1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

Powerful modeling using array variables

Magne Myrtveit
ModeliData AS
N-5120 Manger, Norway
Tel: +47 5637 4009
Fax: +47 5637 3500
E-mail: magmy@modeld.no

Abstract

As the field of system dynamics modeling is expanding, there is a continuos need for improvements
of the available tools for developing simulation models. Lack of features like array variables often
lead modelers to choose third generation languages like C when developing large, realistic models.

This paper describes the array variables of the POWERSIM language. Comparisons are made to other
notations, including mathematics and DYNAMO. Index variables, array dimensions, subscripts, and
functions operating on arrays are described. An important feature of POWERSIM is that the array
notation goes well together with standard accumulator-flow diagrams (AFD) and causal loop
diagrams used by system dynamicists. This makes the use of array variables almost as easy and
intuitive as using scalars.

The transition from single scalar values to multi-element array variables is visualized through
examples. Examples include capital stock with machines and buildings, work force with
inexperienced and experienced workers, delay structures programmed as arrays, etc.

The array feature of POWERSIM has been used with success in several large-scale projects. Many
modeling problems are not practically solvable without using atrays. Even models that can be
developed using only scalars, sometimes become much easier to develop, explain and maintain when
using arrays. In conclusion, the family of simulation problems that are best solved using a system
dynamics tool, has been extended significantly through POWERSIM's array mechanism.

System Dynamics : Methodological and Technical Issues, page 173

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

Powerful modeling using array variables

The array features of POWERSIM

Introduction

A dynamic model is a mathematical description of a real or imaginary system. The use of
accumulator-flow models makes the power of mathematical integration available in an intuitive and
straight-forward way, also for non-mathematicians. The use of vectors and matrixes (arrays) is a
powerful feature of mathematics. Several approaches have been made to add array variables to
dynamic modeling languages. A major weakness of the early approaches seems to be that the
solutions are selected with limited focus on graphical editing of the simulation model as an AFD'.

Our goal has been to provide the power of dimensioned variables (arrays) to POWERSIM’s
simulation language in such a way that both the textual and the graphical representation of models are
kept as simple and intuitive as possible.

The inclusion of array variables has implications on three aspects of the simulation tool; 1) the
textual simulation language (the equations); 2) the graphical accumulator-flow diagram; and 3) the
user interface. Each of these will be discussed below. The following terms will be (informally)
defined: array, scalar, literal, range, subrange, enumeration, dimension, subscript, index, constraint,
and guard.

Scalar variables

Normal variables are called scalar variables, i.e., variables holding single numerical values. As an
example, the definition®

const InterestRate = 5%

defines® a scalar constant named InterestRate with the single value of 0.05. Scalars are displayed with
a single frame in the diagram, as shown in Figure 1-a.

a) Scalar constant b) Array constant
InterestRate AvgTemp

Figure 1: Scalar and array constant symbols

Array variables, array elements, vectors, and array literals

An array variable may* hold several distinct values (at the same time). Each distinct value is
called an array element. As an example, the definition

const AvgTemp(l.12)=[14,12,31,59,6 104,128, 15.1, 149, 12.1,8.3,5.5,3.2]

defines a vector (one-dimensional array) with 12 elements numbered 1 through 12, inclusive. Each
element holds an average monthly temperature’ in Bergen, measured in °C.

'AFD - Accumulator Flow Diagram
2'I'he definitions below are copied from the Equations view of POWERSIM.
3% is a POWERSIM postfix operator dividing its operand by 100, i.e., 5% = 5/100 = 0.05.
4h is possible to define arrays with only one element.
3 Average temperatures 1931-60, Florida Bergen, Source: Det norske meteorologiske institutt.

System Dynamics : Methodological and Technical Issues, page 174

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

A list of numbers enclosed in square brackets ([]) is used to define a vector literal. In the above
example, the expression [1.4, 1.2, 3.1, 5.9, 10.4, 12.8, 15.1, 14.9, 12.1, 8.3, 5.5, 3.2] is a vector literal
with 12 elements®.

