Salvador Dali: surrealism - realism feedback (dark reproduction)

Shedding Light on the Harvesting Control Rules in Abstract Bioeconomic Models ©Alexander V. RYZHENKOV

Economic Faculty Novosibirsk State University

Institute of Economics and Industrial Engineering Siberian Branch of Russian Academy of Sciences 17 Academician Lavrentiev Avenue Novosibirsk 630090 Russia E-mail address: ryzhenko@ieie.nsc.ru

Contents

- **1. Simplified Verhulst Schaefer Arnold models**
- **1.1. Verhulst's textbook model M-1**
- **1.2. Simplified Schaefer Arnold model M-2**
- 1.3. Modified Schaefer Arnold model M-3
- 2. Aggravation modes and catastrophes in Arnold model M-4
- 3. MSY-centred stabilization in predator-prey model S-1
- **3.1. Enhancing harvesting control rule**
- **3.2. Policy optimization**

Properties of M-2 and M-3

$$\dot{x} = x(1-x) - y$$

MSY $y_s = c_s = 0.25, x_s = 0.5$

Mismanagement in M-4 with catch *c* = const can destroy structural stability present in M-1, M-2 and M-3

A birth of the aggravation mode results from the transition from dominant

negative feedback $x \xrightarrow{-} \hat{x} \rightarrow \dot{x}$ to dominant positive feedback $x \rightarrow \hat{x} \rightarrow \dot{x}$ at a tipping point, when the sign of

$$\frac{d\hat{x}}{dx} = -1 + \frac{c}{x^2} < 0$$

turns into its opposite. Quite dramatically $\frac{d\hat{x}}{dx} \rightarrow \infty \text{ for } x \rightarrow 0.$

Collapse for catch *c* > MSY in M-4

- Proposition 4. Stationary state(s) for $c = c_s = 0.25 x_s = 0.5$;
- for $c < c_s x_{1,2} = 0.5 \pm \sqrt{c_s c}$.
- Lower stationary state x_2 is unstable node,
- higher stationary state x_1 is stable node.
- Proposition 6. Let $c > c_s$.
- There is no stationary state.
- Exhaustion x = 0 occurs.
- For ex., if $x_0 = 0.52$, c = 0.2501 $T_2 \approx 266$.

Collapse for catch *c* < MSY in M-4

 Proposition 5. Let 0 < c < c_s, x₀ < x₂ < x_s. There is monotonous decrease in biomass to full exhaustion.

For ex., if c = 0.2499, $x_0 = 0.46 < x_2 = 0.49 < x_1 = 0.51$. Time left until stock x will be totally depleted $T_1 \approx 24$.

MSY $c_s = 0.25$ for $x_s = 0.5$ is critical in M-4

Proposition 7. For $c = c_s$ there is saddle-node bifurcation. The saddle is unstable for $x < x_s$ and stable for $x > x_s$. Depletion of the stock for $x < x_s$ goes on the hyperbolic curve. Complete extermination of the stock at $T_3 = 2x_0 \frac{1}{0.5 - x_0}.$ For ex., for $x_0 = 0.2$ $T_3 = 1.33$. 9

Effects of exponential HCRs on fishery time frame for the same x ₀ = 1 and c = 0.2501 in M-4 and M-5								
Model	Catch y	Catch growth rate γ	Time left until full depletion					
M-4	<i>y</i> = <i>c</i> = const	0	310					
M-5	$y = ce^{\gamma t}$	0.02	13					
M-5	$y = ce^{\gamma t}$	-0.02	Infinity*					

* Fish stock recovers after the initial plunge to a high sustainable level after catch y becomes lower than the natural net increment $x - x^2$.

Only negative partial derivative and partial derivative with alternating algebraic sign are explicitly shown with *N* and *A*, respectively. The predator-prey system of two ODEs with tamed hyperbolic element c/x for p < 0, q > 0

- S-1 has non-trivial stationary state $E_s = (x_s, c_s)$
- Proposition 10.
- (a) Stationary state E_s is locally
- asymptotically stable.
- (b) E_s is stable node if $0 > p \ge -q^2$;
 - E_s is stable focus if $p < -q^2 < 0$.
- In both cases, it is hyperbolic.

Policy optimization in S-1 Optimization criterion is grasped as cumulative catch *c* under penalty $\delta < 0$ for negative *c* $\operatorname{Max}\left(\begin{array}{cc} T & T \\ \int c dt + \int \delta dt \\ 0 & 0 \end{array}\right)$ for the two given ODEs with $z_0 = (x_0, c_0), p = -q^2, T = 10$ initially: $0 \le c_0 = 0 \le 1$ and $1 \le q = 1 \le 3$.

Average results of sustainable HCRs over years 0–10 (<i>k</i> = 0.5 in M-2, <i>m</i> = 1 in M-3, optimal <i>c</i> ₀ and <i>p</i> in S-1)											
For $x_0 = 1$											
HCR		Stock		Catch		Net change					
		x		\mathcal{Y}		\dot{x}					
Linear		0.57		0.285		-0.051					
Quadratic		0.54		0.294		-0.053					
Optimal		0.52		0.297		-0.053					
For $x_0 = 0.1$											
HCR	Sto	$\operatorname{ock} x$	Ca	atch y	N	et change	\dot{x}				
Linear	0.	341	0	.171		0.039					
Quadratic	0.	419	0	.189		0.040					
Optimal	0.	433	0	.192		0.040					
_						16					

Harvesting in M-2 (k = 0.5), M-3 (m = 1) and S-1 (policy optimization) for $x_0 = 1$ (l.) and $x_0 = 0.1$ (r.), years 0–10

Conclusion

- •The aggravation regime arises from dominance of the positive feedback connecting biomass *x* and its growth rate in Arnold M-4 (open loop HCR with catch *c* = const).
- For reversing decline in fish stock x, catch y has to become lower than natural net increment $x - x^2 > 0$. Such a reduction promotes ability of depleted stocks to recover from otherwise a dangerously low level.
- •The policies of improving biomass catch and renewal are elaborated in M-3 (quadratic HCR) and predator-prey S-1 (enhanced HCR); quadratic HCR is more cautious than linear.
- •Cumulative sustainable catch is raised in S-1 in relation to M-2 (linear HCR) and M-3 (quadratic HCR) due to policy optimization over 10 years. This policy is even more cautious.

References

- Arnold V. I. 1990. Catastrophe Theory.
- Clark C. 1990. Mathematical Bioeconomics.
- Kurdyumov S.P. 2006. Aggravation Modes.
- Kuznetsov Y. A. 1998. Elements of Applied Bifurcation Theory.
- Larkin P. 1977. An epitaph for the concept of maximum sustained yield.
- May R. 1977. Thresholds and breakpoints in ecosystems...
- Morecroft J. 2007. Strategic Modelling and Business Dynamics.
- Schaefer M.B. 1954. Some aspects of the dynamics of populations...
- Whelan J., G., Diamond A. 1994, 2001. Building the Fish Banks Model and Renewable Resource Depletion.
- World Bank. 2017. The Sunken Billions Revisited. Progress and Challenges in Global Marine Fisheries.

Salvador Dali: surrealism - realism feedback (sunlit reproduction)

Halldor Laxness (1957) The Fish Can Sing

The Fish Can Sing is one of Islandic Nobel Prize winner Halldór Laxness's "most beloved novels, a poignant coming-of-age tale marked with his peculiar blend of light irony and dark humor."