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ABSTRACT

Model behavior evaluation is an important component of System Dynamics (SD)
model validation. SD methodology has often been criticized for its lack of
quantitative/formal behavior evaluation tools. System Dynamicists  have
responded by stating the relative, subjective, qualitative nature of model
validation. We argue that using formal quantitative behavior tools is not
inconsistent with a relativist, holistic philosophy of model validation. We
suggest a multi-step, quantitative behavior evaluation procedure which focuses
on individual pattern components of a composite behavior pattern. The
procedure is relatively easy to apply and to interpret. We then test the
performarice of the procedure through a series of simulation experiments. The
experimental results suggest that the multi-step procedure is appropriate for
SD model behavior evaluation. The experiments also give us an idea of what the
expected values and the variations of the suggested quantitative tools are.

I- INTRODUCTION

Comparing the observed and model-generated behavior patterns (which we call
'behavior evaluation') is an important camponent of SD model validation. In
other methodologies (such ~ as econometrics, autoregressive modeling,
discrete—event simulation), behavior evaluation is a quite formal and
quantitative process whereas behavior evaluation in SD is in general quite
informal and qualitative. Thus, SD has been criticized for its lack of
quantitative, formal behavior evaluation tools (see for example Ansoff and
Slevin 1968). Sterman (1984) notes that the reluctance to use formal
quantitative tools creates "an impression of sloppiness and unprofessionalism".
System Dynamicists have usually responded to such criticisms by arguing that
model validation is inherently relative and judgemental, hence largely informal
and nonquantitative (see for instance Forrester 1968). The relativist and
holistic (as opposed to absolutist and reductionist) validation philosophy of
SD is well established (see Forrester 1961 and 1968 Forrester and Senge 1980).
According to this philosophy —-shared by most System Dynamicists including this
author- model validation is wultimately judging the usefulness of a model,
Thus, validity is always relative to a purpose because usefulness can not be
established without specifying a purpose. Absolute validity is theoretically
and practically impossible. Validity can not be proven, but it can be agreed
upon. Validation is inevitably relative and informal because validity is
situation-dependent. The analyst (user) must usually chose between alternative
models, some of which are informal, mental models. Validation is ultimately a
matter of social conversation, judgement and agreement. But  this
relativist/holistic philosophy of validation should not lead to denying the
role of formal quantitative tools in behavior evaluation. Making full wuse of
various formal quantitative tools is not inconsistent with that philosophy. To
say that the overall model validation 1is inevitably relative, informal and
judgemental is not to say that formal quantitative tools are useless in
behavior evaluation. On the " contrary, formal quantitative tools are most
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useful when they are used with the relativist philosophy. Accordingly, formal
.tools can not turn the overall wvalidation problem into a purely formal,
objective process. But these tools are very useful and effective ways of
organizing, summarizing and communicating information. The . relativist
philosophy should provide the proper perspective: The outcome of a formal
quantitative procedure, by itself, can not determine whether a model is valid
or not. But it can provide valuable information in judging and then
communicating the wusefulness of a model. To sum up, we need quantitative
formal methods of behavior evaluation for the same reason why we need
quantitative formal models of social systems..

In the S8D 1literature, R.D. Wright (1972) was first to evaluate the"
applicability of several quantitative techniques to model validation. Peter M.

Senge (1977) used simulation experiments to evaluate the accuracy of least

squares estimation techniques as applied to SD models. Although his work

focused on 'parameter estimation', his results have important implications for

behavior . evaluation. D.W. Peterson (1980) developed an estimation technique

based on "Kalman filtering', which again has implications for behavior

evaluation. Finally, Sterman (1984) recommended the use of "Theil's inequality.
proportions” in SD behavior evaluation.

SD models attempt to reproduce and predict broad patterns, rather than the
individual data points. The major pattern components are: trends, periods of
cycles, means, amplitude variations and phase angles. We suggest a set
quantitative tools to measure and compare the five pattern components of the
observed and model—-generated behavior patterns. Then, we test the performances
of these tools through a series of simulation experiments.

