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Abstract. By analyzing the dynamics of resource allocation in
a generic management system, this paper illustrates how cha-
otic behaviour can be interhally generated in a typical System
Dynamics model.

A company is considered to allocate resources to its pro-
duction and marketing departments in accordance with shifts in
inventory and/or backlog. When order backlogs are small, ad-
ditional resources are provided to the marketing department in
order to recruit new customers. At the same time, resources
are removed from the production line to prevent a build-up of
excessive inventories. In the face of larger order backlogs,
on the other hand, the company redirects resources from sales
to production. Delays in adjusting production and sales create
the potential for oscillatory behaviour. If allocation of
resources is strong enough, this behaviour is destabilized,
and the system starts to perform self-sustained oscillations.

To complete the model, we have combined the above simple
structure with a feedback which represents a loss of customers
when delivery delays become unacceptably long. As costumer's
reaction is increased, the sxmple one cycle oscillation be-
comes unstable and, through a cAscade of period~doubling bi~-
furcations, the system develops into a chaotic state. We
present a relatively detailed analysis of this bifurcation
series. Poincaré& sections and return maps are constructed, and
we discuss how these maps can be used to understand the ob-
served qualitative shifts in system behaviour.

INTRODUCTION
'

It is a basic element of classical System Dynamics thinking
that, due to their feedback structure and inherent adjustment
delays, social systems tend to oscillate in response to ex-
ternal disturbances. It is usually assumed that these oscil-
lations are damped, i.e. that social systems have stable equi-
librium points. The rationale for this assumption is that
growing oscillations predetermine a system for collapse and
that, consequently, only such systems have survived which have
stable equilibria.

This represents a characteristic control engineering point of
view with notions carried over from dead and nearly linear
systems. The assumption of stable equilibria is unnecessarily
restrictive for living, social and biological systems and,
more importantly, it prevents us from dealing with those
processes through which new structures are created. As we know
today (Nicolis et al. 1977, Allen 1980), evolutionary proces-
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ses can only be understood in turns of transitions in which
existing structures collapse and new structures are created.

It may be of interest to compare with recent developments, for
instance, in physiology. Complementary to the concept of
homeostasis which has dominated physiological thinking for
such a long time, self-sustained oscillations are increasingly
being recognized as playing a significant role for the
function and regulation of normal physiological systems.
Investigations performed during the last decade have thus
revealed a variety of biological rhythms (Cosnard et al. 1983,
Winfree 1980) with periods ranging from fractions of a second
to several hours or even days.

Self-sustained oscillations belong to the most simple form of
instabilities in nonlinear systems. From a physical point of
view, the occurance of such oscillations in physiological
systems is related to the fact that these are thermodynamical-
ly open systems which are maintained in a far-from-equilibrium
condition through dissipation of energy (Nicolis and Prigogine
1977) . Since physiological systems have evolved under selec-
tive pressure one can also speculate about the possible ad-
vantages of a rhythmic behaviour. In certain cases, periodic
shifts allow the same biological structure to perform dif-
ferent functions. The self-sustained gscillations then act as
a biological clock which serves to synchronize various proces-
ses. In other cases, overall efficiency and/or capacity may be
increased by driving the system into an oscillatory behaviour.

Social systems are also thermodynamically open systems which
evolve through unstable transitions and selective processes.
Even for the "fully developed" social system, however, far
from being detrimental, unstable phenomena can play an inte-
grated role for the normal function. In analogy with physio-
logical systems, rhythmic behaviour can serve to synchronize
various processes or to improve the overall efficiency. It is
also possible that oscillations can gard a system against long
term drift.

The self-sustained oscillation which produce the economic long
wave (Sterman 1985) may thus be regarded as a mechanism for
synchronizing investments in new infrastructure. Likewise, the
internally generated periodic behaviour in the classical
anthropological study "Pigs for the Ancestors" (Rappaport
1968, Meadows and Meadows 1973) certainly played a significant
role for the long-term population control of that society.

