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ABSTRACT

The purpose of this paper is fourfold: 1) to survey the literature on evolutionary €conomics in general; 2) to
survey the-literature on evolutionary eéconomic modeling in: particular; 3) to outline the contribution that system
dynamics can make to evolutionary economic modeling; and 4) to present two original, evolutionary, system
dynamics models.

The paper begins by noting that the evolutionary perspective hds a long and distingmshed history in the field of
economics: Well-known economists such Karl Marx, Richard Eli (founder of the American Economic Association),
Thorstein' Veblen; Joséph Schumipeter, Gunnar Myrdal: (“circular and cumulative causation™), Kenneth Boulding
(general systems theory); and Nicholas Kaldor (“increasing returns”), for example, have utilized the evolutionary
perspective. Despite this rich history, however, the paper notes that the evolutionary perspective does not dominate
economic theory. Two explanations for this are offered: 1) it is not in harmony wrth neoclassical theory, and 2) it
has historically been seen as not amenable to formal modelmg

The paper then presents asurvey of the literature on evolutionary .economics.. The survey mdrcates that the
writing on evolutionary economics usually involves one or more of the following ideas: 1) structural change versus
change within a given structure; 2) time ureversrbrlrty, 3) the second law of thermodynamrcs 4) hysteresis; 5) co-
evolutlonary processes; and 6) the behavror of therrnodynam1cally open nonlmear systems ina far-from equilibrrum
state.

The paper next proceeds to survey the literature on evolutionary economic modeling. This survey indicates that
economic models classified as evolutionary usually exhibit one or more of the following characteristics: 1) path
dependency; 2) multiple equilibria; 3) the ability to self-organize; 4) the ability to behave chaotically.

Next, the paper provides an overview of the field of system dynamics and notes that, among other things, it can
bring an evolutionary economic modeling process to the field of evolutionary economics. Further, it can be used to
create individual models that can be classified as evolutionary, given the criteria mentioned above. Care is also: taken

_to discuss the fundamentals of system dynamics modeling, including the systematic and formal treatment of
dynamics and feedback and the creation of models that ponray realistic decision making structures

The paper concludes with a detailed presentation of two evoluuonary system dynamics duopoly models that
generate path dependency, multiple equilibria, and the ability to self-organize.

ADDITIONAL COMMENTS

This paper is forthcoming in a book titled: Evolutionary Con?épts in Contemporary Economics. Ann Arbor,
MI: University of Michigan Press. Richard W. England, ed. The authors-found it impossible to condense the paper
for these proceedings. Anyone interested in obtaining a copy should contact Professor Sterman at the above address.

~
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Time is a device 1o prevent everything from happening.at once. !

Introduction

- . The evolutionary perspective has a long and distinguished history .in the field of economics..Indeed, it
was adopted by economists such as Karl Marx (1867) and Thorstein:Veblen (1898) ‘as early as the
nineteenth century, and Joseph Schumpeter {1934,-1939), Gunnar Myrdal:(1944), and Kenneth
Boulding (1981, 1991) during the twentieth. Unfortunately, aithough-provocative and insightful, the
writings of the early evolutionary economists were unable to catapult the evelutionary perspective to the
forefront of the economics profession. Two common explanations for this'failure are that: (1) the
evolutionary approach is.at odds with. the corpus of nonevolutionary theory which dominates economic
thinking, and (2) evolut:onary economics has tradmonany been seen as not amenable to mathematlcal
formalization. :

With regard to its mcompatlblmy with mainstream economlc theory there isa great deal of ewdence
{e.g., Mirowski-1988; England 1993) indicating that the economics :profession:-grew up:trying to imitate
classical-mechanics. As a result, the body of theory that-emerged and still-largely:dominates economic
analysis (i.e., neoclassical economics) is.based upon the notion.of conserved or Hamiltonian systems and
hence on a Newtonlan or-time:reversible view of the .world (Hamilton 1953). Theories that are out of
harmony with this view are, at best, treated with suspicion and, at worst, rejected or relegated to less-
visible scholarly outlets by the invisible college of economists.

" _Interms of the historical lack-of mathematical formalization in evolutlonary economics it is clear that
most of the classic. evolutionary theories were created by economists who either wrote at a time when
formal modeling was not practiced, lacked the necessary training in -mathematics, or felt-that the
mathematical tools of the day were insufficient for representing evolutionary, change.:Richard Goodwin
{1991: 30), for example, remembers. Schumpeter's “sadly deficient mathematical capability” and both
Myrdal (1944: 1069) and Boulding. (1962) expressed their pessimism regardmg the possnblhty of
mathematically representing evelutionary change.

Of the two explanatlons for the failure of the evolutlonary perspective to become the normal science
of the economics_profession. the. first -- its incompatibility with neoclassical theoryv-- is .of ‘primary
importance. The second -- its presumed. inability to.be mathematically formalized --.is really something of an
historical stereotype .and clearly.not correct. Nonlinear dynamic computer. simulation modeling has made
the building of mathematical evolutionary economic models possible since the 1950s. -

The purpose of this paper is to discuss the types of structure and behavior associated with

1 Joan Robinson (1962: Epigraph) attributes this quote to Henri Bergson (1911/1944).

2 More precisely, Boulding has argued that dynamic economic models created with ordinary
-differential equations are deterministic and hence nonevolutionary, while Myrdal expressed doubt that the
process of “circular and cumulative causation” -- his engine of evolutionary economic and social change --
could be represented mathemancally Similar positions have been taken by K. William Kapp (1968 13)
and Allan Gruchy (1972: 305). As is shown:below, however, Bouldmg is incorrect;.unless he takes a very
narrow view of differential- equations. Recent developments in nonlinear dynamccs moreover, happily
reveal that Myrdal was unduly pessimistic.
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mathematical models that are typically ‘categorized as evolutionary, and show that a particular type of
computer simulation modeling -- system dynamics -- can.be used to create models that possess these
characteristics. To suppont this claim, a number of evolutionary system dynamics models will be discussed
and an original evolutionary system dynamics mode!-will'be presented. Software and other resources
available for the creation and analysis of evolutionary system dynamics models will also be discussed.

But What Exactly i Evolutionary 'Eco‘nomiés?f i

In order to review the fundamentals of evolutionary’ economic modeling, the characteristics of
evolutionary economic change must, arguably, first be identified and understood. Aithough a survey of
the literature would seem to indicate that no single, comprehensive definition of the phenomenon exists,
it is possible to identify a number of recurring themes: =+ .¢ 7 . ‘

According to David Hamilton (1953), evolutionary or “Darwinian” change is caused by changes in

system structure, while nonevolutionary or “Newtonian” change represents change within a given
structure. He used this distinction, as did Veblen (1898); ‘to- show:the nonevolutionary nature of
neoclassical microeconomic theory. On the macroeconomic side, the distinction between structural and
nonstructural change has been used by Johansson et al. (1987: 4) and Boulding (1981) to draw a
distinction between economic growth and economic development. In their view, the former implies “more
of the same” while the latter implies structural change.
.. Louis Perelman’s (1980) view of -evolutionary ‘change ‘emphasizes the idea of time irreversibility -- i.e.,
the notion that it is impossible to reverse time and-make events undo themselves. England (1993) points
out-that most modern growth theoretic models’ violate'this canon because their time paths can’be
reversed by-switching the-signs of their parameters. .+ i i s : wLon