II- THE RESEARCH PROCEDURE

We develop a multi-step quantitative procedure to compare the observed and
model—generated behavior patterns. To test the performance of this procedure
we take a 'synthetic' experimental approach similar to Senge's (1977). We
build a model with structure R and call it the 'synthetic real system'. R
generates the performance patterns P . We then build a model of R and call it
the 'model' M. M generates its performance patterns P . Since we have defined
the synthetic system, we have a perfect control over its structure and its
parameters. This makes it possible to investigate under what conditions, which
‘quantitative tools are more useful and reliable. In this paper we assume that
we have an idealized model with 'perfect' structure so that M=R, except that
the exact noise sequences in the two are different (accounting for certain
factors which are imposible to estimate parfectly). Our purpose is to see what
type and degree of accuracy can be expected from SD models in the limit (M=R).
The other purpose is to test the performances of the suggested quantitative
measures in this limiting case and to examine the effects of non-structural
errors (input error, parameter error, observation error) on these measures.
_(In the second phase of the research, we introduce various structural errors so
that M#R, and explore ways of detecting structurally inadequate models which
may exhibit 'false' behavior accuracy. The results of this second phase will
be presented in another paper).

III-THE QUANTITATIVE TOOLS

Statistics and Time-series literature offers a large variety of quantitative
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measures. In selecting a set of quantitative tools appropriate for SD behavior
evaluation, two criteria are most important: First, the selected tools must be
pattern oriented rather than point oriented. SD models are built to reproduce
and predict broad patterns observed in real systems. Such models are not
designed to reproduce the observed behavior on a point-by-point basis.
Secondly, the selected tools must be relatively easy to implement and
interpret. It is unlikely that an extremely expensive and complicated tool
will be widely used by the practitioners. Taking these two criteria into
consideration, we select and test the following quantitative tools:

1- Trend Comparison and Removal. If there is an indication of a trend
component, the latter can be estimated by fitting a regression line of the form
9=bo+hE(t) to the observed and model generated behavior patterns. One can
compare the ‘trend components by comparing the corresponding coefficients g_of
the two regression equations. In this experimental work, the trend component
is not .strong}yA exponential so that the regregsion equation takes the simple
linear form of y=be+b;t. The slope coefficient b, yields an estimate of the
trend involved. (One can test the equality of the coefficients by in a-
rigorous way by making use of their standard errors. Bul to be accurate, such
a hypothesis requires that the observations y; are independent, an assumption
bound to be violated by virtually any SD behavior pattern). Almost all summary
statistics require at least stationarity in the means. Therefore, after
deciding that there is no significant error in the trend components, the latter
must Be removed from the observed and model-generated responses by using
Z =Y "b1 t.

2- Comparing the Periods. To compare the periods involved, we design a
procedure based on the ‘'sample autocorrelation functions'. The sample
'autocovariance function' of Xi is defined as:

1 N-k
Covik)= —--——ZE (x‘-i)(x“k—x) , for lag k=0,1,2,3...
N i=l

Then, the sample 'autocorrelation function' is obtained by dividing Cov(k) by
Cov(0) (which is the variance of X ):

Cov (k) Cov (k)

r(k)=" = - , for k=0,1,2,3,...

Cov(0) Var (X)
- This function gives a measure of how the successive observations are
interrelated. We are interested in plotting r(k) only £for positive lags
1,2,3... because r(k)=r(-k). The function starts at 1 at lag 0 and lies
always between +1 and -1. As k becomes larger, r(k) approaches 0. For random
(or 'almost random') series, r(k) quickly drops to O for k1. For moderately
correlated series, r(k) approaches 0 in a negative exponential fashion. If the.
series involves trend, r(k) dies down very slowly; if the series is cyclic,
r(k) is also cyclic.

To use the autocorrelation function in behavior comparison, we must compute the
autocorrelation functions of the observed and the model-generated series and
then compare the two autocorrelation functions. This comparison is compelling
because it is a way of comparing the patterns rather then the individual data
" points. To be able to carry out a formal test, we need the distribution of
r(k) which .is unknown except for some extremely restricted cases. As an
approximate test, we can compute the standard errors (se) of r (k) and construct
a 2se confidence band. A number of variance estimates are available for r(k).
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Qur theoretical and empirical analysis of the évailable variance formula
suggested that the best one was the finite~sample approximation provided by
0.D. Anderson (1982):