Non-equilibrium conditions can also give rise to more complex
behaviour. Chaotic phenomena can arise, for instance, as a
limit cycle becomes unstable and develops through a cascade of
period-doubling bifurcations (Feigenbaum 1979). We have al-
ready investigated this phenomenon in a simple model of urban
migration (Mosekilde et al. 1985) as well as in a model of
nephron pressure regulation (Jensen et al. 1986). We presume
that similar phenomena occur in a number of classic managerial
applications of System Dynamics (Roberts 1978). The purpose of
this paper is therefore to show how chaos can develop in a
generic resource allocation system. At the same time, by
applying some of the mathematical tools available for descri-
bing chaotic phenonena, we develop a more complete understan-
ding of the dynamical behaviour of the considered management
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system. It should be noted that there are several other forms
of chaos which, so far, have received little attention in the
System Dynamics literature.

THE MANAGERIAL SYSTEM
The problem to be studied relates to the management of man-

power and other resources in the CRAM Computer Company which
is situated just north of Copenhagen.*

In spite of a very significant growth potential, the owners of

CRAM have decided to maintain the company more or less at its
present size. This implies that very little net hiring takes
place, and that manpower and other resources as much as pos-

sible are shifted between the various functions in the company

to satisfy immediate needs. It may be hard for outside ob-
servers to understand the background for the above decision.
Several good reasons can be given, however:

As described below, the company already experiences quite
significant difficulties in managing present operations. The
owners of CRAM all have an engineering background with little
formal training in management, and they fear that if the
company grows larger they will have to give up much of their
direct control, and to call in a professional manager.

In this connection is has made a significant impression that
two leading Danish computer firms have had to close down
during recent years, apparently because they have been unable
to cope with the experienced very high growth rates.

Finally, it is generally considered that the company has found

a profitable niche which can be exploited without interfering

. with the interests of potential competitors. If CRAM were to
adopt a more aggressive policy and expand to new markets,
other, financially much stronger firms, could be tempted to
initiate damaging countermeasures.

CRAM has specialized in certain forms of simulation hardware

and software, simulators for various industrial processes, and

application of simulation methods to solve problems for a
variety of costumers ranging from hospitals and other public
institutions to major Danish industrial firms.

It is characteristic for this type of products that very
intensive sales work is required. Unfortunably, it also ap-
pears to be characteristic that orders come in at a strongly
fluctuating and virtually unpredictable rate. After a quiet
period in most of 1985 where much work was done to find new

customers, a good deal of the country's highschools decided to

order a copy of CRAM's school simulator. Almost at the same
time, three major companies ordered training simulators, and
interest in the company's simulation analyses increased sig-
nificantly.

* To secure anonymity, the company's name and other crusial

data have been changed. It can be disclosed, however, that the

company measures resources in man-hours/day. Inventory and
backlog are measured in units of 10,000 DKK.
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As a result, CRAM is presently fully occupied with completing
these orders and little time is left for developing new
products or recruiting new customers. Much of the problem
derives from a feeling that CRAM's customers are very
sensitive to delivery delays. If a desired product can not be
delivered within very strict deadlines, the customers often
loose interest. This is particularly bad because CRAM depends
on its ability to maintain contacts with the same customers
for a longer period. Once a customer becomes unsatisfied, he
can almost be thought of as lost forever.

Under these conditions, the owners of CRAM consider it very
fortunate that the company's manpower resources are as
flexible as they are. To a large extent, the same persons
produce and sell in the sense that each of CRAM's engineers
are expected to bring home projects. This is particularly true
for those involved in simulation analyses and software de-
velopments. Even the so-called hardware production, however,
is almost entirely custom-design and requires a very close
contact with the costumers throughout the production process.

Nontheléss, as already noted, this flexibility has not been
sufficient to secure a steady flow of orders. In the autumn of
1985, CRAM therefore decided to develop a System Dynamics
model.of its own operations. The basic flow-diagram resulting
from this project is sketched in figure 1.*

The flow-diagram has four level variables: resources in pro-
duction, resources in sales, inventory of finished products,
and number of customers. In addition, to represent the time

required to adjust production, a third order delay has been

introduced between production rate and inventory. In total,

the system has six independent state variables.

The rate of production is determined from resources in produc-
tion through a nonlinear function which expresses a decreasing
producthlty of additional resources as the company approaches
maximum capacity. The sales rate, on the other hand, is de-
termined by the number of customers and by the average sales
per customer-year. Customers are mainly recruited through
visits of the company's engineers. The rate of recruitments
depends upon the resources allocated to marketing and sales,
and again it is assumed that there is a diminishing return to
increasing sales activity. Once recruited, the customers are
assumed to remain with CRAM for an average period AT, the
association time.

