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Abstract 

We propose a computational model framework to address multilevel phenomena with complex feedback 

structures, high uncertainty/variability and considerable heterogeneity at the individual level as well as 

lower in the system hierarchy, e.g. at molecular and cellular levels. Although researchers often use hybrid 

models to address these different aspects, we propose a framework based on differential equations and 

Monte Carlo methods. The paper begins by describing the case that motivated framework development—

recovery from concussion. Status of the project is a complex causal loop diagram. We review the process of 

developing this diagram as well as the literature on multiscale modeling and other potentially relevant 

methods. We describe the proposed framework and provide a mockup of what the results of using the 

framework might look like. This is a progress report, not a finished product. 

1. Introduction 

We are motivated to identify and develop a framework for modeling multi-level systems in order to 

understand better the pathophysiologies and healing processes associated with recovery from concussion. 

Concussion is an incredibly complex injury/disease syndrome, as is often the case with transdisciplinary 

problems. The brain is by far the most complex organ in the human body, and  reliable biomarkers are still 

lacking(Kulbe and Geddes 2016) . There are few effective and reliable treatments, and it is difficult to know 

which treatment(s) to use for a given patient(Stein 2015). While many studies and clinical trials have 

collected some data on traumatic brain injury (TBI), data relevant to concussion (mild TBI) remains scant, 

especially at the patient level and for multiple time points. Although the classification scale used for 

traumatic brain injury (the Glasgow Coma Scale) has greatly benefited treatment and outcomes for those 

with severe injuries, the GCS has not shown to be as useful for mild cases of concussion(Chung and Khan 

2013). It is not even clear whether concussion is useful as a diagnosis. Better models are needed to support 

research, diagnosis, and treatment. 

Although computational models of such multi-level systems are necessarily vastly simpler than the system 

under study, they must nevertheless be able to incorporate a variety of considerations, including circular 

causality (feedback), uncertainty, variability, non-stationarity, and heterogeneity. Although modeling and 

simulation software packages with enhanced flexibility and capability are becoming increasingly available, 

most computational modeling environments feature one or in some cases perhaps two or three of the 

preceding considerations. 

This paper describes one particular modeling domain—that of concussion recovery—in some detail (Section 

2), briefly surveys available modeling methods (Section 3), and then proposes a hybrid computational 

modeling framework (Section 4). Section 5 concludes the paper with a mockup of the anticipated results of 

applying the proposed framework to the problem domain of interest. 

 

 



2. Background regarding the specific application domain: concussion recovery 

Our endeavor to create a dynamic model of concussion recovery began in early 2014 at a meeting of 25 

TBI/concussion researchers and practitioners, where we reviewed, corrected, and extended a very 

preliminary causal loop diagram (Figure 1). We provide several complex diagrams not for the reader to 

inspect thoroughly but rather to give a sense for the target domain and our evolving appreciation for the 

complexity of the problem. 

 

Figure 1: An early prototype causal loop diagram intended to illustrate key concept relevant to concussion 

recovery and stimulate discussion 

At the investigator team meeting, the modeling group created a demonstration computational model to 

show the potential of system dynamics for calculating concussion recovery trajectories (Figures 2 and 3). 



 

Figure 2:  An illustrative computational version of the initial causal loop diagram. 

 

Figure 3: Simulated mock patient recovery trajectories 

The investigator team of researchers and practitioners was very enthusiastic, so the modeling group began 

a detailed literature review; spoke with local neuroscientists, athletic trainers, and sports medicine 

physicians; and met with high school athletes recovering from concussion. Our revised conceptual model 

was especially influenced by concepts of predictive brain state (Ghajar and Ivry 2008; Ghajar and Ivry 2009) 

and neurometabolic cascade (Giza and Hovda 2001). We reviewed the revised CLD draft with these 

researchers and made further revisions. Figure 4 shows the result, which was presented at the second 

investigator team meeting in early 2015. We also located examples of reference behavior data (Figure 5). 
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Figure 4. Significantly enhanced (Phase II) causal loop diagram describing concussion 
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Figure 5: Reference behavior data. A. Memory recovery time (Lovell et al. 2003), B. Cellular level (Giza and 

Hovda 2014), C. Symptom and cognitive recovery time (McCrea, Broshek, and Barth 2015) 



 

Based on the well-received updated result, the modeling group further improved its understanding and the 

diagram via meetings with national concussion and TBI experts during 2015. By early 2016, the diagram had 

evolved considerably, as shown in Figure 6. 