1 N-1
Var(r (k) )= ———==——v > (N-i) (r (k=1)+r (k+i) Zr(k)r(z))
N(N+2) i=1

Now we can devise an approximate test of hypothesis: If rs(k) is estimated from
the simulated response and rp (k) from the actual one, then the null hypothesis
1s.
rg (1) =ra(1), rg (2)=rp(2),.:. rg(m)=r,(m)

and H\. rs(k)#gk(k) for at least one k.
Consider the difference di= rg(1)-r,(1). The standard error of dyis:

=\(Var(rs(1))+Var(qA(1))
S1nce under Hg dy=0, to test Hp, we construct the interval {~2s ,+25 }, compute
dy and reject Ho if dy £falls outside the interval. We repeat the same
procedure for every d, k=1,2,...m. Under the normality assumption, this
constitutes a test of hypothesis at about X=0.05. A major source of
approximation is due to the fact that Ho is a multiple test and succesive
r(k)'s are not independent random variables. For even slightly autocorrelated
data, the autocorrelation estimates are highly correlated statistics. Hence,
the computation of the 'actual significance level' of this multiple hypothesis
-which requires knowledge of the covariance matrix of r(k)- represents an
exceedingly complex problem in practice. But we believe that other errors
inherent in any SD validity testing are of much larger significance than the
imprecision of . We therefore do not seek to improve further the precision of
this test. :

i
3- Comparing the Means. The sample mean is given by X == —TE.X(. To compare
the means of the sxmulated (8) and actual (A) behavior patterns, we define the
'percent error in the means' El:

le'&Al

4~ Comparing the Amplitude Variations. We use the standard deviations and the
correspond1ng ‘percent error in the variations' E2:

-N— T(X;-X)* and E2= -—->-———-
. SA
In this step, it may also be necessary to compare graphical measures of the
amplitudes of the cycles involved in the two time histories.

5- Testing for Phase Lag. We suggest using the crosscorrelation function which
shows how two series are correlated at different time lags k. The
crosscorrelation function between the series S and A is given by:

N - .
129 eh

k = = L N ]
CSA( ) - for k=0,1,2,3,
S °A
and \ N
. (A' "'Z) (S- k"-S')
¢, ()= RRZ3 2 for k=0,-1,-2,-3,...

The crosscorrelation function is not necessarily symmetrical. But note that
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CsA(k)=CAS(—k). Thus, the function is fully known when Cg{k) and CAs(k) are known
or when only one of them is known for both positive and negative lags. Note
also that Ckéﬁ)=qx§0) which is the simple correlation coefficient between the
two series. The crosscorrelation function provides a measure of the phase
relationship between two series.

6- A 'Discrepancy coefficient' U. Henry Theil (1958) proposed the 'inequality

coefficient' to evaluate the accuracy of forecasts:

Up= "
V Zs}+\/ zA% ,
The disadvantage of this coefficient, as noted by Theil himself, is that its
value is not uniquely determined by the 'sum of squared errors' (SSE). If we
have two different forecasts resulting exactly in the same SSE, the forecast
with larger §; would yield smaller Uo because this latter is discounted by §;.
It is even possible to have two sets of forecasts such that SSE,>SSEjz but
Uy <U,. Thus, overestimating becomes a 'safe way' of obtaining smaller U
values. As a way of eliminating this problem, Griner et al (1978) suggested to
center the data by subtracting from S; and A their respective means. This
yields:

V=5 -5-a4R* V S -B)2 sg

U= = =
V=0V 505 -8 Vo AR Y5, -9™  sptss |
We adapt this ‘'discrepancy coefficient' which is insensitive to the additive
constants and preserves its nice property of being betwen 0 and 1. But note
that U does not anymore reflect errors in the means.

The quantitative tools described in this section, taken together, form a
multi-step behavior evaluation procedure focusing on individual pattern
components. These pattern components are : trends, periods of cycles, means,
amplitude variations and phase relations. Through a set of simulation
experiments, we attempt to assess the performances of these quantitative tools.