The concepts of timeirréversibility: and structural change are closely related to the second law of
thermodynamics which shows that dissipative dynamical systems generate increased entropy or disorder
-over time, preventing them from returning to-their previots states. 'Nicholas Georgescu-Roegen (1971,
-1980) and-Boulding (1981, 1991) have applied the second law to thé analysis of economic systems.3
Time irreversibility, structural change, and the second law of thermodynamics are themselves closely
related to.the idea of hysteresis, or the inability of a system that has been changed by an external force 1o
return to: its-original state after the external-force:is removed. Olivier Blanchard and Lawrence Summers
|(1986) have used this:concept to’explain European unemployment, Dixit (1992) has used it to explain the
failure:of:firms:to-withdraw from investment projects after the conditions that initially made them dppear
profitable disappear, and Evans and Ramey-(1992) have used it to‘¢réate a Phillips curve that embodies
rational expectations with explicit calculation costs. T L S

The view that economic systems evolve toward increased levels’ of disorder and entropy has
‘sometimes been referred to as'the “engineering view” of evolution. Of note is that this view conflicts with
the view of evolution originating:in-biology, which posits that systems ‘evolve toward greater levels of order
-and-complexity. “Co-evolutionary economists” such as Richard Chase (1985) and James Swarniéy (1985)
have developed theories that enable this conflict to be reconciled. In these theories, dissipative economic
‘systems generate increased tevels of entropy: and disorder that motivate humans to develop increasingly
complex entropy-skirting technical innovations and social institutions.5 T B

llya Prigogine’s original work on far-from-equilibrium thermodynamic systems is similar to the theories
of the co-evolutionary economists.® Prigogine and theorists in physics, chemistry, and biology have
shown how-thermodynamically open, dissipative, entropy generating’systems, ‘operating in a far-from-
equilibrium state, can reorganize themselves into more complex temporal and/or spatial structures when

they are pushed against their nonlinear constraints. This view is thus' also able to reconcile the

engineering and biological views of evolution. -

* " 3 See the discussion in Radzicki (1988a). ~ :
An overview of hysteresis effects in economics is contained in Cross-and Allan (1988).
5 For afurther discussion of these ideas see Radzicki(1990b). :

8 See Nicolis-and Prigogine (1977), Jantsch (1980), Prigogine and Stengers (1984), Laszlo (1987),
Allen and McGlade (1987), and Allen (1988). : Sl '
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But. What Exactly Is Evolutionary Econom:c MQqLe_u_q?

‘An- exammatnon of the types of mathematlcal models that are commonly-classified as “evoiutlonary"
indicates that they are constructed in both discrete and continuous time, utilize a ‘variety of mathematical
techniques, exhibit different types of dynamical behaviors and; in some cases; can be solved without the
aid of a-.computer: This lack of uniformity, however, does not preclude the identification of some common
characteristics. ‘In- addition to being dynamic and able to exhibit some form:of disequilibrium behavior,
evolutionary economic models tend to possess one or more of the following traits: 1) path dependency;
2) the ability to self-organize; 3) multiple equilibria; or 4) chaotic behavior.

Path-dependency.is a characteristic of models that can get locked into the pamcular dynamical-path
they initially “choose” (usually by chance). Paul David (1985) and Brian Arthur (1988, 1989, .1990) have
described numerous real-life instances of this behavior involving the adophon of new technologies and
the location decisions of firms, while Arthur (1989, 1990), Arthur et al. (1987), and Krugman (1991) have
developed formal models of the phenomenon. Economic models exhibiting’ hysteresis (e.g., Blanchard
and Summers 1986, Dixit 1992, Evans and Ramey 1992) can also be consudered path dependem as can
system dynamics models possessing “floating goal” structures. :

Floating goal structures are aspiration levels used by agents in decision making, which themselves
adapt to past experience and hence cause present goals and-activities to be influgnced by past results
(see Forrester 1968, Meadows 1982).In a floating goal structure system, the direction taken in‘the future
depends upon the cumulative impact of the potholes, actions, and obstacles it meets along the way, and
not solely on its current physical state. Thus, random events become critical determinants of the system’s
path and even its qualitative character; as when the chance formation-of a few businesses in a region
causes the growth of a cluster of related industries through the cumulative advantage of co- -location and
access to developing knowledge infrastructure, and other resources (e g. the SI|ICOI’I Valley, the New
York Diamond District).

‘Self-organization is-exhibited by models that undergo abrupt changes in thelr temporal or spatlal
structures through changes ‘in their ‘parameters or via the’ amplification of random, - microscopic,
fluctuations. Self-organizations of the former type-include ‘models that can exhibit bifurcations and
catastrophes, such as those developed by May (1976), Varian (1979), Stutzer (1980), Mosekilde et'al.
(1988), Andersen‘and .Sturis (1988), Sterman(1988b), Sterran (1989b), and Lorenz (1989). Richard Day
(1983) has described bifurcations and catastrophes as being akin to a marching band suddenly breakmg
formatlon scrambling around, and regrouping in another formation.”
= “Examples of self-orgamzatlons that-occur due'to the amplification-of microscopic ﬂuc!uahons can be
found in the behavior-of many. nonlinear dynamic models residing within; ‘and outside of; the fields ‘of
economics and system dynamics. Of particular note-is'the work of Forrester (1961: Appendlx N), Nicolis
and Prigogine (1977), Jantsch (1980), Mofitano and Ebeling (1980),-Mosekilde et al. (1983), Prigogine
and Stengers (1984), Mosekilde and ‘Rasmussen (1986}, Laszlo (1987), Arthur et al: (1987); Allen and
McGlade (1987), Allen {1988),:Dosi (1988), Silverberg (1988), Silverberg-et al. (1988), Arthur {1989),
Radzicki (1990b);: Moxnes (1992),. and Wittenberg and- Sterman (1992)." In these models, -random
fluctuations, often representing the idiosyncratic actions of individual economic agents, become: amplmed
by positive feedback processes and grow:to dominate the macroscopic behavior of the systems

-Yet another way to identify models that are typically classified as evolutionary is via the presence of
multiple equilibria. The particular-equilibrium “chosen”by these models usually reflects the effects of
-random-shocks that direct it down a:particular. path. Models with multiple equilibria can -also be path
dependent and exhibit time mevers:bxhty and the ability to self-organize. Peter Diamond (1987) has shown
that multiple equilibria can-arise in.economic models that exphcntly represent market imperfections.

Deterministic chaos.is an irregular oscillatory behavior that arises in nonstochastic, nonlinear, feedback
systems. Although it is generated by models that are completely devoid of exogenous randomness, its
period and amplitude never repeat and it functions much like the idealized random variates of probability
theory, generating variety and causing deviations from “average” behavior. A small sample- of- economic
models that can exhibit chaos includes-those created by Stutzer (1980), Day and Shafer (1986), and
Goodwin (1991).7 A small sample of system dynamics models that can generate chaos includes those
developed by Andersen and Sturis (1988), Sterman (1988b), Sterman (1989b) and Mosekilde et al.
(1992). An excellem overview of the issues associated wnth chaotnc dynamics is presented by Mosekilde
et al. (1988).