 

Figure 6: Phase III causal loop diagram of concussion and recovery 

 

The modeling group was encouraged to publish these findings, but soon realized that before they could 

publish the causal loop diagram, it would be necessary to describe the multiple scales over which the 

phenomena of interest operates. An additional and necessary diagram (Figure 7) was developed, and the 

CLD was further revised (Figure 8). 

 

Figure 7. The multiple scales involved in concussion and recovery 



In parallel with enhancing their understanding of the phenomena reflected in these diagrams, the modeling 

group was also determining how best to create a useful computational model of at least part of the 

diagram. Creating a stock and flow version of the diagram in Vensim and guesstimating the equations and 

parameter values would likely be neither feasible nor sufficient. The next section considers some of the 

options for computational modeling.



 

 

Figure 8: Phase IV version of the causal loop diagram for concussion and recovery 



3. Background: Potentially Useful Methods and Related Fields 

Hybrid modeling methods could be useful because they allow a modeler to blend together, for example, 

aggregate variables modeled via ODEs and algebraic equations, along with system characteristics that are 

treated as unique heterogeneous entities that interact in complex ways, perhaps using disaggregated 

network logic of some sort. Such hybridization might operate at a single scale or integrate across scales, 

with entities at lower scales and equations at higher scales, for example. 

Other methods to consider include meta modeling, spatial modeling, Markov chains/networks, Bayesian 

networks, artificial neural networks, fuzzy logic, finite element methods, multi-compartment models and 

various data-driven (black box or machine-learning) methods and models, structure-oriented statistical 

methods such as HLM, SEM, and path models, signal processing models and methods. Computational 

biology methods, which tend to be computer science inspired, and include SBML (Systems Biology Markup 

Language, focused on defining species, compartments, reactions, etc.) and methods used to model tissues 

and organ systems from the cellular level to overall functioning. Computational neuroscience aims to create 

realistic and/or simplified brain models, and models of neural networks and information processing. 

Materials science employs hierarchical, multilevel/multiscale models and methods that may be relevant in 

the concussion context due to the broad range of relevant physical and temporal scales. These methods 

employ different methods at different scales, and strive to facilitate the communication of information 

across scales. Meta-models and response surface approximations are frequently utilized (see Table 1). 

Table 1. Metamodeling overview (from (Wang and Shan 2007)) 

 

Looking specifically at multiscale / multilevel methods, (Weinan, Engquist, and Huang 2003) describe a 
heterogeneous multiscale methodology for efficient numerical multi-scale computation. Their method 
relies on efficient coupling between macro- and micro-scale models. Applications include homogenization, 
dislocation dynamics, and crack propagation. 



(Kevrekidis, Gear, and Hummer 2004; Kevrekidis and Samaey 2009) suggest that the best descriptions of 
complex systems are often expressed at a microscopic (atomistic or agent) level, whereas the important 
tasks to be done are meaningful only at more aggregate levels, including parameter estimation, behavioral 
prediction, and optimization. They offer an approach referred to as “equation-free” that allows a modeler 
to implement macroscopic tasks directly on microscopic models via computational experiments. The 
method relies on matrix free numerical analysis and systems theory tools to enable one to explore complex 
systems dynamics. 

Deep uncertainty (Kwakkel and Pruyt 2013; Pruyt and Islam 2015) is a method for addressing the 

uncertainty inherent in dynamic models intended for prediction. The method has been used with various 

simulation approaches including systems dynamics, agent based methods, and hybrid techniques. Results 

include classification of the dynamic complexity of simulation runs and iterative techniques for sampling 

simulation outputs to identify interesting cases. 

A review of modeling formalisms used in systems biology is provided by (Machado et al. 2009) including the 

criteria that must be addressed by an integrating framework. They identify Petri nets as a suitable model, 

recognizing that no one formalism supports all relevant purposes. Specifically useful for modeling 

metabolism networks. (Ayton, Noid, and Voth 2007) review progress regarding multiscale modeling of 

complex biological processes, including the structure and dynamics of lipid membranes, proteins, peptides 

and DNA over scales from atomic to macroscopic. Advances rely on theories and methods for constructing 

accurate multiscale bridges for transferring information between scales. Eissing and colleagues (Eissing et 

al. 2011) describe a computational systems biology software platform for multiscale modeling of whole 

body physiology. Modeling of pancreatic tumor progression and response to pharmacotherapy in virtual 

patients demonstrates the use of platform. Core components include: 1) PK-Sim for pharmacokinetics, 2) 

MoBi, a graphical biological modeling tool for developing differential equation systems as well as export to 

Matlab, and 3) MoBi integrations with Matlab and R to facilitate analysis and visualization. 