Iv- THE SYNTHETIC SYSTEM

As the 'synthetic reality', we specify a set of relationships believed to be a
realistic description of certain epidemic dynamics. The system can be verbally
described as follows: The total population consists of a healthy population and
a sick population. The healthy population has two subgroups: susceptibles and
immunes. When a susceptible person contacts a contagious person, he is
infected with some probability. After a person is infected, he becomes
contagious for some period of time during which he can transmit disease. At
the end of this period, he starts showing symptoms and is recognized as
contagious. From this time on, he is isolated (or people avoid contacting him)
until he recovers or dies. Once he recovers, he becomes immune for a period of
time, at the end of which he completes the cycle by joining the susceptible
population. The other source of replenishment of susceptibles is the
population growth. Every sub-population contributes to the total conception
rate except the 'contagious population recognizable' which is assumed to
exercise some sort of contraception. When infants are born, they are immune
for a certain period before they become susceptible. The flow diagram of the
system is shown in figure 1. We see that the system has a number of negative
and positive loops coupled together. A most significant loop is the
'contagious population — contact rate - infection rate — population infected -
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Figure 1. Flow Diagram for the Synthetic System.
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latency leaving rate' loop. This positive loop says that the epidemic spreads
by contact, that the larger the contagious population, the greater is the
number of infective contacts. Thus, the contagious population reinforces its
own growth and would exhibit indefinite growth in the absence of other
influences. But there are other influences such as the susceptible population.
Since disease is transmitted by contact, the susceptible population determines
the infection rate just as the contagious population does. The larger the
susceptible population, the larger the infection rate. But the larger the
infection rate, the smaller the susceptible population, which results in a
negative feedback 1loop. The -coupling of this negative loop to the positive
loop described above yields a growth followed by a decline. As the susceptible
population is replenished, the growth-then—decline pattern repeats itself,
yielding the observed epidemic cycles.

The complete list of the model equations is given in the Appendix. Here, we
describe how and where noise is introduced to the system The first 'noisy'
-equation is the 'infection rate' IR:

R IR.KL=IPC.K*CR.K people/month

IPC: Infections per contact

CR: Contact rate :
IPC is a normal random variable sampled every INTl time units (months)

A IPC.K=0.10+SAMPLE(NOIS1.K,INT1,0.0) People/contacts

A NDIS1.RK=NORMRN(0.0,STDV1) Normal random variate

C INT1=3.0 Sampling interval (months)

C STDV1=0.005 Standard deviation (5% of the average IPC)
and the contact rate CR is given by:

A CR.K=CF*SP.K*CP.K Number of contacts/month.
Where,

CF=0.004 Contact fraction (per month)

SP: Susceptible Population

CP: Contagious Population
The second noisy equation is the 'recovery rate' RR:

R RR.KL=CPR.K/RT.K

CPR: Contagious Population recognizable
RT is the recovery time, and chosen to be a normal random variable with mean 2
(months), standard deviation 0.2, sampled at every 0.5 months:

A RT.K=2+SAMPLE (NOIS2.K,INT2,0.0)

C INT2=0.5 Sampling Interval

A NOIS2.K=NORMRN(0.0,STDV2)

C STDV2=0.2 Standard deviation (10% of the average RT)
Finally, we assume that the observed variable is the 'contagious population
recognizable' CPR, distorted with an 'observation error':

A OBS.K=CPR.K+SAMPLE (ONOIS.K,0INT,0.0)

C OINT=1.0 Sampling Interval

A ONOIS.K=NORMRN(0.0,0STDV.K)

A OSTDV.K= 0.05*CPR.K (5% observation error)
This model which represents the synthetic system was not validated in any
formal way because we did not think that this was necessary. What was
important for this project was that the synthetic system had a certain realism
so that the entire research would be more than a purely academic exercise. The
realistic. properties of the synthetic system include the non-linear
relationships, coupling of several positive and negative loops, inclusion of
system noise and observation errors and an order high enough (5 third order
delays and 2 accumulations, adding to 17) to give the system a realistic
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~ internal momentum. Another important property is the generic structure: The
structure of the epidemic model can also be used to represent the dynamics of
the spread of information among people. With some modifications, it can
explain the predator-prey interactions and the dynamics of marketing. Finally,
an important characteristic of the synthetic system is its ability to generate
three different types of patterns. When both the immunity losing loop and the
population growth loops are active, the system exhibits the oscillatory growth
pattern seen in figure 2a. When the growth loops are turned off, we observe
constant-mean oscillations (2b), and when the immunity is assumed to be
permanent, then the behavior changes to the 'recurrent epidemics' type seen in
figure 2c. :

