1. **Cognitive and Instructional Issues in System Modeling**
 - Sylvia A. Shafto, Ph.D., CJ Kalin, and Michael G. Shafto, Ph.D.
 - MS in System Management Program, College of Notre Dame, Belmont, CA mssm@cn.edu 415-508-3724

2. **MS in System Management**, College of Notre Dame, Belmont CA
 - Exploit similarities among systems
 - Transfer analysis and problem-solving from one management context to another
 - Managers apply systems thinking in technologically oriented industries
 - Students come from aerospace, biotechnology, materials science, telecommunications, computer hardware, and software industries

3. **Metaphors and Analogies**
 - Concrete, memorable, and resonant with students' prior knowledge
 - More complexity, more difficult to understand and predict
 - Need refinement to mathematical models
 - Example of early 20th Century physics: Rhodes, *Making of the Atomic Bomb*

4. **Modeling Tools for Organizations**
 - Bridge from metaphor (jungle, machine, team, family, community, rational individual, learner) to data
 - Represent systems accurately without representing them completely
 - Organize & interpret data
 - Visualize, communicate with a group

5. **Cognitive research on problem solving and reasoning**
 - Rule-based expertise
 - Solving puzzles, algebra, geometry, and computer programming
 - Metaphor or mental models
 - Misconceptions in physics, computer systems, medicine, probability
 - Explanation of error patterns

6. **Rule-based Expertise**
 - Knowledge from past problem-solving experiences
 - Rules to define legal moves through problem-space
 - Low memory load
 - Well-defined problems
Metaphor & Analogy in Problem Solving

- Structure problem-space, control search
- Progress within memory capacity
- Plans remembered long enough to be implemented
- Insufficient for real system

From Metaphor to Mental Models

- More variables, more interactions
- From logic to troubleshooting
- Heuristic rules supplemented by models
- Progression from novice to expert
- Physics, economics, human-automation
- Instructional software using carefully designed sequences of models

Mental Models in Problem Solving

- Useful but insufficient
- Mental models operationalized different ways
- Can’t analyze real systems mentally
- System complexity limits data collection
- Not extensible

Management Students

- Need to develop problem-solving skills
- Analyzing novel situations, creating new solutions, transfer of learning
- Work in business settings constrained by
- Rapid decision making
- No experimentation

System Modeling in Problem Solving

- Establish correct mental models
- Supplement limited human memory
- Organize and interpret data
- Encourage testing and refining business processes
- Support thinking about new possibilities
- Flexible, extensible, refinal

Rule-based Analysis

- Linear programming, forecasting, inventory, queuing analysis
- Recognition of types, matching of structures
- Limited in scope
- Artificially simplified problems
13 □ Modeling with *iThink*
 - Simple, graphical, affordable tool
 - Solves problems in ordinary differential equations
 - Draw relationships among components
 - Output numeric, graphical, and animation

14 □ Goals for Model-Based Instruction - 1
 - Identify components of the system
 - Partially describe functions
 - Verbalize relations and interactions among system components
 - Describe qualitative causation, expectations, and interpretations of the performance of the system

15 □ Goals for Model-Based Instruction - 2
 - Predict and explain step-by-step system performance
 - “Think-aloud” during problem-solving
 - Develop plan for problem approach
 - Groups discuss conclusions from results

16 □ Goals for Model-Based Instruction - 3
 - Show how model solves different problems
 - Identify metaphorical or analogical explanations
 - Integrate several model versions

17 □ Students’ Initial Modeling Efforts
 - System, model, and tool are overwhelming to the student
 - “As-is” defined, not “what must be”
 - Process vs. system: trace path of individual person or object, rather than showing system
 - Extensible: How to add elements/relations?
 - Sensitivity analyses: do not lead to questioning structure of model

18 □ Problem of Resources
 - How many resources should be used?
 - Pick just one, or too many
 - "Mix up units"
 - "What is perceived quality?"
 - "Where do I plug in the data?"

19 □ Problem of Feedback
 - Linear flows with no feedback
 - Do not anticipate time-lag
 - Feedback in process control
"Everything I expected came out different"
"Why didn't a change have immediate impact?"

20 □ Problem of Levels
 - Fundamental to controlling complexity (nested subroutines in computer programming)
 - Students: flat models with no hierarchy
 - Need at least three modeling levels, with easy movement

21 □ Summary of Student Problems
 - Student problems mirror properties of mental models
 - Small models, due to working memory limits
 - Diagrammatic, not dynamic, models
 - Concrete situations represented

22 □ Instructional Solution
 - Analogy/Metaphor
 - Rules What is the policy? But what if?
 - Mental Models some degree of coherence
 - Multiple Mental Models coverage
 - Integrated Models require iThink

23 □ Communication
 - iThink as a mechanism for modeling and communicating
 - Students capture features of real life
 - Brain-storming and problem-solving tool

24 □ Selected Research on Mental Models
 - Gentner & Gentner’83: metaphors
 - Johnson-Laird & Byrne’91: logic
 - White & Frederiksen’85: physics
 - Gott, Bennett, Gillet’86: troubleshooting
 - Salter (n.d.): macro-economics
 - Feltovich, Spiro, Coulson’89: medicine
 - Jonassen’96: methodology