A difference between production and sales causes the inventory
to change. As previously discussed, CRAM will respond to such
changes by adjusting its resource allocation. At times when
the backlog of orders is small (inventories large) relative to
a desired level, the company shifts resources into marketing
and sales while, at the same time, cutting back on produc—
tion.

* To produce a somewhat more generic model, the present
authors have replaced order backlog by inventory, order
rece1v1ng rate by sales, and two table functions by their
mirror images.
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Figure 1. System Dynamics flow-diagram of resource allocation
in a generic management system.

When the backlog of orders is higher than desired, on the
other hand, resources are redirected from sales to6 production.
A certain minimum of resources is always maintained, though,
both in production and in sales. In the model, this is secured
by means of the two limiting factors which stop transfer of
resources when the manpower floor is approached.

As a final element, the model assumes that there is a feedback
from inventory to costumers defection rate. If the inventory
of finished products becomes very low, the delivery time
becomes unacceptable to many customers, and as a consequence
the defection rate is enhanced by a factor H. The following

is a discussion of the development in system behaviour as H is
increased from 10 to 36.

A DYNAMO-program for the investigated model is given on the
next page. The simulations to be presented were performed in
PASCAL with analytical representations of DYNAMO's table-
functions. Certain of the parameter values in the DYNAMO-
program may therefore deviate slightly from those used in the
PASCAL-program. It has been found, however, that the DYNAMO-
program is capable of producing a completely similar set of
simulation results. The DYNAMO-program is not capable, of
course, of producing the Poincaré sections and return maps
discussed below.
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* GENERIC RESOURCE ALLOCATION MODEL

NOTE ** RESOURCE TRANSFER **
RP.K=RP.J+(DT) (~-RTR.JK)

RP=RPN

RPN=TOTALR/2

TOTALR=1000 man*hours/day
RS.K=TOTALR-RP.K

IRT.K=IRTN*TABHL (IRTT, (I. K—DI)/DI,— 3,.3,.1)
IRTT=-1/-.8/-.5/0/.5/.8/1

IRTN=1.0 man*hours/day/day
RTR.KL=IRT.K*CL1P(LFRP.K,LFRS.K,IRT.K,0)
LFRP,.K=TABHL(LFTAB,RP.K/RPN,.2,.8,.1)"
LFRS.K=TABHL(LFTAB,RS. K/RPN,.Z,.S,.l)
LFTAB=0/.1/.2/.5/.8/.9/1 '

2 HAppmaEpOZRT

OTE **  PRODUCTION AND SALES *%*

I.K=I.J+(DT) (DELAY3(PR.JK,PD)-SR.JK)

I=IN ’

PD=30 days

PR.KL=NP*TABLE (PRT,RP.K/TOTALR,0,1,.1)
PRT=0/.2/.4/.6/.8/1.0/1.2/1.33/1.40/1.46/1.50
NP=150 units/day

SR.KL=C.K*SPC

SPC=1.0 units/customer/day

OTE ** CUSTOMER RECRUITMENT AND LOSS **
C.K=C.J+(DT) (CRR.JK~CDR. JK)
C=120 customers
CRR.KL=NCRR*TABLE (CRT,RS.K/TOTALR,0,1,.1)
CRT=.2/.5/.65/.80/.90/1.00/1.10/1.20/1.30/1.35/1.40
NCRR=0.04 customers/day
CDR.KL=(C. K/AT)(1+H*TABHL(DRT I.K/DI, 0,.1,.02))
DRT=1/.85/.6/.4/.15/0
AT=3000 days

O¥mOoORIZEZ aQaxa’lnaozr

NOTE ** BIFURCATION PARAMETER **
C H=10

SIMULATION RESULTS

As indicated in figure 1, our managerial system is controlled

- by two interacting negative feedback loops. Combined with the
delays involved in adjusting production and sales, these loops
create the potential for oscillatory behaviour. If the trans-
fer of resources becomes strong enough, this behaviour is
destabilized and the system starts to perform self-sustained
oscillations, limited in amplitude by the various nonllnear
relations.

Figure 2 shows a typical example of such a limit cycle. We
have here plotted the temporal variation of resources in sales
(2a) together with a phase plot showing corresponding values
of inventory and resources in sales (2b). For the bifurcation
parameter we have used H=10. To accentuate the form of the
stable attractor rather than of the initial transient, we have
not started the plotting routine until, after about 24
oscillations, the transient has died out.
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Figure 2. Time- and phase-plot of the one-cycle attractor
obtained for H=10. .