The dialog box for defining variables is the same both for scalars and arrays (see Figure 2). For an
array, the Dimensions section is used to define each dimension of the variable. In our example,
AvgTemp has one dimension, with elements 1 through 12.

Define Variahle

[© Avatemp
Dimensions:

[i32
Definition: [Full View
[1.4.1.2,3.1.5.9.10.4, 12.8, 15.1, 14.8, 12.1. 8.3, 5.5, 3.2}

Averag hi in Bergen based on data for the years 1931 to
1960.

Linked Variables:

Hanges: Units:

Figure 2: Dialog box for defining variables

A dimension must include a range specifying the element names of the dimension. In Figure 2 the
text 1..12 in the Dimensions field defines a numerical subrange from 1 to 12, inclusive. Arrays are
-displayed using double lines in the diagram, as shown in Figure 1-b. The array element names and
element values of AvgTemp are visualized below.

Value |14 [12]31]597104]128]151]149]121]83[55] 32|
Name | 2 3 4 5 6 7 8 9 10 11 12

Functions operating on arravs

POWERSIM has several functions that take array arguments. As an example, the average
temperature during one year may be computed using the ARRAVG function with AvgTemp as an
argument, like this:

aux AvgTempYear = ARRAVG(AvgTemp)

The right hand side of the above equation may also be written either as ARRAVG(AvgTemp(*)) or
as ARRAVG(AvgTemp(1..12)).

Vectors, like AvgTemp, may be used, e.g., as arguments to the GRAPH family of functions. As an
example, the expected temperature at a given month may be obtained using the following definition’:

aux ExpectedTemp = GRAPHCURVE(TIME MOD 12, 0, 1, AvgTemp)

°A single decimal number is called a scalar literal, e.g. 3.14,
"The TIME function returns the current time during the simulation. In this example it is assumed that the simulation time unit is months.

The MOD operator computes the remainder after division. TIME MOD 12 will produce the values 0, 1, 2, 3..., 11, 0, 1, 2, 3, 4 for TIME
values of O through 16. .

System Dynamics : Methodological and Technical Issues, page 175

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

Array subscripts for accessing array elements

Individual array elements or ranges of elements may be accessed using array subscripts. As an
example, the expression AvgTemp(l) obtains the average temperature in January, ie., 1.4°C.
Subscripts may also be used to identify sub-arrays. The expression ARRAVG(AvgTemp(6..8))
computes the average temperature during the summer months.

Numeric subranges

Sometimes, it is useful to employ named sets of elements (ranges) when defining variable
dimensions. One reason may be increased readability. Another, more important, reason is that
changes to a named range definition will have effect on all variables that use the range. In the above
example we may define the numerical subrange 1..12 as a range with the name RMonth.

range RMonth=1..12

This may be done in POWERSIM by using the Edit Define Range dialog box (see Figure 3).

Define Range

Range Name: [£ numeration
{RMonth

Flemeant Nawme:

Range Type:

INumeric Subrange

"~ Enumeration Subrange

Sulwangs ol

" Numeric Subsange
From:

To:
e

Figure 3: Defining a range

Our definition of AvgTemp may now be changed to the following:
const AvgTemp(RMonth) = {14, 1.2,3.1, 5.9, 104, 12.8, 15.1, 14.9, 12.1, 8.3, 5.5, 3.2]

By expanding the Define Variable dialog box (using the More>> button, see Figure 2) we see that
RMonth is presented in the list of Ranges (lower, left hand corner).

By selecting the entire text of the Dimensions field and double-clicking on RMonth in the Ranges
list box, RMonth will be pasted into the Dimensions field of the Define Variable dialog box (see
Figure 2).

Enumerated ranges

Elements of a range may be given mnemonic names. As an example, let us redefine the RMonth
range as an enumeration of month names. This is done by opening the Define Range dialog box, and
changing the Range Type to Enumeration. Element names are entered in the Elements list box by

System Dynamics : Methodological and Technical Issues, page 176

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

typing one Element Name at the time and then pressing the Append button (see Figure 3). The
resulting range looks like this in equations view:

range RMonth = January, February, March, April, May, June, July, August, September,
: October, November, December

The temperature in January may now be expressed as AvgTemp(January), and the average
temperature in the summer months is ARRAVG(AvgTemp(June..August)).