7 See also the collection of economic models contained in Lorenz (1989).
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 The tie between evolutionary behavior-and models that can:produce chaos involves the: notion-of,ani
attractor. An attractor is the set of points that defines the steady state behavior or “temporal structure” of a
dynamical system. A fixed point (defining .an equilibrium steady. state) is the only type of attractor possible
in.linear. systems, while fixed points, saddle loops, limit cycles, tori, higher dimensional orbits of some
complexity,-and chaotic attractors are possible in nonlinear systems. .Of note is that many nonlinear
systems exhibit bifurcations by which-they-switch their trajectories from one atiractor to another via a smalil
change in-one of their-parameters.-Such sw:tches are examples:of system self organrzatlons and hence of
‘model-based evolutionary change.-
"~ Animportant characteristic of a model whose motion is defrned by a chaottc attractor is that rts behavror

is-sensitive to its initial conditions. This' means that a minute change €, inits'vector: of state variables will

cause it to travel down a time path that is significantly different (i.¢., much greater than €) from its previous
trajectory. In fact, the chaotic attractor will stretch and fold the motion of the system so severely.that it will
cause an e_p_o_r_t_emr_al dtvergence of the two time paths. As.a result, models that produce c¢haos can. also
be said to produce path dependent behavior.

" One last point concerning dynamical models whose steady state behavrors are defmed by attractors
and.whose time paths have transient components, is that.it-is not. possible to-reverse the signs of their
parameters and.“backward predict” their trajectories, unless their initial values are known with exact
certarnty (Lorenz 1989 81 63) in thls sense then they are.lime trreversrble and hence evolutionary.

Charactenstrcs of System Dynamrcs Models

System dynamics was orrglnally created in 19505 to address problems encountered by managers in
corporate systems (Forrester-1961). Its.use was extended during the 1960s, 70s, and 80s to include
economic, social, biological, ‘and physical systems (Forrester 1969, 1972; Roberts:1978; Sturis et al.
-1991). Today system dynamics is applied to diverse problems. in.the behavioral, economic, and natural
sciences. It is used as a modeling methodology in academic research (e.g. Sterman 1989a, 1989¢), as a
-method to stimulate learning among corporate executives (e.g. Senge 1990, Morecroft and Sterman
1992) and as a tool for teaching at the pre-college-level (e: g Hopking 1992; Gould 1993)..:

- The .intellectual. roots-.of system .dynamics ‘ie :in..control engineering and. the theory of
servomechanisms developed.in the earlypart of the twentieth- -century. Richardson (1991)-has-traced the
“history of system dynamics and the concept of feedback in the social sciences from the use of feedback in
ancient. mechanical devices, through the theory.of feedback control: systems in steam engtne governors
-and-servomechanisms, to its-diffusion into the social and behavioral sciences beginning in the: 1940s.
.Over the years, system dynamicists have developed a distinct set of guidelines for-helping-them build
dynamlc models.8 Among; the: mostimportant are that: 1):the dynamic behavior of any system emerges
{rom. its struciure; 2) the: modeling, and subsequent understanding, of any system requtres the
Identification-and representation of that structure; 3).decision making.in human systems is boundedly
rational; and 4) discovery of the decision rules people actually use requrres emplncal work, rncludtng field
observatlon of decision making behavior.

System dynamics models, from a mathematical pornt of vrew consist of systems of ordrnary nonlrnear
differential equations. Typrcally, system dynamics models-are formulated in continuous time:and assume
continuous variabies, though the use of simulation to solve the models means continuity is not essential
to the-method. Indeed, where necessary for-fidelity to-the problem being modeled, a good system
dynamics: model wili contain discrete elements such.as queues, quantized flows (e.g. tnteger flows of
people) probabilistic decision rules;:and other departures from-deterministic lumped models.2

- System dynamics:models can be characterized as structural, disequilibrium, behavioral models. They
dtffer therefore, - from the familiar. econometric models general equilibrium models, and rational
expectattons models in a variety of ways:

Magrobehavior from Microstructure: The concept of feedback is central to system dynamics.
Feedback exists whenever decnsrons made by agents:in a system alter the state of the system thus glvmg

.8 Day (1987) has developed a similar set of gurdeltnes tor economic modeling. See also Radzicki
(1988b 1990a).

9 Software tools such as STELLA (Richmond and Peterson 1992) support both continuous and
discrete elements, so'it is a simple matter to simulate any system of mixed continuous- -discrete elements,
systems of difference equations, delay-differential modeis, markov models, and so on.
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. _rise to new information that conditions future decisions. The dynamics of a system emerge out-of the
. interaction of the muttiple feedback loops in its structure. Feedback loops may be self-reinforcing (positive
- feedback) or-self-correcting {negative feedback). Positive loops.are:self-reinforcing processes such as the

compounding of interest or the growth of a population. Negative loops:define goal-seeking-processes
such as-the regulation of inventory by adjustments of production, the equilibration of demand and:supply
via:changes in price, .or-the adjustment of a firm's capttat stock to appropriate levels via changes-in
;nvestment A system dynamncs modelis-an explrcrt rnapprng of a system’s posmve and negative feedback
oops

System dynamrcs models seek to portray the microstructure of a system at an operational level: The
feedback loop structure of any dynamic system consists of the physical structure of the system, ‘the flows:

" of information characterizing.the state-of the system, and the-decision rules.of the agents in the system,

including the behavioral decision:rules people use to manage their affairs. f

The physical structure of any system is represented by networks of stocks:and. flows. Stocks
characterize the 'states of a system while flows represent the rates of change of the stocks. A-model of a
firm, industry, or national economy, for.-example, would explicitly portray the stocks and flows of people,
resources, money, goods; capital, information, and so on. The stock-flow representation is a very general
idea that can be applied to the dynamics of any-system. Sturis et al. (1991), for example, have created a
system dynamics model-of ‘human glucose-insulin interaction that includes stocks of glucose, insulin,
glucagon, and flows representing the synthesis, transport, and.metabolism of these compounds. ‘A
system’s stocks accumulate or-integrate its rates of flow and determine its state at:any point in time. As-a
result, each stock represents the accumulated history of rts flows and serves-as a source of system inertia
and as part of its memory:

A second charactenstlc of stocks is that they decouple a system’s mﬂows from its outflows. -In
equilibrium, the net inflows to all stocks-are zero, and the stocks are thus unchanging. For example, in
equilibrium orders for-products must-equal shipments which must equal production (ignoring canceliations
and scrappage). Since the stocks in traditional equilibrium models are unchanging they are often omitted.
To capture disequilibria in a system, however, stocks: must be explicitly represented since they
accumulate the imbalances between:inflows and outflows. in reality, orders for products need not, and
usually do not, equal shipments; the difference between these flows accumulates in order backlogs.
Likewise, "differences. between ‘production ‘and shipments accumulate in inventories. Explicit
representation of stocks.also enables their inflows and outflows to respond to the decisions of the distinct
economic:agents who, in the real system, control these separate flows (e.g., buyers.and sellers'may place
orders and:produce goods at dtfferent rates accordmg to.the: separate decision rules and constramts they
eachface).

