System Dynamics in Primary and Secondary Education What we're learning about how kids, and their teachers learn...

> Lees Stuntz and Anne LaVigne Creative Learning Exchange ISDC 2018, Reykjavik, Iceland

Jay's vision for K-12 – always present as a challenge

On the shoulders of giants, who have consistently stood by K-12 efforts from the beginning...

...and John Bemis

1980s

With gratitude to so many *beyond* K-12 education, who have supported K-12 work

System Dynamics is HARD – one reason why it's difficult to increase adoption.

Innovation Characteristics that influence Rate of Adoption

- 1Relative
AdvantageDegree to which the innovation is superior to
existing products
- 2 Compatibility Degree to which the innovation matches the values and experiences of the individuals

³ Complexity Degree to which the innovation is relatively difficult

to understand or use

4 Divisibility Degree to which the innovation can be tried on a limited basis

5 Communicability Degree to which the beneficial results of use are observable or describable to others

Kids can't start here...and neither can most people, for that matter.

Scaffolding – an engineering <u>and</u> an educational methodology

How do we scaffold the critical thinking skills generated by System Dynamics?

- •Creating interesting and engaging contexts:
 - Stories
 - •Games
 - Simulations
- •Using age appropriate, visual tools

Barry Richmond's Eight Systems Thinking Skills

- 10,000 Meters Thinking
- System as Cause Thinking
- Dynamic Thinking
- Operational Thinking
- Closed-Loop Thinking
- Scientific Thinking
- Generic Thinking
- Empathic Thinking

Habits of a Systems Thinker from the Waters Foundation

Scaffolding understanding of ...

- Behavior over time
- Feedback
- Accumulation
- •Modeling

Scaffolding understanding of behavior over time through stories, simulations, and kinesthetic experience

Student graphs for a story ... up close

Representing continuous trends while playing the World Climate Simulation

Scaffolding understanding of feedback through stories, kinesthetic experience, and connection circles

Activities that engage and teach feedback concepts

Connection circles ... a tool created by educators

©2018 Creative Learning Exchange, www.clexchange.org

Working in K-12 education to develop Systems Citizens

Permission granted for copying and for electronic distribution for non-commercial, educational purposes with attribution

From using connection circles to find feedback... Students identified

©2018 Creative Learning Exchange, www.clexchange.org

Working in K-12 education to develop Systems Citizens

Permission granted for copying and for electronic distribution for non-commercial, educational purposes with attribution

...to drawing loop diagrams

Scaffolding understanding of accumulation through kinesthetic experience, games, simulation, and models

Thinking about their garden's health, variable names are painted on rocks, so kids can "play" anytime.

Shoe stockroom – A variation of the Inand-Out Game from *The Shape of Change*.

CREATIVE LEARNING Exchange Making Thinking Visible

©2018 Creative Learning Exchange, www.clexchange.org

Working in K-12 education to develop Systems Citizens

Permission granted for copying and for electronic distribution for non-commercial, educational purposes with attribution

Simulation that engages within curricular contexts

Copying simple models within engaging topics and challenges

Dive in – How can you stop zombie chickens from overpopulating planet Earth?

Model Mysteries

An Exploration of Vampires, Zombies and Other Fantastic Scenarios to Make the World a Better Place

Anne LaVigne and Lees Stuntz in collaboration with the Creative Learning Exchange

CREATIVE LEARNING Exchange Making Thinking Visible

... then connecting the same model to other contexts.

Story 1: Dodo Disappearance

Overview

In the 1600s, the dodo, a type of bird went extinct. Use this model to consider the basics of why this animal became extinct and how that extinction might have been stopped.

Details

- 1. Time units_
- 2. Dodos (stock)_____
- 3. Birth fraction
- 4. Death fraction

D Dare

- Re-label and change the numbers in the previous model to make sense for this situation.
- 2. Determine how long it would take for the population of dodos to disappear.

Dodo, by Christian Friedrich Stölze. Public Domain

In summary...

With scaffolding, students (and their teachers) can draw BOTGs, identify feedback, create S/F maps, and copy/modify models BUT... it's still difficult for them to build their own original models.

What now?

- How do we make the "leap" for students and teachers from simulations and copying models to creating models?
- •We needed a visual, attractive and easily understandable bridge between current effective K-12 methodologies and the abstract modeling software available.

Building a bridge...

From water in an MIT basement.....

"In 1968, Jay started a student-run System Dynamics Laboratory course. The lab part was a room in the basement of the Sloan School. The purpose of the lab course was to give students some hands-on experience and physical, intuitive feel for some systems behavior. I was asked to design the course and stock the empty room with slow-moving, intuitive physical systems. I procured tanks of water, plastic tubing, valves and clamps for hydraulic experiments, and also springs, weights, and electrical devices."

David W. Peterson

...to "Tubs & Pumps"

The "Tubs and Pumps" activity, developed by Chris Browne, Barry Newell and Katrina Proust

...to Splash!

©2018 Creative Learning Exchange, www.clexchange.org Working in K-12 education to develop Systems Citizens - + 📐 - 🔪

Permission granted for copying and for electronic distribution for non-commercial, educational purposes with attribution

Quotes from students at BETA testing

- "The animation of the particles in Splash! makes it much easier to see the relationships between different variables, as well as the making of Systems Thinking models much more interactive." 8th grader
- "It is easy to use and the colorful liquid physics simulations make the modeling process fun and exciting. I think *Splash!* does a great job of making systems dynamics modeling intuitive." 12th grader
- "The app is fun to use, the fluid is beautiful to look at! and it teaches you system dynamics without you knowing." 10th grader

Splash! and SplashCards

A creative collaboration between

VISUAL INTERFACES FOR SERIOUS SIMULATIONS

©2018 Creative Learning Exchange, www.clexchange.org

Working in K-12 education to develop Systems Citizens

Permission granted for copying and for electronic distribution for non-commercial, educational purposes with attribution

Going Forward

- We need experienced SD professionals to reach out and motivate pre-college educators and students.
- We are here to help, to cooperate with you, to support you in your efforts.

Going Forward

Resources available through the Creative Learning Exchange

- •Splash!
- Simulations
- •Books
- Curriculum
- DynamiQueST
- Capacity Building Workshops

Help us create systems citizens of the world who can handle complexity.

Stay connected http://www.clexchange.org

stuntzIn@clexchange.org and lavignea@clexchange.org

Donate to Splash! clexchange.org/splash