V-~ THE RESULTS

For the synthetic system, the noise seed is set to 7654321 and then, for each
experimental design, the model is run with four different noise seeds (6654321,
5654321, 4654321, 3654321). Then, the 'real' output is compared to the four
different model outputs by wusing the quantitative procedure outlined in
section III. A FORTRAN program is written to do the computations and the
plotting®*. The computations are all based on the segments of the time histories
between t=50 and 300. The program first fits a linear regression line to the
two behavior patterns and detrends them if the analyst wishes to do so. Next,
the autocorrelation and partial autocorrelation functions, their variances, the
crosscorrelation function, the 'percent error in the means', the 'percent error
in the variations' and the 'discrepancy cofficient' U are computed and printed
out. The program also plots the autocorrelation functions, the differences
between them (together with 2se bands) and the autocorrelations of the residual
series e; =5;~A;. :

A- The Effect of the System Noise Only: Consider first the effect of 'moderate
noise' (INT1=3, STDV1=0.005, INT2=0.5 and STDV2=0.2) with no observation error.
The system behavior and the model behavior with seed 6654321 for this ecase are
shown in figure 2. As an illustration, consider the runs of figure 2a ('growth
case'). The corresponding autocorrelation functions (of the detrended
patterns) are plotted in figure 3a. Note that the autocorrelation functions
estimate the major periods of the referent time patterns. In figure 3b we see
that the two functions are not significantly different at any lag. The slope
estimates for the 'real' and model-generated behavior patterns are 0.818 and
0.785 which are not significantly different. The crosscorrelation function
reaches a maximum of 0.783 at lag 0 (meaning no phase lag). Next, in figure &,
we plot the autocorrelation function of the residual series S;-A;. Note that,
although the only difference between the model and the real system is the
sequences of random numbers used in the two, the autocorrelation function of
the residuals shows that the residuals are strongly autocorrelated and even
cyelie. This is a clear demonstration of the absurdity of expecting accurate
'point forecasts' from SD models. Finally, the other statistics are printed in
table 1. The 'percent eror in the means' E1=0.028 and the 'percent error in
the variations' E2=0.0915. Notice how large the discrepancy coefficient
(U=0.3645) can be even in this limiting case of 'perfect' model with moderate

* A listing of the program is not provided in the appendix because the space
limitation does not permit and the program is not well-documented yet.
Interested persons may contact the author for a listing of the program.
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Figure 2, Three Types of Patterns Exhibited by the System

(a) Growth, (b) No Population Growth, (¢) With Permanent Immunity.
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noise.

We repeat the same experiments with the other noise seeds (5654321, 4654321,
3654321) and then change the experimental condition to the 'increased system
noise'. This is accomplished by doubling STDV1 (to 10%) and INT2 (to 1.0).
The summary results are shown across the second experimental condition in
table 2. When compared to the moderate noise setting, the quantitative
measures naturally indicate poorer correspondence. The crosscorrelations drop,
El, E2 and U increase. But the trend estimates and the autocorrelation
functions are still in good agreement.

And finally, the above experiments are repeated for the 'no-growth' case, with
both the moderate and increased noise conditions. The corresponding results
are summarized across the first two experimental conditions of the second half
of table 2. Comparing these results to the ones obtained in the growth case,
we observe that in the no-growth case the quantitative measures in general
indicate better correspondence.

B- The Effect of the Observation Errors: In this set of experiments, we
introduce 5% observation errors. First we assume inependent errors by letting
OINT=1.0. ‘Naturally, the correspondence measures deteriorate compared to the
cases with no observation errors (compare for instance the third and the first
experimental rows of table 2). It is important to note that the inclusion of
independent observation errors gets reflected in the autocorrelation functions.
In three of the four replicates, the autocorrelation functions exhibit
‘eritical' differences ('critical' meaning that the difference is smaller than
2se but larger than 1.5se). In all of those three runs, the difference occurs
within the £first 3 to & lag autocorrelations. The high frequency observation
errors significantly lower the autocorrelations at very small lags. In such
cases, since we know that the low lag differences are caused by the presence of
hi-frequency observation errors, we can ignore these low lag differences in
reaching a conclusion about the behavior validity. One can actually make use
of the autocorrelation functions to £find out if one time pattern has
hi-frequncy components not present in the other.