As a system’s stocks rise and falt agents take various actions to alter the rates of flow, thus closrng the
feedback foops that may bring the system’into: equilibrium:or reinforce current frends. For example,
excessive inventories ‘may .cause a firm to lay off some workers to.reduce production.or cut price.to
stimulate orders, thus reducmg inventories to desired levels. Whether such corrective actionsin fact bring
the system into-equilibrium:is determined by the interaction of all the feedback processes in-the system,
as are the characteristics of the adjustment path itself. However, often the interaction of multtple feedback
processes in complex nonlinear systems cause disequilibria to persist. For ‘example, in the case of a
speculative bubble, it has been repeatedly .demonstrated empmcally (e.g. Andreassen 1990, Sterman
1987) that:people’tend to form expectations of future asset. prices (e.g., real estate prices; the price- of
gold, the price of tulips) by extrapolating recent price trends. An exogenous price rise may thus-cause
new buyers to: enter the market and reduce offerings by current holders, so that the price in fact rises in a
self-fulfilling prophecy; as described by John Stuart Mill (1848, Volume 11:.45ff), Robert K. Merton (1936)
and Charles Kindleberger (1978). 10 Here the- intendedly rational -decisions: of mdtvnduals create and
reinforce disequilibrium.

Another important.component of any system’s structure is its nonlinear relationships.- Every srgnmcant
economic process and institution involves$ nonlinearities (Forrester 1987), though much of the history of
economic theory in general, and business cycle theory in particular, has been an attempt to work around
nonlinearity for reasons of analytic tractability (Richardson 1991, Zarnowitz 1985: 540). Nonlinearities are
responsible for a‘systém’s robustness or ability to stay within certain boundaries. For example, output
suffers dlmtnlshmg returns as individual factors of production: are increased relative to others, gross
investment remains nonnegative no matter how much a firm’s capacity exceeds its orders, shipments are

.-10 gee the discussion in Richardson (1991: 77if).
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determined primarily by orders when. warehouses are full- but must drop to zero'as ‘inventories are
depleted, the cash position of a firm-has:little influence on its capital investment or employmient decisions
unless a severe liquidity crisis appears:and dominates all other considerations, nominal interest rates do
not-become negative no matter how rapid deflation may be, and soon. - - R I :
<.-In"addition, and-perhaps most importantly, nonlinearities -contribute  significantly to a system's
evolutionary behavior because they. cause the strength of its feedback loops, ‘and: hence -its “active
structure,” to change over time: (Richardson 1991). Returning to the: example. of.the: speculative bubble, it
is clear that the positive feedbacks of extrapolative expectations are opposed by the negative feedbacks
created by substitution:to:other products, ‘increases. in production of the commodity, declining.real
incomes as:prices rise, and arbitrage opportunities. However, if the lure of speculative -profit is strong
enough;, the positive feedback loops created: by extrapolative expectations can overwhelm the negative
feedbacks that might restore equilibrium - at lease for a time. ‘As prices are bid higher and higher relative to
fundamental value; however, the credibility-of projections of further increases falls, weakening the positive
loops:-At the. same time, the negative loops gain in strength. That is, the relative strength of the:different
loops-is-nonlinearly dependent. on-the balance between current prices and. fundamental value.
Eventually; the negative loops become dominant and price increases slow. As soon as this occurs; of
course; some seek to liquidate their holdings, and prices begin to fall. Nowthe same positive feedback
loops dominate again-as falling :prices lead to. panic selling. Eventually, the:negative feedback loops
reassert themselves once prices are low.relative to fundamental value, halting price declines: Of note.in
this account.is the shifting dominance of the positive and negative feedbacks due to nonlinearities. The
nonlinearities cause:the active feedback loops, and hence the:dynamic behavior of the system, to change
endogenously through time, and ensure the global robustness of the system.:No: linear: model: can

capture such shifts. -~ .- She oo R : ’
Together, these elements -of structure (stocks :and flows, information feedbacks,.decision rules, and
nonlinearities) define the feedback loeps-in any system. By modeling: decision-making behavior and the
physical structure of the system at the micro-level; the macro-level dynamics emerge naturally-out of the
interactions of the system. components. Because_such models provide a behavioral description firmly
rooted -in-managerial practice they are well suited to an-examination of the dynamic. effects -of policy

initiatives. . SRR R S L A TUMIEE S s
- Risequilibrium Dynamics: System dynamics-models are disequilibrium:models. It is not assumed that
economic systems are :always (or ever) in equilibrium; nor-that:they- move smoothly from bne equilibrium to
the ‘next: To model dynamics, including evolution; properly, the: stability. of the system must not be
assumed. Rather, the decision processes of the agents in‘the: system-must be- modeled, including: the
way people perceive and react to imbalances, as well as the delays, constraints, inadequate information,
and side-effects that often confound them. Stability, adjustment paths, the response to shocks, and the
nature of equilibria are viewed as behavioral outcomes of a‘model. They are properties that emerge from
the:underlying assumptions about system structure and the interaction of the feedback loops created by
the stock and-flow networks, information flows, and decision rutes of the-actors in the system: Thus
system dynamics models are:well suited to-modeling evolutionary environments where. path-dependent
behavior and multiple and:changing equilibria often arise. SREARNE : - B
Bounded Ratignality: The decision rules in system dynamics models govern the rates of flow that-alter
system stocks: The decision rules in models.of human behavior rest-on the theory of bounded rationality
(Cyert-and March 1963, Merton 1936,Nelson and Winter 1982, Simon 1947, 1957, 1979). The essence
of the theory is'summarized in Herbert Simon's principle of bounded rationality (1957: 198):= == = o
- The' capacity of the human mind for formulating and solving complex problems is very:
small compared to the ‘size of the problem whose solution is required for objectively -
- rational behavior in the real world or even.for a reasonabile -approximation to such objective

rationality. St
" .. Boundedly rational decision making means agents at each decision point-in a system-use heuristics to
select from among the available information cues, process and combine those cues, and make a decision.
These decisions then alter the rates of flow in the-system, altering its stocks,; and giving rise to new
information, thus closing various feedback loops. as the decision:makers perceive and react to. the new
information. Though there is often a rationale, or-intended rationality, to the decision making heuristics:of
the agents; there.is .no presumptionin-system dynamics that these heuristics :are_optimal, or even
consistent; nor that decision making is based only on rational cognitive factors.1! The theory of bounded

1 For example, emotions, habit, rules of thumb, and culture often play roles in decision making.
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rationality provides both theoretical underpinnings and a rich data base for the development and testing of
behavioral models of decision making.in economics. Psychological, contextual, cultural, and other social
and economic forces may all influence the heuristics people-use. For-example;. cognitive and social
psychology provides a rich database of theory and expenmental results documentlng numerous cognitive
limitations on human information perception and processing, errors and biase} in common heuristics used
in |udgment and. decision making, and other deviations from the axioms of rationality. (Tversky and
Kahneman 1974, Hogarth 1987, Kahneman, Slovic, and Tversky 1982).

