An Intelligent System Dynamics Based Controller for Fuzzy Managerial Systems

Julio Macedo
Institut de Stratégies Industrielles
229 Forest, Pincourt, P.Q., J7V8E8, Canada

Rafael Ruiz Usano
University of Sevilla, School of Industrial Engineering
Av. Reina Mercedes s/n, 41012 Sevilla, Spain

The target organization of a manufacturing system is the one that allows to make products whose managerial attributes (production delay, defective product rate, production cost and product variety) satisfy a target market. A fuzzy controller that generates the target organization of a manufacturing system is presented (Figure 1). This new type of controller, named organizational fuzzy controller (OFC), is an alternative tool to fuzzy expert systems. The OFC does not require membership functions, fuzzy logic and defuzzification procedures. In addition, the OFC can generate target organizations (controls) adapted to structural variations in the desired managerial attributes.

The OFC is based on two well known properties of system dynamics models: Robustness of their state variable behaviors to small perturbations in the parameters of the model; and, self-organization of their state variables to strong variations on the control variables. The OFC is constituted by a qualitative simulation model and by the optimization of a function of an energy function that feedbacks this model (Figure 2). The cause-effect relationships of the qualitative model and the form of the energy function are chosen so that known pairs of desired managerial attributes (state variables) and target organizations (control variables) are reproduced.

The OFC works in the following form (Figure 3). First, the desired managerial attributes and the current values of the cause-effect weights and of the state and control variables of the system being analyzed are introduced in the OFC. Then, the OFC identifies and optimizes the reference model whose intervals of robustness match the introduced information. The optimal values of the control variables, which are expressed as binary values, constitute the target organization of the system being analyzed.

A linguistic point of the reference model is the one that is defined by the managerial attributes desired by the target market and by the intervals of robustness of the initial values of the state and control variables. The reference model in Figure 4 is robust for the indicated intervals of the cause-effect weights. In addition, this reference model is valid for two linguistic points. The first point is defined by the desired managerial attributes marked W in the box that includes the energy function and by the intervals of robustness included in the flags marked W, in Figure 4. The second point is defined by the desired managerial attributes marked M in the box that includes the energy function and by the intervals of robustness included in the flags marked M.

The following tests are conducted in order to verify the validity of the OFC. The reference model is solved with one of the point values (in bold in Figure 4) of each one of the two linguistic points mentioned previously. The generated values of the control variables (upper right values in the flags of Figure 4) correspond to the right values.
Energy function: \[\min_{\tilde{p}_j, \tilde{p}_1} Z = \int_0^T m_n (y_n - y_d)^2 + m_{n-1} (y_{n-1} - y_d')^2 \, dt \]

Qualitative simulation model (in continuous lines):

\[
\begin{bmatrix}
\dot{x}_{n-1} \\
\dot{x}_{n-2} \\
\dot{x}_i
\end{bmatrix} = \begin{bmatrix}
\tilde{S}(x_{n-1}) & 0 & 0 \\
0 & \tilde{S}(x_{n-2}) & 0 \\
0 & 0 & \tilde{S}(x_i)
\end{bmatrix} \begin{bmatrix}
w_{n-1, n-2} & 0 & 0 \\
0 & 0 & 0 \\
w_{n, n-1} & w_{n-1, n} & 0
\end{bmatrix} \begin{bmatrix}
x_{n-1}(0) \\
x_{n-2}(0) \\
x_i(0)
\end{bmatrix}
\]

\[
p_{j-1}(t) = \int_0^{\tau_j} \tilde{p}_{j-1} \tilde{s}(p_j) \, dt; \quad p_j(t) = \int_0^{\tau_j} \tilde{p}_j \tilde{s}(p_j) \, dt;
\]

Inputs: \(y_n, y_d' \), Outputs: \(p_j(T), p_1(T) \). Constants: \(0 \leq x_{n-1}(0), x_{n-2}(0), x_i(0), x_{n-1}(0), x_n(0) \leq 1; 0 \leq m_{n-1}, m_n, \) all \(w \leq 1 \)

Figure 2. Detailed structure of an intelligent reference model which is composed of an energy function and a qualitative simulation model. The state variables are in circles, the control variables in hexagons and the managerial attributes in boxes.
Introduce the characteristics of the current logics for organizing the analyzed system:
- Values of the cause i - effect j weights: \(w_{ij} \) for all i and j.
- Values of the state and control variables: \(x_i(0) \), \(p_i(0) \) for all i.