Next, we make the observation errors correlated by setting OINT=3.0. The
results are shown in the fourth row of table 2. Comparing these results to the
results of the previous row, we see that in general none of the similarity -
measures change substantially. The only obvious change is observed in the
autocorrelation functions: since the observation errors are now correlated,
they do not cause the low lag autocorrelations to drop substantially. Hence,
the autocorrelation tests in this case do not yield critical diferences.

When these experiments are repeated for the 'no-growth' case, the results are
very similar to the previous ones. What we have observed for the growth case
are also valid for the 'mo-growth' case. Before concluding, we must add that,
in both the 'growth' and the 'no-growth' cases, the effect of moderate
observation errors is quite small compared to the effect of moderate system
noise. The latter, by travelling through the feedback loops, can cause
substantial behavior distortions such as irregular phase shifts and amplitude
variations. - > '

C- The Effect of the Parameter Errors: As the first set of parameter errors we
increase IP from 15 to 18, RTAVG from 2 to 2.4 and CF from 0.004 to 0.0048 (all
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Table 2. Summary of Results obtained under different experimental conditions.
Each experimental cell has four replicate runs.
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d r : d
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[ 1 ) ) 1
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M . . 1] N
o noise No { No | No y No [ 75 0% |.007[.034 [.286,.333 |.511 :.466
1 i T ¥ 1
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. . '
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changes are 20%). The main effect of this 'hi-gain' setting is to increase the
amplitudes of the oscillations. This is clearly observed in the E2 values,
across the fifth experimental condition of table 2. A secondary effect is te
raise the mean values slightly, 'as reflected in the El wvalues. For the
'no-growth' case, the effect of the 'hi-gain' parameter error is essentially
the same (see the corresponding entries in the second half of table 2).

As the second set of parameter errors, IP is again increased to 18, but CF is
decreased by 20% (to 0.0032). The main effect of this 'low-gain' setting is to
lengthen the periods of the osciliations and to lower the mean values. The
period errors are observed in the autocorrelation functions and the mean errors
in the El values. Note also that the crosscorrelation functions have rather
small maxima and they occur at large lags (such as +13 and -22) . But these
lags are not due to a phase lag between the model-generated and the observed
behavior patterns. Rather, they are artifacts of the errors in the periods of
the two behavior patterns. Therefore, if a significant period error is
involved,. the crosscorrelation function is not readily interpretable. Finally,
note that in all four of the runs with ‘'low-gain' setting, there are
significant errors in the trend components (the first column in table 2), which
is a another effect of this setting. It is important to wunderstand that
whenever there is a significant error in the trend components, the 'percent
error in the means' El loses its meaning . When the behavior patterns involve
trends, the mean values are meaningfully comparable only if the trend
components are not significantly different.

D- The Effect of the Input Error: The synthetic system is excited at t=8 with
an impulse function, creating a sudden inflow of 100 infected people. To
produce a phase lag, in this experimental condition we change the initiation
time to t=18. When the resulting behavior pattern is compared to the ‘real’
behavior, we see that the crosscorrelation function reaches its maximum at
about +10, in all four replicate run: For the growth runs, the estimates are 9,
9, 10 and 7 for the no-growth runs, they are 9, 10, 11 and 9. In these cases,
we see that the crosscorrelation functions provide adequate estimates of the
phase lag. The crosscorrelation function becomes problematic when the system
noise is strong enough to cause the function to shift its maximum to a non—zero
lag. Two criteria must be taken into account in deciding whether the phase lag
indicated by the crosscorrelation function is systematic or random . First,
when the phase lag is systematic, the lag at which the function reaches its
maximum does not show a substantial variation from one noise seed to another.
Second, in case of a systematic phase lag, the maximum and the minimum are
quite large compared to the case of a random unsystematic phase lag. One may
check the quantity {max-min} and suspect a systematic phase lag if it is 'large
enough'. (In our experiments, {max-min} was always larger than 0.80 in
presence of a systematic phase lag) .

