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With major advances in data analysis tools in recent years, constructing models 

grounded in data has become an increasingly promising topic. There are four categories in 

model construction where data may be used: discovering causal relations, the polarity of 

relations, stock variables and mathematical expressions (see Figure 1). In this work, we focus 

on discovering (1) polarity of relations, (2) stock variables, and (3) mathematical expressions, 

by applying correlation analysis, curve fitting, and structural equation modeling (SEM) on 

“simulation-generated” data. 
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dY/dt = f1(X) 

X= f2(Y) 

Figure 1: Types of Causality Inferences in Model Construction 

In this study we assume that we have real-life (non-experimental) dynamic data about 

multiple system variables.  'Synthetic' data generated by Vensim model simulations (with 

DT=1). Secondly, it is assumed that the boundary of the system is well-chosen for the 

problem. Finally, it is assumed that the collected data range is enough to represent the overall 

causal relation. To perform the analysis, R programming language is used. 

  

 

Figure 2: CLD, SFD and Behavior of Population-Death Model 

Spearman correlation analysis is used to discover the signs of the causal relations. We 

consider a population model with only death outflow (see Figure 2).  A perfect positive 

correlation, 1, between “death and population” is obtained. This is misleading, as death does 

not have a positive effect on the population. The reason for this spurious situation is the lack 

of stock-flow information in causal loop diagram (CLD). When the stock-flow information is 
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included in the method, a perfect negative correlation, -1, is correctly obtained between death 

and the rate of change of population. However, correlation analysis with SFD can still 

produce misleading results when there are more than one causal links affecting the same 

variable with a perfect multicollinearity. To resolve the perfect collinearity, noise can be 

introduced (just like in real data) and then, the partial correlation analysis can be applied.   

  

  

Figure 3: Alternative SFDs and their behaviors, derived from population-Death Data 

Discovering SFD using a known CLD is investigated by curve fitting. Briefly, possible 

monotonic relations are fitted to both “x→y” and “x→dy/dt” for each “x→ y” in CLD. Then, 

the fits are compared according to the performance measures root mean square error (RMSE) 

and mean absolute percentage error (MAPE). The best fit is checked whether it is directly 

fitted to the effect variable,“y”, or to the rate of change of the effect variable, “dy/dt”. This 

procedure is applied to the population-death model of Figure 2. By keeping at least one 

variable as stock, we obtain additional two SFDs by curve fitting (see Figure 3). Obviously, 

the two SFDs in Figure 3 have nothing to do with the true structure. Therefore, even for very 

simple models, automatic determination of stock variables from data is not possible.  

Figure 4: A Procedure of Discovering Mathematical Expressions 
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Finally, Mathematical expressions are estimated based on an assumed stock-flow 

diagram. The whole procedure is represented in Figure 4. Curve fitting for a single causal link 

is promising, although modelers must make sense of the constant values in the equations. For 

multiple causal links, SEM can only be applied when the effect functions are linear. But when 

there are perfect linear deterministic relationships between variables, SEM cannot converge 

because of multiple solutions and/or zero-variance problem, which do not exist when the data 

involve randomness/noise. There are many other difficult research problems that must be 

tackled in order to advance automated model construction from data.  
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