Recognition of organizational logics and current situation:
Do the characteristics of the current logics for organizing the analyzed system match the characteristics of one of the reference models, \(w_k \in \Delta w, x_k(0) \in \Delta x(0) \) and \(p_k(0) \in \Delta p(0) \) for all i, j?

Express the managerial attributes desired by the target market of the analyzed system as a vector of 0-1 values \(Y_d \) and introduce it.

Recognition of target market: Do the target market of the analyzed system equate the target market of the matched reference model \(Y_d = y_d \)?

Generation of organizational improvements:
Optimize the matched reference model with \(y_a = Y_d \) and any \(w \in \Delta w, x_a(0) \in \Delta x(0), y_a(0) \in \Delta y(0), p_a(0) \in \Delta p(0) \). The optimal solution is \(p^*(T), x^*(T), y^*(T) \); the elements of these vectors are 0-1 values.

Interpret the solution: In the reference model, from \(y^*(T) \) backtrack the cause-effect links until \(p^*(T) \). Are the values \(x^*(T) \) satisfying?

Use the matched reference model as a qualitative simulator: Modify the values of \(M, w, p \), and redesign the structure of \(x, p, w \).

Knowledge base of intelligent reference models.
Each model is characterized by:
- Linguistic values of its cause i - effect j weights: \(\Delta w_{ij} \) for all i and j (\(\Delta w_{ij} = [w_{ij}^l; w_{ij}^u] \)).
- Linguistic values of the initial situation of its state and control variables: \(\Delta x_i(0), \Delta p_i(0) \) for all i.
(\(\Delta x_i(0) = [x_i(0); x_i(0)], \Delta p_i(0) = [p_i; p_i^u] \)).
- Desired 0-1 managerial attributes \(y_d \) for all i.

Each reference model is stored as:

1) Energy function
\[
\min_x Z(x) = \int_0^T [y(t) - y_d] M [y(t) - y_d] \, dt
\]

2) Qualitative simulation model:
\[
\dot{x}(t) = S(x) \begin{bmatrix} \dot{x}(t) \\ \dot{p}(t) \end{bmatrix}
\]
\[
\dot{p}(t) = K ; \quad y(t) = Cx(t); -1 \leq K \leq 1
\]

Fixed constants: \(M, C, S(x) \).
Model input: \(y_d, w, x(0), y(0), p(0) \);
model output: \(p^*(T), x^*(T), y^*(T) \).

Build a new reference model whose characteristics match the ones of the current logics used for organizing the analyzed system.

The target organization of the analyzed system are the elements of \(p^*(T) \).

\(p^*(0) \) Upper bound of robustness of \(p(0) \)
\(K \) Vector of variation rates of \(p(t) \)
\(M \) Diagonal matrix of penalties \(M_i \)
\(C \) Elementary matrix that selects \(y(t) \)
\(I \) Identity matrix
\(T \) Final time
\(S(x) \) Diagonal matrix of bell shaped functions \(\tilde{S}(x) \)
\(y_d \) Vector of desired managerial attributes
\(t = 0 \) Time of the initial equilibrium
\(t = T \) Time of the final equilibrium

Figure 3. Use of the organizational fuzzy controller. The intervals of robustness \(w^l \leq w \leq w^u; x^l(0) \leq x(0) \leq x^u(0); p^l(0) \leq p(0) \leq p^u(0) \) in the reference model are expressed as linguistic values \(\Delta w, \Delta x(0), \Delta p(0) \). The variables are scaled so that \(0 \leq x(0), p(0) \leq 1 \) and \(-1 \leq w \leq 1 \). In addition, the controller always generates \(0 \leq x(T), p(T) \leq 1 \).

327
Figure 4. Intelligent reference model of the product structure. The letters W and M identify the equilibria for a world class market and a mass market. The final equilibria of each market are obtained by optimizing the reference model with the corresponding initial equilibria in bold. The positive cause-effect relationships are indicated by the continuous arrows and the negative ones by the dashed arrows.