VI- CONCLUSIONS AND RECOMMENDATIONS

The experimental results suggest that the six—step quantitative procedure is
appropriate for SD model behavior evaluation. Various tools used in the
procedure are interdependent. Therefore, to be most informative, the tools
must be used in a specific sequential order:

Step 1- Trend Comparison and Removal. The trend components (if any) must be
compared as the Ffirst step. If a significant error in the trends is
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discovered, then a model revision is called for. The trend components must be
removed only after deciding that there is no significant difference between
_ them.

Step 2—- Comparing the Periods. The suggested autocorrelation test is able to
detect significant errors in the periods. High frequency noise components
affect only the very low lag autocorrelations. Hence, the test can also be
used to find out if one behavior pattern has high frequency noise not present
in the other. The test is quite insensitive to other types of pattern errors.

Step 3- Comparing the Means. The 'percent error in the means' El has rather
small variability. In the no-growth case, El never goes above 0.02, unless
there is a systematic parameter error. When growth is involved, the same limit
is about 0.03. Note that if there is a significant difference in the trend
components (i.e. Step 1 not passed), then El loses its meaning.

Step 4- Comparing the Variations. The 'percent error in the variations' E2 has
large variability. For the growth case, E2<0.20 (approximately), unless there
is a source of systematic error. For the growth case, the same limit is about
0.25. ‘

Step 5— Testing for Phase Lag. The crosscorrelation function does provide an
.estimate of a potential phase lag. But the crosscorrelation function being
maximum at a non-zero lag does not always indicate a systematic phase lag,
because the system noise and/or autocorrelated observation errors may also
cause minor irregular phase shifts. A systematic phase lag must be suspected
if the lag at which the crosscorrelation function is maximum does not show
substantial variation from one noise seed to another, and if the maximum and
minimum crosscorrelations are susbstantial. (In our experiments, the quantity
{max-min} was always larger than 0.80 in presence of a systematic phase lag).
- Finally, the interpretation of the crosscorrelation function becomes quite
ambiguous if there is a significant error in the periods of the referent time
patterns (i.e. Step 2 not passed), because period errors have substantial
effect on the crosscorrelation function.
Step 6- As the last step, compute the discrepancy coefficient U, as a single
summary measure of behavior accuracy. Since U is basically a point oriented
measure, whereas SD models are pattern oriented, rather large U values must be
tolerable in SD. behavior evaluation. Experiments show that U can be as large
as 0.60 even for a 'perfect' model with no structure or parameter errors. This
result is in agreement with Rowland and Holmes (1978) who analyze Theil's
coefficient in the context of dynamic mathematical models and suggest that
values betwen 0.4 and 0.7 should imply average-to—good models.

The suggested quantitative tools are not appropriate for all types of behavior -
patterns. For instance, the 'recurrent epidemics' type of behavior of figure
2c, which is highly deterministic and transient, can not be evaluated by using
such statistical tools. These types - of patterns (highly deterministic,
transient) must be evaluated by using graphical measures of specific behavior,
charactesistics. The statistical tools typically apply to more or less
stationary, steady-state behavior patterns.

Experiments show that oscillatory growth pattern yields poorer similarity
measures than the purely oscillatory pattern. Also, behavior accuracy exhibits
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substantial variation from one noise seed to another. Therefore, the tests
suggested above should always be carried out with several noise seeds, basing
the decisions on the avarages of the several runs. (Experimental results of
this paper are all based on 4 replicates). Much of the variation is caused by
the system noise rather than the observation error. The effect of the
observation error is quite weak compared to that of the system noise, which, by
traveling through the loops, can cause significant behavior distortions such as
irregular phase shifts and amplitude variations.

Finally, we must emphasize that passing the suggested tests does not imply
model validity. Structural validity, which is not adressed by these tests, is
the most important condition for model validity. Given that the model 1is
structurally valid however, a positive outcome of the above tests does imply
that the parameters and the input functions are accurately estimated and that
the model exhibits an adequate behavior pattern.

The quantitative tools recommended in this paper need more extensive testing,
on other types of systems and other types of behavior patterns. (We are
currently in the process of testing them on Jay Forrester's Market Growth
model) . Such extensive experimentation is required before we can come up with
'reasonable' acceptance/rejection limits. As another extension, the
appropriateness of other statistical tools such as spectral analysis or
‘pattern recognition' technigues can be investigated by using the experimental
methodology of this research.