Enumeration subranges

It is also possible to define sub-ranges based on previously defined ranges. The four seasons may,
as an example, be defined as sub-ranges of the RMonth range. This is done by defining a new range
and setting Range Type to Enumeration Subrange in the Define Range dialog box (see Figure 3). By

entering the name RSummer, and selecting June as From and August as To, the following range will
be defined:

range RSummer = June..August

Editing vectors graphically using mouse and keyboard

Vectors and the GRAPH family of functions may be edited using the Edit Graph/Vector dialog
box, which is opened by clicking the Graph button of the Define Variable dialog box (Figure 2). In
Figure 4, the definition of AvgTemp is edited graphically. In the graph window, the mouse may be
used to draw the graph. The list of vector elements can be edited by making selections in the
Coordinates list box and typing in new values in the Y text box, inserting elements with Insert,
deleting elements with Delete. Elements may also be copied or pasted via the clipboard using the
Copy and Paste buttons (see the bottom row of the keypad in the dialog box).

T Edit GraphVector |

Figure 4: Editing the AvgTemp vector graphically

The average summer temperature was defined above based on the anonymous subrange
June..August, like this: ARRA VG(Angemp(June..August)). Using the named subrange RSummer, we
have the following alternative expression: ARRAVG(AvgTemp(RSummer)).

System Dynamics : Methodological and Technical Issues, page 177

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

Index variables

New array variables can be defined based on anonymous ranges, named ranges, and range
elements. As an example, a variable AvgSummerTemp may be defined as a vector with three
elements; June, July, and August. This will be expressed either as

aux AvgSummerTemp(m=June..August) = AvgTemp(m)
or as
aux AvgSummerTemp(m=RSummer) = AvgTemp(m)

Observe the introduction of the index variable m, which is defined in the Dimensions section of
the Define Variable dialog box (Figure 2), and used in the subscript of the expression defining the
variable. In the examples above, the use of an index variable is required, as AvgSummerTemp and
AvgTemp have different dimensions (see below).

AvgTemp:
[1aJ12]31]59]104]128]151]149]121] 83 [55] 32 |
Janu- Febru-March April May June July Augus Sept- Oct- Nov- Dec-

ary ary t ember ober ember ember

AvgSummerTemp:

L []

June July Augus

t

Using the index variable m, we specify which elements of AvgTemp are going to be used when
defining AvgSummerTemp. Index names (like Month in the definition above) are local to each
variable definition, and hence, the same name may be used in different variable definitions.

Implicit subscripts and indices

When dimensions match, index variables may be omitted, provided that indices of the elements all
correspond on a one-to-one basis. Above, we’ve defined AvgTemp like this:

const - AvgTemp(RMonth) =14, 1.2,3.1,5.9, 104, 12.8, 15.1, 14.9, 12.1, 8.3, 5.5, 3.2]

The full form of the above definition is:

const AvgTemp(Month=RMonth) = [1.4,1.2,3.1,5.9, 104, 12.8, 15.1, 14.9, 12.1, 8.3, 5.5,
3.2](Month)

Using arrays as parameters to dynamic objects

Array elements may be used in dynamic objects (e.g., time graph, time table, bar), as displayed in
Figure 5. Here, a POWERSIM Bar object is used to display the values of the AvgTemp array elements.
The labels listed to the left in the figure may be changed by the modeler. The slider bars® to the right
in the figure show the current values of the array elements, and may also be used to change the values
using the mouse.

SOplional scales may be added to the sliders.

Svstem Dynamics : Methodological and Technical Issues, page 178

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

Figure 5: Accessmg array elements from dynamnc objects

Automatic display of variable values

During simulation, the value of a variable may be displayed in the statusbar by pressing the right
mouse button while pointing at the variable. For array variables, the values of array elements will be
displayed, separated by comma and enclosed in square brackets (as for array literals). An auto report
of an array variable will display the first element of the variable.