Emmngal_memg_ds_m_sxslgm_dmamm A'good model of economic dynamlcs must be descnpllve To-
simulate, in the root sense .of “mimic,” the behavior of a system accurately, decision makrng must be
portrayed as it.is, and not as it might be if people conformed to the axioms of economic rationality. .
Discovering, representmg, and testing. models of decision making:heuristics is intrinsically an.empirical
task. Because the focus is on the. process by which people make decisions, .good system dynamics.
modeling involves field work and direct observation of the system under study, as well as the traditional
tools of statistical estimation.!2 The modeler must often use ethnographic and anthropological methods
to elicit the decision rules of the actors (Forrester 1961, Morecroft and Sterman 1992).. Additional
techniques to elicit decision making behavior include laboratory experiments (Sterman 1989a, 1989b,
1989¢, 1988b). and cognitive mapping (Axelrod 1976, Checkland 1981, Vennix and Gubbels 1992,
Richardson et al. 1992). When weli done, complementary field-based, Iaboratory, and statistical methods
yield a rich representation, grounded in multiple data sources, of the decision-making heuristics of agents
and how these rules might change over time. Evolutronary models need to be grounded in suchdirect
observation of decision making, lest the axioms of individual profit-and utility maxrmrzatron be replaced by
equally whimsical'and arbitrary assumptions about decision making-behavior.-

The. attributes described above. make system dynamics modeling well sunted to the study of
evolutlonary dynamics in human_ systems. The flexibility of the modeling method and.emphasis on
empirical assessment of the decision rules of the actors means the microstructure of & system can be
represented with great fidelity. The resulting. high-order, nonlinear systems typically contain dozens or
even more interacting positive and.negative feedback loops. The nonlinearities in dynamic.systems mean
the active structure or dominant feedback loops can. change endogenously. As a result, system dynamics
models may possess multiple equilibria.. The.equilibria.in a system dynamics. model may or may. not be -
stable. They can (and do)-exhibit path-dependent, irreversible dynamics. They can learn and evolve. For.
example, one of the. earliest system. dynamics.models. (Forrester 1961: Appendix- N) represents a
manufacturing firm that “learns” to detect seasonal cycles. in incoming orders, then.adjusts production
accordingly. The_ customer order raté has no exogenous seasonality but does: .contain.random-
disturbances. As the firm responds to these random fluctuations, the resulting-changes .in price. and
product availability, in turn, induce the simulated customers to alter their ordering patterns until the system..
generates strong seasonal patterns, when .none existed before. Other examples of ‘evolution_and-
learning in system dynamics.models are provided by Merten, Loffler, and Wiedmann (1987), whose model
of a multinational firm learns to reorganize itself as it grows Nancy Roberts' (1974) model of elementary
schools, 'in which each. student's achievement .is-dependent on teacher, student, and parent:
expectatrons which in turn are dependent on student achievement; and Levin et al's. (1976) models of
human service orgamzatrons in which service provider standards and client expectations are conditioned -
by the qualrty of services received, thus creating path dependent dynamrcs -

Two way's in which System Dynamics Modeling is Evolutionary~

There are really two ways in which system dynamics modelmg can be consudered evolutlonary The
first, as discussed above, is in terms of the behavior of a particular system dynamics model. System
dynamics models can possess muitiple equilibria and exhibit. path dependency, self- orgamzatron chaos,
time irreversibility, .and evolution to increased levels of. complexity and -entropy. Moreover, their nonlinear

Homer (1985),” Shantzis and Behrens (1973), Levin, Roberts, and Hirsch (1975), and Homer (1992)
provrde examples including worker burnout, tribal rituals, and drug use.

2 See Senge (1980) for an example of econometric tools: applied to system dynamics models
Vahdatlon is discussed.-in Forrester and Senge (1980), Sterman (1984), Radzicki (1988b), and Radzicki
(1990a). . .
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criteria therefore, individual system dynamics models can'be classified as evolutionary. e

" A second way in' which system dynamics models can be considered evolutionary comes'from the
notion that the true value of modeling arises from the modeling process, rather than from any particular
mode! (Forrester 1985). In other words, system dynamicists believe that it"is the iterative process of
making one's perceptions explicit and then testing their adequacy via simulation, that generates insight
and hence the value from modeling, and not any one run-or version of a model. As a result, system
dynamicists never consider a model as being complete, but only in-its latest stage of development.
Moreover, they note that'as new insights and ideas are generated from the modeler's participation‘in the
process, the structure of the model will change to accommodate them. Given this perspective then, the
system dynamics modeling'process can clearly be classified as evolutionary. Of ‘note 'is that evolutionary
economists have put forth essentially the same argument vis-g-vig their pattern modeling process since
the time of John Dewey (1910, 1938).13 )

relationships can cause their “active strictures” to-.change as a simulation unfolds. In terms of a number of

An lllustration

To illustrate some of the ideas put forth in this paper, a simple evolutionary ‘system dynamics model will
now be presented. The model depicts’ the competition"for ‘market share ‘between firms where each
benefits from a significant learning curve. For-clarityof exposition and considerations of space, the model
is highly-simplified compared to typical theories of industry and firm structure in the system dynamics
literature (e.g. Forrester 1961, Mass 1975, Lyneis 1980, Beinhocker et al. 1993), yet it illustrates the path-
dependent, self-organizing dynamics typical of evolutionary models. Further, for brevity; empirical tests of
the model are not described. The reader interested in empirical testing is referred to Paich and Sterman
(1992)for an experimental study of decision making behavior in a setting ‘simitar to the one assumed
below. E h

" Figure 1 shows the system dynamiics stock-flow diagram for the learning curve model. The model’s.
stocks are- represented by the rectangles (e.g., Firm 1 Cumulative’ Experience), and its flows are
represented by the pipe and valve-like icons that appear to be filling and draining the tubs (e.g., Firm 1
Production). The solid arrows in Figure 1 represent flows of information while' the circular icons. depict

constants, behavioral relationships, or decision points where the simulated agents transform flows of
information into decisions {e.g. Firm 1:Price is determined by Firm 1 Unit Costs and Firm 1 Margin). = -

- “There“is 'a‘one-to-one correspondence between the ‘structural diagram and the equations. The
diagram and- equations-are the actual-output from STELLA, the software program used to develop the
mode! (Richmond and Peterson 1992). The model was created by drawing the ‘structural diagram on the
screen of the computer, then 'specifying the form of the equations. The software enforces consistency
between the diagram and the equations, and provides numerous built-in functions to assist the model
builder. Experiencehas 'shown that business peoplé and students, from grade-schoo! to CEOs, can learn
the mechanics of the software in a few hours. A caveat, however: learning the software mechanics is easy,
learning how to build good models is difficult. The ease of use of the software tools means complex
nonlinear dynamic modeling is now accessibie to anyone, regardiess of computer skills or mathematical
background. Obviously, some training in mathematics and an understanding of decision making behavior
and complex dynamics are important for developing insightful, robust-models. The software allows a
modeler to spend his or her time thinking about system structure and behavior, rather than programming.
Researchers interested in evolutionary dynamics will find that such software ‘can be used for “rapid
prototyping” and testing of models with considerable complexity. ) .

- The model represents the competition among firms in the presence of a learning curve. The simplest
version ‘of the ‘model, presented first, is one-in which the only feedback loops are those created by the
learning curve. This version.shows how & learning curve can create path-dependent dynamics. The model
is then extended 10 -consider impérfect private appropriability of experience; introducing additional
feedback complexity and yielding much richer dynamics.

The model assumes that all firms are identical in structure, parameters, and initial conditions. Two firms
are assumed for simplicity, although the model readily generalizes to a population of N firms, which may be
heterogeneous. The equations4 are:

- 13 See also Wilber and Harrison (1978) and Gruchy (1972).

14 For brevity of exposition only the equations for firm™1 are shown. The equations for firm 2-are
identical. ’
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(1) -+ Firm:1:Demand = Firm_1_Market_Share*Industry_Demand
Each firm's demand is the industry demand multiplied by the firm's share of that demand.
@) Fnrm 1_Market_Share = Firm_1_Attractiveness/Aggregate_ Attractlveness

Each firm receives a share of the industry demand propomonal 1o the attracuveness" of that flrm S
product compared to that of other firms (see equation 12).