APPENDIX - The DYNAMO Equations for the Synthetic System

» EPIDEMICS
NOISE 7654321
SP.K=SP.J+DT*(ILR.UK+IILR.JUK-IR.UK-DR1.UK) SUSCEPTIBLE POPULATION

SP=SPN

SPN=3000 -
ILR.KL=(1-DFS)*DELAYP(RR.JK,IP,PHI) IMMUNITY LOSING RATE
IP=15 MONTHS IMMUNE PERIOD

DF5=0.02 : « .
IILR.KL=(1-DF6)*DELAYP(BR.UK,IIP, II) INFANT IMMUNITY LOSING RATE
IIP=6 MONTHS  INFANT IMMUNITY PERIOD

DF6=0.01

NOIS1.K=NORMRN(0.0,STDV1) :
IPC.K=0.10+SAMPLE(NGIS1.K,INT1,0.0) INFECTION PER CONTACT
INT1=3.0 SAMPLING INTERVAL

STDV1=0.005

IR.KL=IPC.K*CR.K INFECTION RATE ,
INP.K=PULSE(AMP, START ,RPEAT) INITIAL INPUT OF INFECTED
AMP=400

'START=8.

RPEAT=500.

IRTOT.KL=IPC.K*CR.K+INP.K  TOTAL INFECTION RATE

IRTOT=1IR :

DR1.KL=DF 1*SP.K DEATH RATE 1
DF1=0.002 PER MONTH DEATH FRACTION 1

LP=2 MONTH LATENCY PERICD
LLR.KL=(1-DF2)*DELAYP(IRTOT.UK,LP,PI) LATENCY LEAVING RATE
LLR=LLRN

LLRN=0O

DF2=0.02

ASP=2 MONTH ASYMPTOMATIC PERIOD
SSR.KL=(1-DF3)*DELAYP(LLR.QK,ASP.CP) SYMPTOMS SHOWING RATE
DF3=0.03 :

CR.K=CF .K*SP.K*CP K CONTACT RATE

CF.K=0.004 PER MONTH CONTACT FRACTION
CPR.K=CPR.J+DT*{SSR.JUK-RR.JK-DR4.UK) CONTAGIOUS POPULATION RECOGNIZABLE
CPR=CPRN

OZrerro0d000Z300TZT000>T00P>P00T00O0BOZ

CPRN=0



Ay .
RR.KL=CPR.K/RT.K  RECOVERY RATE
RT.K=RTAVG+SAMPLE (NOIS2.K,INT2,0.0) RECOVERY TIME
RTAVG=2. AVERAGE TIME TO RECOVER
INT2=0.5 SAMPLING INTERVAL
NOIS2.K=NORMRN(0.0,STDV2.K)
STDV2.K=0. 10*RTAVG
DR4.KL=DF4%CPR.K DEATH RATE 4
DF4=20.003
BR.KL=( 1-PBDF.K)*DELAYP(TCR.JK,PP,CB) BIRTH RATE
PP=9 MONTHS PREGNANCY PERIOD
TCR.KL=FF*(CP.K+PI.K+SP.K+PHI.K) TOTAL CONCEPTION RATE
FE=0.006 PER MONTH FERTILITY FRACTION
PBDF.KaDFLL+(DFUL-DFLL)*FS.K PRE-BIRTH DEATH FRACTION
DFLL=0.02
DFUL=0.03 DEATH FRACTION UPPER LIMIT
FS.K=(PI.K+CP.K+CPR.K)/(PI.K+CP.K+CPR.K+SP.K+PHI.K) FRACTION SICK
NOTE
A OBS.K=CPR,.K+SAMPLE(ONOIS.K,O0INT,0.0) OBSERVED CPR
C OINT=1.00
A ONOIS.K=NORMRN(0.0,0STDV.K)
A OSTDV.K=0OFRAC*CPR.K
C OFRAC=0.05
NOTE
SPEC DT=0.25/LENGTH=300/PRTPER=2/PLTPER=1
PLOT OBS=0(0,600)/PHI=M/SP=S/I1=]
PRINT 0BS,PHI,SP,PI,II
RUN REAL

POOPOAOTOVPPOOPD
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