Erroneous flows and edited flows

As with scalar variables, a variable definition may become invalid for various reasons (e.g., the
use of unknown variables or wrong use of functions). POWERSIM will then display a question mark
inside the variable symbol (see Figure 6-a). With the introduction of arrays, flows may also become
invalid. E.g., if a flow and the connected level have different dimensions, the system may be unable
to determine how the elements of the flow are going to be paired to the elements of the associated
level. It is easy to come up with useful examples where the dimensions of connected flows and levels
vary. Therefore, POWERSIM allows the modeler to edit the flow definition of levels. This is done by
selecting the Flow radio button in the Define Variable dialog box, and editing the contents of the
Definition text box. Hollow flow arrows are, by definition, used to represent conserved flows.
- POWERSIM will put a warning exclamation mark (!) on a flow if it has been changed from its default
definition (see Figure 6-b). If there is an error in a flow definition, POWERSIM will display a question
mark on the flow arrow (see Figure 6-c).

a) Error in definition b) Edited flow ¢) Error in flow
@ i) P
Vaniable evelA : eveiB
FlowA FlowB

Figure 6: Errors and warnings in the diagram

The problem of validating array subscripts

It has been a major design goal for the array aspect of the POWERSIM language to provide full
range check on array subscripts at the time of model construction (vs. run-time). This has two major
advantages:

System Dynamics : Methodological and Technical Issues, page 179

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

1. The model will run more efficiently (no time is used by the processor for range checking)
2. Simulation will never enter a state where array subscripts get out of bound.

As an illustration, let us assume that we have two vectors, A and B, with equal dimensions, and
that each element of B is to be set equal to the element subsequent to the corresponding element of A,
i.e., B(i) = A(i+1). This will be OK, except for the last index i, were the subscript (i+/) will be out of
bounds.

We may attempt to solve the problem by means of an IF function, i.e., B(i) = IF(i < LAST{(i),
A(i+1), 0). This equation will access A(i+1) only for i’s in the range FIRST(i) to LAST{(i)-1. The only
problem is that this solution, in general, will require run-time checking of array subscripts, as any
expression may be used as the controlling condition of an IF function.

Constraints and guards

Therefore, in designing the POWERSIM language I chose to construct a separate conditional
statement for constraining expressions based upon the values of index variables. A constrained
expression is an expression followed by a constraint. A constraint is basically an index expression

determining when the preceding expression should be evaluated. Below is an example where the
" problem presented above is solved using constrained expressions’:

B(i) = A(i+1) WHEN i < LAST(i)'° BUT 0 WHEN DEFAULT
Here, two constrained expressions. separated by BUT are used to define B. The expressions are:

A(i+1) WHEN i < LAST(i)
and
0 WHEN DEFAULT

A boolean expression following WHEN 1is called a guard. DEFAULT is a guard that may be used
in the last constrained expression to cover all cases that are not included in earlier guards in the
. constrained expression list.

The key to understanding the impact of constrained expressions on compile-time validation of
array subscripts lies in the fact that only index variables, range elements, ranges and integer numbers
are allowed as operands when expressing guards. array dimensions, and array subscripts. (Note that
model variables are excluded from this list) This implies that POWERSIM is able to determine and
verify the values of all array subscripts without having to simulate the model.

Examples of when to use arrays

Replicated structures

Models often contain many dentical or almost identical structures — especially large-scale models
of realistic systems. If we, as an example, want to make a business simulator involving work force,
capital, production, markets, etc.. 1t 1y casy toadentify several duplicate structures, e.g.:

Different kinds of capital, ¢.g. buildings and machines

Different market segments

Different kinds of workers

Different product lines

Different accounts payable. e.g.. marketing expenses, goods, taxes, wages, dividends, debt

RAREaI ol

°An alternative way to wnite By = Atu+1) WHEN 1 < LASTin BUT 0 WHEN DEFAULT is the following: B(i) = A(i+1) | i < LAST(i) ; 0|
DEFAULT

The built-in function LAST computes the upper it of a range or index variable. POWERSIM also has a FIRST function for returning the
lower limit of a range or index vanable The COUNT tuncnon may be used 1o compute the number of elements in a range or separate
values taken on by an index vanable

Svstem Dynamics : Methodological and Technical Issues. page 180

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

Say, we want to make a model of four competing companies. This would involve four similar
structures — the main differences being values of parameters (constants) and accumulators (levels).
Once a model of one company is developed, models of more companies can be added just by adding a
company dimension to every variable of the model.