(3) Firm_1_Attractiveness = Firm_1_Random_Disturbance* (Flrm 1 Pnce"
(Consumer_. Sensmv:ty to_ Pnce))

(4) Firm_1 Random Dlsturbance = 1+STEP(1 1)*NORMAL(0 1)

The attractiveness of each firm's product is‘determined by price and a-random dlsturbance The
elasticity of attractiveness with respect to price is high but finite: the products are not perfect substitutes
but somewhat differentiated. In addition, each firm's attractiveness is influenced by an mdependent
random variable representing the stochastic influence of factors of attractiveness not captured in price and
variations in consumer preferences. The disturbances are: specified as normal random variables with
standard deviations of 10% (the STEP function prevents the random disturbances from having any impact
until time 1, so that the model begins in an initial equilibrium where the two firms are identical). Models with
more sophisticated determinants of product attractiveness; rncludmg product attributes such as delivery
delay and reliability, product quality and functionality; service, network externalmes and S0 on-are
descnbed in Paich and Stérman (1992) and Sterman (1988a) '

(5) » Fnrm_1__Pnce- Flrm_1_Un|t_Costs’(1+F|rm_1_Marg|n)
(6) - Firm_1 Margm 0

Price is determlned by unit costs and a target margin, assumed to be constant and set-to zero for
simplicity. In more complex models the margin is a strategic variable-which can be used to capture firm
strategy such as-an attempt'to gain initial market share advantage to proflt from the learmng curve
(Bexnhocker et al. 1993)

(7} - Firm_1_Unit_Costs = (Frrm 1 Cumula’nve Productuon)"(Furm 1 Learnrng Rate)
(8) “Firm_1 Learnmg_Rate LOGN(. 80)/LOGN(2)

In the spirit of Arrow’s (1962) original work, equations 7 and 8 portray the learnmg curve. Followmg
standard learning curve-theory and empirical research, the unit production costs of each-firm fafl by-a fixed
percentage with -each doubling of cumulative production’ experience.15 An 80% learning curvé is
assumed: that is, unit costs fall 20% with each doubling of cumulative experience. The model also
assumes, for now, that Iearnmg is pnvately appropriable - each firm can prevent rivals from beneflmng from
its own experlence

9) Firm_1_Cumulative Productnon() Flrm 1 Cumulatrve Productlon(t dt) + (F'ir'm_'1_'Producti0n)'dt
INIT Flrm 1_Cumulative_Production=1 - ~

(10) Flrm 1_Production = Firm_1 _Demand

Cumulatlve production'is simply the integral of productron The initial cumulative productlon levels are
set to unity (as‘specified by the INIT statement). Production is assumed to equal demand. For simplicity,
capacity constraints, production lags, inventories, and’ backlogs that can cause disequilibria inthe'goods
markets are ignored. Models treating disequilibrium dynamics caused by inventories and capacity are
plentiful in the system dynamics literature (e.g. Forrester 1961, Mass 1975, Lyneis 1980, Sterman 19894,

15 Arrow (1962), however, originally assumed that learning was a function of cumulative investment.
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Sterman 1989b, and Sterman 1989c). Models of learning curve environments that treat these sources of
disequilibrium include Beinhocker et al. (1993), and Paich and Sterman (1992) :

(11) Industry_Demand STEP(41)

The evolution of the lndustry commences when industry demand, initially zero, increases suddenly to
four units per year-in.year one. For-simplicity industry demand price elasticity and other factors that may
affect industry demand such as word of mouth, marketing, demographic changes, etc. are ignored. See
Paich and Sterman (1992) and Bemhocker et al. (1993) for models wnh dynamxc endogenous mdustry
demand. : :

(12)  Aggregate_Attractiveness = Firm_1_Attractiveness+Firm_2_Attractiveness

The aggregate attractiveness of all furms is the sum of the mdlwdual attrachveness levels ensunng that
the:sum of the. market shares is unity for any-number of flrms ety ; :

(13) Consumer. Sensmvny to Pnce =10

Each firm i is assumed to operate in an imperfectly compemlve enwronment Each firm's demand curve
is highly, but not infinitely, elastic (assuming no reaction by the other firm). .

Obvnously the model is_highly simplified. Yet it contains sufficient feedback complexny to show
interesting path-dependent behavior. The feedback structure of the model is shown in Figure 2. The
learning curve creates a positive or self-reinforcing feedback process within each firm (loops 1 and 2 in the
figure). These loops act to differentiate the two firms from one another by progressively reinforcing and
amplifying any initial difference in prices and market shares. In addition, the coupling of the two firms
through competition creates a third positive. loop (the.‘Figure.8” loop denoted as. loop 3 in Figure 2)
whereby greater market share of, say, firm 1 boosts its cumulative output, lowering its price, and reducing
firm 2's market share, thus slowing the rate at which firm 2 gains experience and can lower its price, further

- boosting firm 1's market share. Though both firms are identical at the statt of the simulation, the random
disturbances. in product attractiveness will give one firm a.small initial advantage in. market share.:in the
simulation shown. in ‘Figure -3, the-initial edge goes to firm 1. Firm 1 develops a slight lead in the
accumulation.of producuon experience, and moves down the learning curve faster than its. competitor,
yielding a slight price advantage. Lower price then yields additional market share. and still_faster
accumulation of production experience, while the competitor's rate of experience accumulation slows.
The process continues until the leading firm captures essentially the entire.market, driving the competitor
out of business. The competitor's costs stabilize well above those of the dominant firm.

Figure 4 shows the result of fifty simulations, -differing-only in.the. particular.sequence .of random
disturbances realized in each case.!® As expected, each firm dominates about half the time, and the
envelope of market share paths traces out a “lobster claw” shape. Because costs fall most rapidly in the
early years when cumulative production is doubling rapidly, small initial advantages rapidly differentiate the
two firms. Later, the-cumulative cost advantage of the dominant firm is simply too great to.overcome and
the systém locks in to.the particular equilibrium chosen. Indeed, in most cases the loser has been driven
out by year 10. Occaswnally, however, the-random disturbances roughly balance during.the period in
which the learning curve is strongest, leading to slower differentiation. However, the positive feedback
loops through which success begets success always lead eventually to the dominance of one of the firms
—that is, the modet has only two equilibrium states: Firm 1 market share must tend towards 100% or 0%.
Further, the particular equilibrium realized depends on the particular sequence: of events in the early
history of the industry. Here these events are modeled as random, though in reahty they also depend on
the strategic moves of the contending firms as well as the parameters governing the learning curve and
other aspects of the firms’ structure and decision making behavior (which need not be the same).

.~ - It is worthwhile to. consider more subtle dynamics which.can arise when the feedback environment is
richer, containing multiple positive and negative feedbacks, some.of which are nonlinearly coupled, so
that the dominant loops-or active structure can shift endogenously as the system evolves. To-illustrate;
the model is now generalized to include imperfect appropriability. of learning. In reality, a firm may-often
benefit from the production experience -of its rivals by imitating their practices and techniques, learning

16 The simulations were run under the Euler integration method with a time step-DT = .25 years.
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from suppliers .or customers.they have in common, :sending . their employees to-trade shows and
professional conferences, hiring competitor. employees, and reverse- engmeenng nval s products (von
Hlppel 1988) The. equatrons of the model are modified as follows : - .

