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Over the past few decades the field of “network science” has exploded in pop-
ularity (Barabási, 2016). A fundamental tenant of this research is that network
structure – who interacts with whom – matters for individual and collective out-
comes (e.g. Watts and Strogatz, 1998; Newman, 2003; Burt, 2005). One criticism
of compartmental system dynamics (CSD) models is the lack of an underlying
network specifying the topological structure of interactions among individuals.
Within compartments, individuals are assumed to be well-mixed and in many
cases the interactions between compartments are assumed to occur at random.
The effect of these assumptions can be substantial. For example, Rahmandad and
Sterman (2008) show that for clustered network topologies the predicted dynam-
ics of a standard contagion model differ significantly when simulated using an
agent-based model (ABM) that fully accounts for network structure versus a CSD
that does not. Despite this potential shortcoming, CSDs have many advantages
over models with fully represented networks including computational efficiency,
clarity of exposition, and more tractable analysis.

However, as this paper demonstrates, CSDs and networks are not mutually
exclusive. We describe a framework developed primarily in theoretical biology,
known as a pair approximation or correlation model, that can be readily im-
plemented using standard CSD tools, thus retaining the speed, simplicity, and
tractability of CSDs, while capturing a substantial portion of the effect of an un-
derlying network structure. We illustrate the approach and its effectiveness using
two examples, a standard SIS epidemiological model and a new model of social
contagion that we call SIS2.

While the mathematics of the pair approximation have been substantially de-
veloped elsewhere (e.g. Keeling, Rand and Morris, 1997; Morris, 1997; Van Baalen,
2000), exploring this method in this special anniversary issue of the System Dy-
namics Review makes two important contributions. First, for system dynamics
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modelers, this paper introduces a relatively simple method of capturing the some-
times important effects of network structure while maintaining the many benefits
of the CSD methodology. Second, we believe that with this tool in hand, experts
in CSD modeling will be able to make new contributions to understanding phe-
nomenon where networks matter. To date, applications of the pair approximation
approach have been largely confined to analytic models in theoretical biology and
physics, and while the mathematical analysis of the pair approximation is sub-
stantially more tractable than analysis of fully represented networks, in all but the
simplest models analytic solutions remain unobtainable. The simulation toolkit of
CSDs and interdisciplinary expertise of CSD modelers are perfectly suited to ex-
panding the range of dynamic systems that can be represented and analyzed with
this approximation method.

The basic idea behind the pair approximation is to move from compartments
that represent individuals in a given state to compartments that represent con-
nected pairs of individuals in pairs of states. For example, in the standard Susceptible-
Infected-Susceptible (SIS) model from epidemiology, there are two compartments
– S and I – representing the number of individuals in the population in the
susceptible and infected states, respectively. In the pair approximation CSD,
there are four compartments, SS, SI , IS, and II representing ordered connected
susceptible-susceptible pairs, susceptible-infected pairs, infected-susceptible pairs,
and infected-infected pairs, respectively.1 Flows specify the rates of transitions
between these pair types. As we show by comparing simulation results with CSD
predictions from the standard SIS model and the pair approximation CSD, this
modest increase in model complexity goes a long way towards closing the gap
between the standard well-mixed CSD and the full blown ABM.

In addition to better approximating the ABM results, we show that the pair ap-
proximation SIS model provides additional insights into the dynamics of diffusion
that are unobtainable with the standard SIS CSD model. Specifically, we derive
an analog of the epidemic threshold for contagion that shows how concentration
of infected individuals in pockets of the population can inhibit diffusion (or, alter-
natively spreading “seeds” of a new product or message widely can encourage its
spread), and we demonstrate how the model can predict non-monotonic diffusion
curves observed in ABM simulations.

The basic pair approximation introduces no new model parameters beyond

1One can reduce this to three compartments using unordered pairs, but this makes maintaining
units consistency less transparent. Because the population size remains constant, another state
variable can be eliminated, and thus the system of equations is second-order as opposed to the
first-order system of the standard SIS model.
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those used in the standard CSD model, and thus requires no additional data for
model calibration. A downside of this feature is that, like the standard CSD,
the approximation cannot account for variability introduced by network structures
that differ from one another in any way beyond average degree.2 In particular,
network clustering, the probability that two nodes in anetowkr with a connection
in common are themselves connected, is a triadic property that is know to have
strong effects on many network dynamics (Watts, 1999; Burt, 2005; Centola and
Macy, 2007; Lamberson, 2015) that cannot be detected by either the standard CSD
or the basic pair approximation. However, as we describe, by introducing one
additional model parameter we obtain a “cluster corrected pair approximation”
that improves the model fit in highly clustered networks and allows the researcher
to examine the impact of network clustering on the predicted dynamics.

Finally, we apply the pair approximation CSD to a new model of social con-
tagion that we call SIS2. In this model, just as infected individuals can transmit
an infection to susceptible individuals, susceptible individuals can “cure” their
infected contacts. This model of two-way influence may be a more accurate rep-
resentation of how social contagions, such as rumors (Sunstein, 2014), emotional
states (Kramer, Guillory and Hancock, 2014), or political behavior (Bond, Fariss,
Jones, Kramer, Marlow, Settle and Fowler, 2012) spread. As we show, in a stan-
dard CSD two-contagion is equivalent to one-way contagion with a reduced in-
fectivity parameter. But using an ABM, we demonstrate that in fact the dynamics
of two-contagion are substantially different, and the pair approximation CSD ac-
curately captures this discrepancy.
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