Cancer is simulated at multiple biological spatial and temporal scales (Deisboeck et al. 2011) and is a useful 

tool for sharpening hypotheses, experiments, and prediction. These successes rely on methods for linking 

model components at different scales fostered by interdisciplinary collaboration facilitated by web-based 

infrastructure. The result is models with increased clinical applicability. These models represent the 

interactions among cancer cells and with their microenvironment. Researchers believe that biological 

experiments are not enough; cancer is a systems disease and must be studied across scales ranging from 

atomic and molecular to tissues to macroscopic (tumor behavior and morphology). Techniques include 

discrete, continuum, and hybrids to effect the necessary balance between realism and computational 

resources. Cancer is a highly context dependent and emergent phenomena, much like concussion. Models 

include hybrid agent-based and artificial neural networks at the cellular level(Gerlee and Anderson 2007), 

continuum models with heterogeneous time-dependent parameters at the macroscopic level(Smallbone, 

Gatenby, and Maini 2008), and adaptive hybrid models that combine the two(Stolarska, Kim, and Othmer 

2009). 

Another systems biological multiscale modeling endeavor is the virtual physiological rat project (Beard et al. 

2012). Referred to as VPR, the project involves integration of multiple models and data sources; the 

resulting composite models exhibit emergent behavior not predicted by the individual models, including 

pathophysiological functioning. Tools include workflows to facilitate connections between component 

models and use of the software package SemGen, Web Ontology Language, and the Mathematical 

Modeling Language in JSim. VPR focuses specifically on cardiovascular dynamics, solute transport, energy 

metabolism, and mapping genetic variability to model parameters. Model representation relies on the 



systems biology markup language (SBML) and CellML standards, and participants share models and 

associated metadata via online repositories. Supported mathematics include algebraic equations, ordinary 

differential equations, and a limited class of partial differential equations. Use of biomedical reference 

ontologies is key to integration efforts, including gene ontology, cell type ontology, functional model of 

anatomy ontology, systems biology ontology, and kinetic simulation algorithm ontology. Example 

demonstrates modeling vascular blood flow regulation in a single vessel. 

An example of brain-specific multiscale modeling that integrates across scales from receptors and ion 

channels to cellular function to multiple neuron populations to neural system function and behavior is 

(Bouteiller et al. 2011). Relevant timescales range from milliseconds to minutes, hours, and longer. While 

much research has focused on the levels from cellular to systems, Bouteiller et al. focus on integration of 

molecular events into synaptic and neuronal function, with a key application being to study the effects of 

drugs on the nervous system. And, DAngelo et al. (2013) describe methods to model neurons and synapses, 

microcircuits, and large-scale brain networks to help understand signal coding, communication, and 

plasticity as well as the details of neuronal connectivity and dynamics and their impact on brain functioning.  

Effectively balancing reductionist and holistic approaches is necessary. 

While the present research would benefit at some point from the formalisms and tools of systems biology, 

at the current early prototyping stage it will likely be most practical to develop the system of equations in 

Vensim and transfer them to R or MATLAB for data integration and development of algorithms to address 

heterogeneity and uncertainty. The next section describes the proposed computational framework. 

  



4. Methods: A hybrid computational modeling framework 

The starting point for developing a computational model in our case is a detailed causal diagram depicting a 

large number of elements and their interconnections. One must then determine how to represent and 

clarify the meaning of connections between elements. For example, a connection could mean that the 

impacting element should be present on the right-hand side of the equation for the impacted element, or it 

could represent some type of a contingency or discontinuous dependency/threshold. There is also is a 

desire to determine (calculate?) behavior through time, which is often done by solving a set of differential 

equations, typically a set ordinary first-order differential equations in time (rates of change). 

In the present case, estimating the recovery trajectory for a particular individual will require effective 

representation of the individual’s particular characteristics and details regarding their injury via sets of 

unique parameter values. That every patient is different is referred to as patient heterogeneity, and the 

research community believes that capturing these differences is one of the keys to increasing 

understanding of complex biological systems such as concussion pathology and the associated recovery 

processes. We hope, however, that rather than needing to treat each patient as unique, groups or clusters 

of patients whose responses to a concussion and the associated recovery process are similar enough that 

they can be considered/studied/modeled as a group or cluster. 

The characteristics of a patient or patient group/cluster could be a vector of parameter values that may or 

may not include both mean values and degree of variability. It is not yet clear whether the latter could be 

determined from the overall patient population or will need to be different for each patient/cluster. 