(7 Frrm 1 Unlt Costs-(Flrm 1. Cumulatrve Productlon+ ,
Frrrn 1. Cumulatlve Learmng from Competttors)"(Flrm 1 Learmng_Rate)

“Unit costs are now- determlned by the sum of the flrm s own cumulatlve productlon expenence and the
stock of cumulative experience the flrm has been able to glean from its competrtor :

(14) Flrm 1 Cumulatrve Learnlng from Competntors(t) g
Firm_1. Cumulative:.Learning_from_Competitors(t - dt)+(F|rm 1 Learnmg from Competltors) dt
INIT. Firm._.1 ~Cumulative Learnxng from Competltors 0 Do :

» The stock “Cumulatrve Learmng from Competrtors" reflects the amount of the cornpetrtors relevant
productnon experience the firm:has been able to acquire.. Thus to the extent a firm.can learn from its
competitor, it will move down the learning curve faster than-when learnmg is prrvately appropnable !mtrally,
none of the.competitor's experlence is- known to the flrm ‘ L E

(15) -Firm_1 Learnlng from Competltors~» T PR S TR
. - {1-Appropriability_of_Firm._2_Experience)*MAX(0,(Firm_2_Cumulative_Production-
Firm_1 Cumulatlve Productlon) NORMAL(t AYFirm_: 1 Expenence lefusron Delay)

(16) Firm_1 Expenence Dn‘fusnon Delay =1

The rate at whrch each firm accumulates knowledge about the productlon experrence of its competltor
depends-on several factors. First, each firm may benefit.from the competitor's.experience. only to the
extent the competitor's production experience is not. privately. appropriable (hence the {1-appropriability}
term). Second, the: model. assumes that learning is.only beneficial to the firm {hence the MAX function to
ensure nonnegativity of the.learning rate)..Third;.the model .assumes that the firm can only learn what it
does not yet know. Thus the rate of learning is proportional.to the difference between the competitor's
knowledge and the firm's: the greater the lead of the competitor, the.-more the firm might benefit. The time
constant over which the gap-in knowledge is closed.is determined by the Experience: Diffusion:Delay.-The
diffusion delay represents the time required for one-firm to learn about and implement the knowledge of
its competitor: A one year average delay is-assumed:in the simulations below. Finally, it is assumed thata
firm's learning from its-competitor is stochastic, with multiplicative disturbances in the learning rate of each
firm determined by an independent normal random vanable with a standard deviation equal to 10% of the
expected learning rate.

(17)- Approprrabllrty of_Firm_1: Expenence GRAPH(Flrm 1 Market - Share)
, 1(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0:3, 0.05), (04 015) (05 03) (0.6, 07) (0.7, 095) (0.8
1.00), (0.9, 1.00), (1.00, 1.00) . . .- - .

There are many possible hypotheses regardmg the approprrabulity of learning To lllustrate the
concept of shifting feedback loop.dominance, the: approprrabrllty of each firm's experience is assumed to
vary nonlinearly with market share, where-market share is used here.as.a proxy. for. market power (e.g.;
control of suppliers.from- .whom: competitors mlght glean knowiedge of the firm's practices and
techniques). When the competitor's market share is low, their production experience is assumed:to be
nonappropriable -- i.e., the firm cannot.protect its knowledge from larger and more powerful rivals. As a
firm's market share rises, however, the.degree of appropriability. rises until, for high market shares, its
knowledge is assumed to become fully appropriable (Figure 5). The software program STELLA allows this
relationship to be captured through a GRAPH function. The GRAPH function allows the model-builder to
specify arbitrary nonlinear relatlonshlps as a.series of x-y pairs. The software then interpolates linearly
between the points. Analytic functions can also be used easily (a logistic.or Gompertz function might be
used here). Clearly the relationship between market share and appropriability of knowledge in the model,
particularly the numerical values, is speculative; they are chosen simply to illustrate the ways in which
complex hypotheses about decision making behavior may be represented easily in models of this type.

The feedback loop structure of the revised model is. shown .in Figure 6. Inspection of the. figure
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reveals that there-are now:more complex interactions between the: model'sfeedback loops. The positive’
feedback loops' created by the learning: curve are now potentially offset by negative feedback ioops
created by the process of learning from competitors (loops 4, 5 and 6). A firm that finds itself falling behind
can learn from the practices of its rivals and thus close the gap in unit costs, restoring market share, staying
in the game — perhaps ultimately using the learning curve to’its advantage. The: relative strength of the
positive experience curve loops and the negative cross-firm learning loops determines the nature of the
equilibrium achieved. As seen in the simple model, fully appropriable learning means the positive loops
dominate and one firm:must drive all others to extinction. If learning were not appropriable, and the time
constant for knowledge diffusion- were short-enough, the negative loops that tend to-equalize learriing
would dominate. Thus, whenever a firm began to develop a lead in experience, and hence a cost
advantage, its competitor would rapidly learn from-the ‘experience and neutralize the leader's advantage.
The industry equilibrium would be an even split of the market among thé"different.compefitors. Industry
leaders would emerge from time to time ‘as a result ‘of the random component assumed for ‘customer
preferences, but such periods of leadership would be short-lived and would not favor any particular firm.
o Inithe full*extended model therelative ‘importance of the positive and negative loops: varies
endogenously as-a function of market share, introducing another set of positive-feedbacks. As’illustrated
by loop 7'in Figure'6, the-assumption that market dominance ‘allows a firm to preventrrivals from benefitting
from its experience creates a positive loop whereby an increase in market share reduces the rate-at which
other firms can learn, slowing the rate at which the negative learning loops 4-6 can equalize costs, giving
the firm still greater opportunity to move ahead on its own learning curve. In contrast to the two extreme
cases of complete private appropriability or rapid knowledge diffusion; it is not obvious from inspection
how the full model, with this complex nonlinear feedback structure, will behave. ]

Indeed, simulations of the extended mode! show a variety of complex paths for the evolution of the
industry. Figure 7 shows thirty simulations of the extended model. In most cases, one firm establishes
dominance quickly and drives the other to extinction before the losing firm can learn enough from the
competitor to close the experience gap and-equalize unit costs. In these cases the positive learning curve
loops dominate, ‘and the farther-behind a firm gets the less it is able to benefit from competitor experience.
In other cases the initial leader finds-its rival‘is able o close the gap, equalize market shares, ‘and
essentially begin the game again. Figure 8a shows ‘stich a case. Firm 1 gains initial advantage,-but is not
able to preventfirm 2 from learning from:its: experience:: Despite firm 1's market'share:advantage of nearly
two-to-one in year 5, firm 2-eventually wins: Occasionally, the initial leader suddenly loses, after a fong
period of high market share; as+shown in Figure 8b. Here, industry leadership passes between the two
firms several times. Around year 18, firm 2'is able to reverse the advantage of firm 1 through learning; and
dominate the industry with about 70% market share from years-25 through 40. Nevertheless, “firm 1
ultimately emerges the winner. The interesting feature of this simulation is the speed of the ultimate
triumph for firm 1 after decades of slow change. In still other simulations, the equilibrating negative loops
caused by the exchange of knowledge dominate the differentiating effects of the positive experience
curve loops and the two firms remain roughly equal for very long periods of time, as in Figure 8c.

