.8 1.7019 2.5091 0.7566 1.8962 0.5125

open-loop solution 3521606.3 0.7356 1.9707 0.2096 0.5277 0.4281

closed-loop policy 3552401.3 1.2381 3.3604 0.5904 1.419 0.5208

Table 7: the result of the robust test of the stable model

scenario: 4-year sine curve

NPTDF gainB gainC gainD gainI gainM

original model base run 3616565.3 4.4418 3.9684 1.2668 1.2496 1.0473

original model new policy 3622099.3 3.2196 2.726 1.3318 3.0075 1.2072

closed-loop policy 3618647.3 4.9186 10.134 2.4356 4.3962 0.5423

Discussions

In the simulation experiments, we found some interesting phenomena worth

discussing.

1. Besides the policies of the system, the system performance is influenced by the

objective function. Table 3 shows that if we take gain (IAFPC) as objective

function, then the system performance is best. However, if we take NPTDF as

objective function, then the system performance is worst.

2. In the second stage, we use the best set of variables by GNN to construct a high

leverage policy. We found that the best sets of variables by GNN are different

every time. However, these policies from different sets of variables made similar

good performance. From above simulation experiments, we infer that there exist

more than one high leverage policy in nonlinear dynamic system.

3. It is hard to explain the result of the method, because the method includes two

nonlinear algorithms. The reason for the difference of the robustness between the

two the model simulation is that, we guess, the artificial neural network has the

capability of pattern recognition. It is very similar among the growth model’s

pattern of behaviors in different situations, but it is very different among the

stable model’s. So the growth model is robust, but the stable model isn’t.

4. The policy constructed by the best set of variables from GNN may not pass the

testing stage. In this time, we suggest to add one cycle loop process between the



second stage and the testing stage, that is to select next best set of variables from

the output of GNN to construct another policy, and then test it.

Summary and further study

This study’s method imitates human brain. According to the working hypothesis

of human brain, we construct the conceptual framework of the method, and then base

on it to develop the operational framework and process. There are two stages in the

operational process: the first is to obtain open loop solution, the second is to obtain

closed loop solution by our GNN software.

The result of the method’s test shows that the reproducing is good, and the

robustness of is half good and half bad.

In the users’ view, this study’s method is friendly and easy. Users without

enough mathematical background can use the method by following the procedure. We

will replace the routine of the procedure with a computer program in the future. So the

method will be easier for users.

However, the method has two flaws. One is that it is hard to explain the result of

the method. The reason results from two nonlinear algorithms constituting the

method. Maybe the flaw can be resolved until the two algorithms have well-developed

theorem. The other flaw is that GNN takes much time to run in PC. If we use higher

speed computer, the flaw will be resolved.

As to the management implication of the method, in addition to derive high

leverage policies, there are two themes: how to screening decision relevant

information, and how to construct the objective hierarchy of organization. Now we are

studying these themes.
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