Innovation Opportunities Emerging from Responsiveness and Co-located Manufacturing

Lauri Saarinen

a University of Lausanne, Faculty of Business and Economics, 1015 Lausanne, Switzerland
lauri.saarinen@unil.ch
Tel.: +41 78 933 94 97

Introduction: In this article we study the link between innovations and manufacturing. We focus on a specific part of this relationship, by investigating how responsive manufacturing can foster innovations. We propose that this link is uncharted and undervalued, which can undermine the investment in manufacturing. Responsiveness through co-locating manufacturing with either the market or with the R&D encourages innovation: Customer ideas are more easily communicated, and product and process innovations are more rapidly tested. We develop a system dynamics model of the interaction between responsiveness and innovation based on mechanisms that link manufacturing responsiveness to innovativeness in our empirical observations. Classical learning curve models (Wright 1936), learning and innovation modeling (e.g., Anderson and Parker 2002, Adner and Levinthal 2001, Repenning and Sterman 2002, Rahmandad 2012, Erat and Kavadias 2008, Girotra et al. 2010) are important to the argument that we will present in this paper.

Link between responsive manufacturing and innovations can be demonstrated by recent developments from footwear supply chains. Adidas has been innovating with their future supply chain by investing in a “Speedfactory” to bring shoe manufacturing close to markets (Bain 2017). “Speedfactory” allows far greater responsiveness enabling Adidas to bring new and customized products to market by cutting the time from designer’s idea to finished products from months to days. Customization of products and designs will enable capturing ideas from users and testing products fast in markets. This enables faster learning and innovation in materials, technology and designs (Vincent 2017, Shotter and Whipp 2016).

Research method: Our study is an exploratory research to establish the existence and value of the proposed responsiveness-innovation link. We use System Dynamics (SD) model grounded to empirical observations. Following examples of previous SD studies (Repenning and Sterman 2002, Gray et al. 2017, van Burg and van Oorschot 2013), we do not begin by identifying factors in our model theoretically, but rather observing how certain types of innovation consistently emerge from specific types of responsiveness. Our empirical observations are gathered from 11 firm cases. We summarized our main empirical observations into four mechanisms that link the responsive manufacturing to innovation generation. 1. Responsiveness and product innovation are linked through specialization, customization and servitization. These innovations are
the product of three types of responsiveness: time-based, market-based and development-based. 2. Reverse
margin retreat: local and responsive manufacturing encourages innovation at the low-end of the manufac-
turer’s product portfolio. 3. Process flexibility innovation. Responsive manufacturers invest in finding ways
to lower the cost of responsiveness. 4. Innovation for new use cases for capacity. Finding innovative ways to
utilize capacity buffers required for responsiveness during low demand periods.

System dynamics modeling: Our system dynamics model extends the current understanding of the
link between manufacturing and innovation by exploring the mechanisms how specific types of responsiveness
increases the innovative capacity and how the returns of the innovations can create a virtuous cycle of learning
effects that have been demonstrated in previous research (see e.g., [Anderson and Parker 2002, Rahmandad
2012, Repenning and Sterman 2002]). The main modeling for our research questions lies in the Innovation-
Responsiveness model. It is accompanied by production and inventory model based on the Sterman (2000
p.801) model.

Testable propositions for responsiveness and innovation link for manufacturer: Simulation is
used to capture emerging testable propositions for the responsiveness and innovation link for future research.
1. Innovation returns accumulate over time: “path-dependence”, 2. Responsiveness of manufacturing gener-
ates innovation returns in product and process development, 3. The higher the returns for innovativeness, the
higher the investment in responsiveness, 4. Misclassifying innovative products as functional leads to missed
learning opportunities, 5. “Pain before gain” of investments in responsiveness.

Discussion: The contribution of this research is to explore the link between innovation and manufactur-
ing and identify testable propositions through SD modeling and simulation. We propose research questions
for future modeling and empirical research to study. We identified mechanisms linking responsiveness to
increased innovativeness, and the following performance gains.

The identification of mechanisms linking the innovations and manufacturing responsiveness increases
the value of local manufacturing capacity. While utilizing global value chains for enhancing innovation and
development capabilities as discussed by [Lee and Schmidt 2017] is a valuable source of development capacities
in global value chain networks, the responsiveness-innovation link we have explored focuses on the local level.
These different viewpoints are complements. The value of enhancing innovation depends on the industry
and the life-cycle of current technology as was proposed by our model. For decision making perspective
our modeling of innovation-responsiveness link suggests that the decision maker should include innovation
and learning aspects to the capacity location decision. This proposition is in-line with previous research on
the learning effects and capability building ([Anderson and Parker 2002, Rahmandad 2012, Repenning and
URL http://pubsonline.informs.org/doi/abs/10.1287/mnsc.47.5.611.10482


URL http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1090.1099


URL http://www.nber.org/papers/w22879


URL http://pubsonline.informs.org/doi/abs/10.1287/mnsc.47.1.102.10666


URL http://linkinghub.elsevier.com/retrieve/pii/S0272696317300128

URL http://doi.wiley.com/10.1111/poms.12223

URL http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1070.0784


URL http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1090.1144

URL http://linkinghub.elsevier.com/retrieve/pii/S0272696317300086


URL http://pubsonline.informs.org/doi/abs/10.1287/msom.1030.0028


URL http://doi.wiley.com/10.1111/poms.12665

URL http://linkinghub.elsevier.com/retrieve/pii/S0278612512000179

URL http://pubsonline.informs.org/doi/abs/10.1287/orsc.1100.0628

URL http://doi.wiley.com/10.1002/smj.2354

URL http://doi.wiley.com/10.1002/smj.852

URL http://doi.wiley.com/10.1111/1540-5885.1850285

URL http://journals.sagepub.com/doi/10.2307/41166101


URL http://linkinghub.elsevier.com/retrieve/pii/S027269630500152X

URL http://linkinghub.elsevier.com/retrieve/pii/S027269639800028X

URL http://linkinghub.elsevier.com/retrieve/pii/037722179290011W
URL http://www.ft.com/cms/s/0/7eaffc5a-289c-11e6-8b18-91555f2f4fde.html


URL https://crypto.unil.ch/docview/213815046/, DanaInfo=search.proquest.com+abstract


URL http://linkinghub.elsevier.com/retrieve/pii/S0272696315000595

URL http://linkinghub.elsevier.com/retrieve/pii/0305048375900687


URL http://amj.aom.org/cgi/doi/10.5465/amj.2010.0742


URL http://pubsonline.informs.org/doi/abs/10.1287/mnsc.32.7.791


URL http://linkinghub.elsevier.com/retrieve/pii/S0276986310000847

URL http://linkinghub.elsevier.com/retrieve/pii/S0276986317300116