It seems likely that in order to provide confidence bands around estimated trajectories, it will be necessary 

to use a Monte Carlo approach to make a set of model runs for each patient or cluster. Each model run 

would sample from probability distributions for highly uncertain parameter values, thereby creating a 

family of trajectories for outcome metrics. Confidence intervals could be estimated at key time points for 

these metrics to create plausible upper and lower bounds for the estimated trajectories. However, doing so 

might be highly computationally intensive, and therefore necessitate the development of an efficient 

sampling strategy. 

If data regarding the recovery trajectories in terms of key metrics for individuals/clusters is available, then it 

might be possible to estimate unknown or latent parameter values. Such data could also help to estimate 

the variability of key input parameters and outcomes, both at the population level and within identified 

clusters of patient trajectories. 

It seems likely that it may also be the case that rather than treating the brain as a single aggregate organ it 

may be necessary to estimate different parameters for various “regions” of the brain, either for an 

individual or for a group of similar individuals. Questions include how best to represent/model 

brain/network properties/logic/functioning/behavior and at what resolution, and whether parameters 

differentiated by brain region are orthogonal to or highly correlated with parameters differentiated by 

patient group/cluster. 

Another important and difficult challenge is determining the “right” model boundary. This involves deciding 

which processes to include at least at the outset, and which to exclude despite their potential relevance. 

The modeler must also determine which aspects to treat as exogenous, either as constants or as exogenous 

time series. Such aspects can influence the recovery process and the patient experience, but not the other 

way around. Conversely, the modeler must determine what to include as endogenous 



components/aspects/variables that influence patient experience and recovery, and are in turn influenced 

and changed during the recovery process. 

Another question regards how to incorporate, integrate, or couple the computational model to the results 

of statistical/correlational/black-box data analysis/datamining/machine learning models. These latter 

models are applied to datasets that may contain aggregate data and/or individual data regarding injury 

nature and severity, patient signs, symptoms, and deficits (SSDs) collected immediately post injury, as well 

as treatments, therapies and other interventions applied at different time points. Ideally, these datasets 

would also provide longitudinal data regarding the patient’s recovery “trajectory” in terms of SSDs, and 

their ultimate outcome. 

Figure 9 synthesizes the requirements for the framework into block diagram. From the causal loop diagram, 

a Vensim model is specified and calibrated, reflecting baseline or typical parameter values. Data arrays are 

developed containing typical and patient specific parameter values. Some of the parameter values will be 

constants and others with specify the parameters of probability functions (pdfs) reflecting sources of 

uncertainty/variability. Then scripts will be developed to make sets of simulation runs representing 

different patients or clusters of patients (heterogeneity) and also reflecting uncertainty via sampling from 

probability distributions in Monte Carlo fashion. Results will be summarized visually to facilitate 

interpretation. 

 

Figure 9. Computational framework block diagram 

This preliminary framework does not include the logic for estimating model parameters for a particular 

patient or cluster in order to achieve the best fit between model-calculated trajectories and the empirical 

data. More importantly, the framework does not yet fully accommodate the multilevel nature of the 

problem portrayed in Figure 7. It is likely that the conceptual and temporal model boundary will be drawn 

so that the core logic of the model can appropriately be a set of differential equations; suggesting further 

that cellular and network-related processing would need to be treated in an aggregate, perhaps regional, 

fashion that could be amenable to modeling with equations rather than agents. 

5. Anticipated Results 

We anticipate that the computational model will be capable of being calibrated to generate differential 

recovery trajectories at the patient or patient cluster level. Some of the parameters would be specified 

based on empirical data, and other parameters would be estimated using optimization methods to 



minimize model fitness error. Figure 9 provided a mock up a dashboard showing the results of applying the 

model and framework to clustered patient level data. Model trajectories are not expected to match the 

data to the degree shown in the mockup. 

 

Figure 10. Mockup of Model Results Dashboard. Purely fictitious for illustration only. Would show key user-

specified parameter values, estimated parameter values, plots of case data, and model calculations by 

cluster along with fit statistics. Final results will likely look significantly different. 

6. Conclusion 

This progress report has demonstrated that a causal loop diagram describing the relevant factors and 

variables germane to understanding the pathophysiology of concussion is very complex. It is not known 

how best to create a useful computational model. It remains to be seen whether the somewhat augmented 

but fundamentally system dynamics approach outlined in this paper be up to the task, or if it will be 

necessary to move fully into the world systems biology and take advantage of its emerging and truly 

multiscale ontologies and methods. 
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