There are two important advantages of expressing similar structures in the form of arrays:

1. Maintainability — Changes to an array structures immediately takes effect for all elements of the
array.
2. Complexity — Models sometimes become significantly smaller when using arrays (see Figure 7).

a) Separate structures for each type of b) Structure with variables of capital type
capital dimension

z 5 Capita

CapitalAcquisitoin CapitalDiscards

MachinesAcquisitoin ~ MachinesDiscards

MachinesUsefull.ife CapitalUsefulLife

BuildingssAcquisitoin BuildingsDiscards

BuildingsUsefulLife

Figure 7: Combining similar scalar structures into one array structure

State transitions

When modeling systems involving state transitions, it is common to express this as a sequence of
accumulators with interconnected flows. Some examples are:

Training of people, moving people from a less skilled to a more skilled state
Aging of people, moving people from one age group to the next

Production, moving goods from less finished to more finished states
Transport, moving goods from one place to another

Capital upgrade or maintenance, moving capital from one state to another

noh W=

Figure 8-a displays a typical model of a production process using scalar variables. In Figure 8-b
the same model is presented using vectors. The Production variable has one element less than Goods
(observe the exclamation marks on the flows). Note that the structure of the array version will be
unchanged, even if the number of production phases should be changed.

a) State transitions using scalar variables b) State transitions using
i vectors
hvd :’_—“: <z D _ld |.|__
Raw%‘n\:?@ Pam@ FinishedGoods Goods
ProductionPhase * ProductionPnase2 bé
Production

Figure 8: State transitions using scalars and vectors

If separate inflows and outflows are added, the structure in Figure 8-b may also be used to model a
N-th order material delay. The DELAYMTR function is normally used to express material delays.

System Dynamics : Methodological and Technical Issues, page 181

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

But if the contents of the levels implicitly defined by the DELAYMTR function need to be accessed,
an explicit structure like the one in Figure 9 can be applied.

a) Diagram of material delay b) Associated equations
structure
InTransit level InTransit(p=RPhases) =0
= i1 SZ
O ' — D +dt*(Input Ip = FIRST(p);0)

+dt*(Progress(p-1)lp > FIRST(p);0)

-dt*(Progress(p) lp < LAST(p) ;0)

-dt*(Output Ip = LAST(p) ;0)

Progress DelayTime aux Input = PULSE(S, 5, 0)

aux Output =
Progress(LAST(RPhases))

aux Progress(RPhases) = InTransit/
(Delay Time/COUNT(RPhases))

const DelayTime = 10

Figure 9: Material delay structure using vectors

State information

If a system goes through discrete states, this may sometimes be modeled using a vector with the
same number of elements as there are system states. Each time the system state changes, the elements
of the state vector are shifted cyclically, using the SHIFTCIF function.

As an example, think of a process that may be in one of three distinct states; StateA, StateB, and
StateC. Also assume that a variable NewState will be set to true whenever the system should be
switched to the next state. Furthermore, assume that state transitions are cyclic, i.e., that StateA
follows StareC.

a) Diagram of state b) Associated equations
transition

range RState = StateA, StateB, StateC

aux ChangeState = SHIFTCIF(NewState, State)
NewState | const State(RState) = {1,0,0]

aux NewState = ... “Some boolean expression”
Figure 10: Discrete system states

Ch: Stat
State angestate

Observe how the system states are defined as elements of an enumeration range. Initially, the first
state of the Stare vector is true (1), and the others false (0). Whenever NewState is true, the r.h.s. of
the ChangeState definition will shift the elements of Szaze one position to the right, changing the state
from [1, 0, 0] to [0, 1, O] the first time, and to {0, 0, 1] the second time, and to [1, 0, 0] the third time,
etc.