Obviously, though only two firms are treated here for simplicity, the model generalizes readily to N
firms, so the interaction of large populations of firms can be studied. Further, one can easily extend the
model to include explicit entry and exit; heterogeneity of firm atiributes, customers, and technology; more
sophisticated representations of decision making; and more sophisticated representations of technology
and organizations, including changes in fundamental architectures that may destroy firm competencies
(Henderson and Clark 1990, Tushman and Romanellj 1985). B N o ;

- Despite the simplicity of the model, the simulations exhibit-a number of key features of evolutionary
models. First, the dynamics are strongly path dependent. Second; the behavior-is self-organizing: what
begins as a-market of identical agents rapidly organizes itself into a highly differentiated structure. The
particular firm that dominates cannot be predicted in advance; yet the-model spontaneously organizes
itself into characteristic patterns. Third, the-landscape in which the different firms compete against one
another is changing as they move through it: as production experience and market share change, so does
the strength of the various feedback loops, thus conditioning the future evolution of the market. In the
language of feedback control theory and system dynamics, the evolution of the industry endogenously
alters the dominant feedback structure of the system. These changes in active feedback structure then

feed back to condition the dynamics of the system. _ _
Software ‘and other Resources for Evolutionary System Dynamics Modeling

Over the ‘years, -a variety of software packages, books, -and professional journals have been
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developed specifically for the field of system dynamics. in terms of software, DYNAMO (Pugh 1983),
DYSMAP2 (1992), and: NDTRAN (Davisson and Uhran. 1979) are" available for both mainframe and
personal computers; Vensim (Eberlein 1991) is available for PCs and some. UNIX-based workstations; and
STELLA (Richmond and Peterson 1992), | Think, and:MicroWorld Creator (1990) are avallable for the
Apple Macintosh.

Basic text- books: describing the system dynamics method: mclude those. by Forrester (1961)
Forrester (1968), Goodman (1977), Richardson and Pugh (1981),.Roberts et al. (1983), and Richmond
and Peterson (1992). Since 1985 the international System Dynamics Society has published a
professional journal, the-System Dynamics Review, covering the theory and appllcatlon of system
dynamics in a wnde range of disciplines.

Conclusions

Recent developments in nonlinear theory, the psychology of decision- -making, and experlmental
economics have joined.to-form the basis for empirically testable, nonlinear, disequilibrium theories of
evolutionary economic dynamics., Advances in.the mathematics of nonlinear dynamical systems allow
modelers to represent the non-average behavior of individual agents and to portray systems far from
equilibrium. Advances in simulation techniques, software, and computer hardware make such capabilities
accessible to anyone with a personal computer and knowledge of basic' mathematics.

. However, evolutionary €conomics cannot succeed merely as.a techhical undertakmg If evolutionary
approaches are'to generate penetrating insights into the behavior of actual economic systems, the tools
of modeling must be complemented by appropriate tools of empirical investigation so that-theories are
grounded in experimental test and field study of economic decision making. Evolutionary models should
poriray the decision making behavior and heuristics of the people in the system as they exist, warts and all,
including explicit attention to the many limitations of cognitive capabilities, the role of habits, emotions,
culture, and other bounds on human rationality. Though traditional tools of econometric. estimation will
continue to be useful, the decision rules used in evolutionary models must be investigated first hand, in
the field and laboratory. The work and-methods of economic historians and institutionalists, psychologlsts.
sociologists, anthropologlsts and others have much to-offer in this endeavor.

System dynamics is well suited to the development and testing of evolutionary models With its
historic emphasis on explicit modeling of stocks and flows, . nonlinearities; feedback processes, and
behavioral decision making,- it provides a well-developed body.of theory, technique, and examples for
modeling disequilibrium dynamics in economic.systems. Further; system dynamics. practitioners: have
developed diverse methods for investigating decision. making in ‘the field, eliciting the mental models and
decision _rules people .use, and testing. the resulting formulations. Modern :developments in system
dynamics software and pedagogy have so simplified the mechanics of the model-building process that
pre-college students are regularly building evolutionary models, firms and government agencies are using
such models to help design corporate strategy and publrc policy, and research info new appllcatlons of
evolutionary dynamlcs is growing. o . ) B ;
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Figure 1: System Dynamics Model of Duopoly Under a Learning Curve. The diagram is
reproduced exactly from the simulation model in STELLA. The dashed circles are “ghosts,” or copies of
variables defined elsewhere in the diagram (to avoid cluttering the diagram with crossed lines).
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Figure 2: Causal Loop Diagram of the Learning Curve Model. The arrows indicate the
direction of causality. Signs (“+" or“-") at arrow heads indicate the. polarity of relationships: a “+” indicates
that an increase in the independent variable causes the dependent variable to increase above what it
would have been, ceteris paribug (and a decrease causes a decrease). Similarly, a “” indicates that an
increase in the independent variable causes the dependent variable to decrease below what it would

have been. Thatis, X— *Y = (9Y/0X) > 0 and X— Y = (3Y/3X) < 0. Positive loop polarity [denoted by (+)
in the loop identifier] indicates a self-reinforcing (positive feedback) process. Negative (-) loop polarity
indicates a self-regulating (negative feedback) process. See Richardson and Pugh (1981). The learning
curve creates positive feedbacks within each firm (loops 1 and 2) whereby accumulating production
experience lowers costs and prices, leading to greater market share and still faster learning. The coupling
of firms to one another through’ market share creates the “Figure 8" positive feedback (loop 3) through
which one firm's gain also slows the learning rate of its rivals.
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Figure 3: Simulation Run Where Firm 1 “Wins.” Small initial differences in cumulative production
caused by random disturbances are amplified by the positive feedback loops until firm 1 forces firm 2 completely
out of the market, despite equal initial conditions.
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Figure 4: Fifty Simuilations of the Modei. Despite the homogeneous initial conditions where all
firms are identical, the positive feedback loops created by the.learning curve rapidly drive one firm out of
business while the other grows to dominate -the matket. The winning firm in any given simulation is
determined by the particular sequence of random disturbances that perturb the model. In most
simulations the winner is determined early, though occasionally the differentiation of the two firms takes
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Figure 5. Graphical Function- Showing Assumed Dependence of Knowledge
Appropriability on. Market Share, for Firm 2 (Equation 17). The curve reflects the assumption-
that the larger firm 2's market share, the more-it can appropriate its experience and prevent-rivals from
benefitting. The software interpolates linearly between the specified points:: The user can select any
domain and interval for the independent variable, thus-controlling the smoothniess of the relationship.
While analytic expressions can be used to_capture such nonlinear functions, the ability to specify arbitrary
nonlinearities as look-up tables greatly speeds model development, enhances flexibility, and makes
complex nonlinear modeling accessible to students, managers, and others without extensive training in
mathematics. o
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Figure 6: Causal Loop Diagram Showing the Feedback Structure of the Extended
Model, in Which Firms Can Benefit From the Accumulated Experience of Their Rivals.
For clarity, the structure for inter-firm learning is shown for firm 1 only. The structure of inter-firm learning for
firm 2 (not shown) is symmetrical and creates many more loops than are shown in the diagram. Inter-firm
learning introduces negative feedback loops that tend to equalize prices (loops 4, 5, 6), while the
assumed dependence of knowledge appropriability on market share creates additional positive feedbacks
(loop 7).
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Figure 7. Thirty Simulations of the Extended Model, ‘Showing ‘Many More Complex
Paths of Industry Evolution Arising When Firms Can Learn from One Another. Note the
cases where market leadership.reverses through inter-firm learning. The ultimate winner is often not
selected for decades, and long periods of: market share dominance no longer guarantee a firm will
ultimately triumph. N '
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Figure 8. Three Simulations of

the Extended Model, Showing the Diversity of Paths of
Market Evolution.
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