Figure 3 shows a similar set of simulation results obtained
for H=13. In the time-plot we now observe alternating high and
low minima and maxima. The period of the stable attractor has
thus doubled. In the phase-plot we observe how the attractor
has folded itself and now closes only after two revolutions.
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Figure 3. Time- and phase-plot of the two-cycle attractor
obtained for H=13. .

If the bifurcation parameter is increased to H=28, we obtain
the results of figure 4. There are now 4 different maxima: two
high maxima and two low maxima. In the phase-plot, the attrac-
tor appears to have folded twice, a 4-cycle.
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As H is further increased, the bifurcation process continues
until for H~30, the threshold to chaos is exceeded. Now, the
‘stable attractor no longer closes to itself, the period has
become infinite, and the time variation of resources in sales
seems to be random. This is shown in figure 5.

Resources in sales
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Figure 4. Time- and phase-plot of the 4-cycle attractor
obtained for H=28.
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Figure 5. Time- and phase-plot for the chaotic attractor
obtained for H=36.

To investigate the chaotic behaviour in more detail we have
determined the points of intersection between the attractor
and a 5-dimensional plane in phase-space approximately
perpendicular to the attractor. Figure 6 shows the results of
such a Poincaré section performed in the region where
inventory is at minimum (the position of the cutting plane is
sketched in figure 5).

In the present case, the Poincar& section has two branches in
accordance with the double-band nature of the attractor in
figure 5. In a revolution along the attractor, a point on one
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Figure 6. Poincaré section of the chaotic attractor near the
point where inventory is at minimum. The Poincar& cut has been
projected into the plane determined by inventory and
customers.

branch is mapped into a point on the other branch such that,
for instance, A+ B+ I, C+ D+ H, and E+» F + G. While ’
continuously becoming wider, the band thus partly folds back
onto itself every second revolution. This expansion and
folding process is characteristic of chaotic systems, and a
closer look therefore reveals that each branch has a layered
substructure resulting from a large number of subsequent
foldings.

If this substructure is neglected it is possible to construct
a one-dimensional return map for the system. This can be done
by approximating the Poincare section by a continuous curve
along which we can measure distances. More precisely we have
introduced s, as the distance from point E in figure 6 to the
projection o% point n in the Poincaré section onto the
measuring curve. The measuring curve is parameterized to have
a total length of 1.

Figure 7 shows the obtained return map, i.e. the distance s
plotted as a function of Sp+ The maximum of the return map
represents the folding properties of the dynamical system. The
division of the return map into two branches again reflects
the double-band nature of the attractor.

n+l

By constructing a return map as in figure 7, the original six-
dimensional nonlinear dynamical system has effectively been
represented by a one-dimensional discrete iteration process.
From the return map it is possible to derive a number of
characteristic features of the dynamical system. In parti-
cular, in those cases where the return map has a second order
parabolic maximum, the transition to chaos is asymptotically
determined by two universal constants o = 2.5029 --- and

d = 4.6692 ---, independent of the nature of the original
system (Feigenbaum 1979).
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Figure 7. Return map of the considered managerial system for
H=36. The maximum does not appear to have a simple, second
order parabolic form, Although the universal route to chaos
through subsequent period-doubling bifurcations is followed,
it is not clear whether the asymptotic approach to chaos for
this system will be characterized by the Feigenbaum constants
(Mosekilde and Rasmussen, 1986).

CONCLUSION

During certain stages of development, social and biological
systems may exhibit damped oscillations in response to ex-
ternal disturbances. In other stages, exponential growth may
be dominant, and in yet other stages various forms of strongly
nonlinear béhaviour can occur. By analyzing internally
generated chaotic behaviour in a simple management system,
this paper has tried to contribute to a deeper understanding
of the complicated forms of behaviour which can occur in
strongly nonlinear managerial systems. This extends results
obtained in some of our previous publications (Mosekilde et
al. 1985, Jensen et al. 1986). We would like to stress,
however, that formal modeling of the most important processes
in all living systems, i.e. the evolutionary processes in
which new structure unfolds through unstable transitions,
still remains a practically unexplored area of research.’
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