Testing for a given state may be done using the following expressions:

Stare(StateA) — will be true whenever the system is in the first state
State(StateB).— will be true whenever the system is in the second state
State(StateC) — will be true whenever the system is in the third state

Object attributes

A modeler is sometimes interested in keeping track, not only of the number of objects, but also
their attributes or properties. As an example, we may be working on a production model, where
products have attributes like lifetime, functionality, price, etc.

In Figure 11 the scalar and array version of the attribute part of a model is presented. In Figure 11-
b a range RAttribute is defined like this:

System Dynamics : Methodological and Technical Issues, page 182

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

range RAttribute = EPrice, EFunctionality, ELifetime, Elnventory

The price of our product will be available as Product(EPrice). The other attributes are accessed
correspondingly.

The significance of this solution is that all attributes are moved along as a co-flow when the object
(here product) flows through the system or is accessed via links. The addition of more attributes can
be done without changing the structure of the model.

a) Separate variables for each b) Attributes aggregated in
attribute variable dimension

_ Freg Product
ChinPrice ChinProduct

é Functionality

ChinFunctionality

é Lifetime

ChinLifetime

Inventory
Chintnventory

Figure 11: Separate and aggregate attributes

History of values

As a final example of how arrays can be useful to the modeler, let us look at the problem of
keeping track of previous variable values''. Let us assume that we construct an economic model, and
that we want to keep track of the income during the recent 12 months.

Structure for remembering values Associated equations
| Sevelngome level MonthlyIncome(i=1..12) =0

Qﬁ-!M L +dt*(Income WHEN i=1 BUT 0)
onthlylincome NewMonth aux Income = ... “Income rate”

neeme aux NewMonth = TIMECYCLE(1, 1)

aux Savelncome =
SHIFTLIF(NewMonth,
MonthlyIncome)

Figure 12: Model for remembering values

This model accumulates Income in the first element of the MonthlyIncome vector, which has 12
elements. Every month, the elements of MonthlyIncome are shifted one position, and the first element
is cleared (all this is done by the SHIFTLIF function).

Main differences between arrays in DYNAMO and POWERSIM

In DYNAMO, index variables and ranges are combined into FOR variables. Each dimension of a
variable must be defined in a separate statement. POWERSIM’s introduction of guards and constrained
expressions makes it always possible to define a multi-dimensional variable in a single statement.
This is important when working in a graphical environment, and also removes redundancy from the
language (Powersim, p. 67). DYNAMO does not have array literals, and multi-dimensional array
constants must be defined one dimension at the time. DYNAMO does not have functions returning
arrays.

"Note also that the SAMPLEIF function may be used for remembering a value for later use. Related functions are HIVAL and LOVAL,
which remember the highest and lowest value of a variable, respectively, up to the current time of the simulation.

System Dynamics : Methodological and Technical Issues, page 183

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

Adding arrays to scalar models

The normal way of constructing an array model, is by first making and testing a scalar version of
the model. Then a set of ranges are defined, and selected variables are given dimensions based on the
defined ranges. POWERSIM has been designed to make the transition from scalar models to array
structures as smooth and easy as possible. Most scalar equations will be accepted without change also
after changing a variable to an array. This is achieved through generation of default flow definitions
and implicit definition of array subscripts.

Experiences from applications

The array features of POWERSIM have been used with success in several large-scale projects
(Powersim 1993). Without the array capability, many modeling problems are not practically solvable.
Even models that are solvable using only scalars, sometimes become much easier to develop, explain
and maintain using arrays. In conclusion, the family of simulation problems that are best solved using
a system dynamics tool has been extended a great deal through POWERSIM's array mechanism.

References and readings

ModellData 1993. Powersim. ISBN 82-91403-00-7
Powersim November 1993. The Powersim Newsletter
Pugh-Roberts Associates, Inc. Professional DYNAMO Plus

System Dynamics : Methodological and Technical Issues, page 184

