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ABSTRACT 

 

In this paper, the automation of the loop eigenvalue elasticity analysis (LEEA) is proposed.  LEEA 

is a methodology for generating a formal analysis of system dynamics models and relies on the 

analysis of the structure of a linearized model to infer from its eigenvalues and eigenvectors the 

model portions most related to a given behavior of interest. In order to apply the LEEA so far has 

been necessary to get involved in a manual and lengthy process, that includes among its several 

steps the decoding of complex functions into simplest versions and deleting some parts of the model 

and adding some others that are used as auxiliary variables in order to have the model generator 

simulation suite (such as VENSIM®) interact with numerical computation software (such as 

MATLAB®) back and forth to provide the LEEA analysis. This research provides an efficient tool 

which integrates the LEEA methodology without modifying the created models. Three models were 

tested and computational experiments indicate a good behavior of the tool compared with the results 

obtained in the existing literature. 
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1. Introduction 

 

Lack of formal analysis to relate structure and behavior of models have long been an issue in the SD 

domain (Ford, 1999; Saleh, 2002; Kampmann C.E. and Oliva R, 2008).  

An important approach to cover for this is provided by the loop eigenvalue elasticity analysis 

(LEEA), which is a method for analyzing formal models based on the interpretation of eigenvalues. 

Despite the fact of being applied in many of contexts (e.g. Gonçalves et to., 2000; Saleh and 

Davidsen, 2001a, b; Gonçalves, 2003; Abdel-Gawad et al., 2005; Güneralp, 2006; Kampmann and 

Oliva, 2006; Saleh et al., 2008), LEEA remains as a tool used only by specialists in fundamental 
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research and has not even been incorporated in a standard software (Kampmann C.E. and Oliva R, 

2008). 

The two existing developed tools on dynamic systems focus on the implementation of the LEEA 

are: The First tool “Tool set for Loop Eigenvalue Elasticity Analysis”, Developed by the Dr. 

Rogelio Oliva. This tool incorporates the model designed in Vensim to after convert it in a 

Mathematica® format (this part is based on the Web), then the user open a file, process the 

information together with the base file in Mathematica® format that is downloaded from the web 

site and finally an excel template is used for the revision of the results. The Limitations are: (1) the 

special characters in variable names are not allowed. (2) The special functions are not supported and 

should be replaced manually with the notation of Mathematica®. (3) The dynamic functions are not 

supported. (4) The statements IF THEN ELSE are not allowed.  (5) Macros are forbidden. (7) 

Arrays are not allowed. 

The second tool is known like “Guide for the Implementation of the EEA”, Developed by the Dr. 

Burak Güneralp. Güneralp introduce a methodology based on 10 steps (Güneralp, 2005). The user 

must derive the model, obtain gains from pathways, build matrices, and so on. The Limitations are: 

(1) Despite of its applicability of this methodology to any models, the tool is not totally automated.  

The user has to spend long time in setting the appropriate entries of the model. (2) The desktop 

software is configured for three specific models.  The user should take them as a guide to configure 

all required input files. (3) Due to the inputs of the tool it is necessary for the user to have 

knowledge in math partial derivatives, and management tools such as C and Matlab. 

The implementation guide of the tool is good but is not fully automated and requires a lot of user 

intervention. 

2. Problem and Proposed solution 
 

As far as we know, there are no works addressing fully automated software that allows the formal 

analysis of dynamic systems considering the LEEA method.  

In the methodology proposed by Guneralp (2005) it is necessary to find the gain matrix manually; 

that is, to determine the partial derivatives that compose the gain matrix. It was also necessary to 

design specific software for each model in order to find the elasticities for the gain matrix. On the 

other hand it is necessary to fully define the direct matrix. The problem with this is that find 

derivatives manually implies an intensive time-consuming task. 



Oliva (Kampmann and Oliva, 2006) designed a software that allows you to apply LEEA 

methodology. In this software, the user must manually intervene (direct manipulation of model 

constructs in a software suite such as Vensim ®) the model to make several changes. In addition, 

some models cannot be analyzed because some functions are not supported. 

The handling model is necessary because the functions must adapt to a software that derives 

symbolically. This is a problem because there are functions whose translation into a language 

understood symbolically derived software is too complex or impossible. 

Our main objective is to design software that minimizes the user data manipulation. The existing 

software’s have as a main disadvantage that the users have to be experts in the specific system in 

order to find the state equations of it. In order to solve this problem, our software is based on 

numerical approximation of the state equation. To find these equations, we based our core on the 

determination of the derivatives numerically using simulation. Yie (2012) propose the following: 

For use the approximate derivative is necessary to obtain the corresponding simplest equation from 

a variable before replacing the value of tolerance. Numerical partial derivative of a function is 

defined as follows: 
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Where h is the tolerance.  

E.g. For the equations from industrial structures model presented in the Appendix, if we take the 

partial derivative 
𝜕�̇�𝑅

𝜕𝐼𝑆
, we obtain the simplest expression for the WR (Water Reserves) variable as 

follows: 

𝑊𝑅̇ = −𝑊𝐶 

𝑊𝑅̇ = −𝑊𝐷 ∗ 𝐸𝑊𝐴 

𝑊𝑅̇ = −IS ∗ wdpi ∗ (p1/(1 +  EXP(p2 ∗ (WR/WD/rwrc −  p3)))) 

𝑊𝑅̇ = −IS ∗ wdpi ∗ (p1/(1 +  EXP(p2 ∗ (WR/(IS ∗ wdpi)/rwrc −  p3)))) 



Now, we can take the partial derivative, with respect to IS (Industrial Structures) variable:
𝜕𝑊𝑅
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3. Software design and implementation 

 The software is developed in the programming language C # on IDE Microsoft Visual Studio 2012. 

A project in Matlab is considered for defining the functions and for the computationally intensive 

calculations. The Matlab project generates a DLL file that is then referenced in the main project in 

.NET and from which one can invoke functions defined in Matlab. Similarly, the connection to 

Vensim software is made as well via DLL (we use vendll32.dll file provided by VENTANA 

SYSTEMS, inc). 

The software receives an extension .mdl model and itself receives the .vpm extension. The .mdl 

model is used to overwrite the numerical partial derived and .vpm for definitions of the variables 

(by simulation) without passing through the .mdl file. 



Vensim

Matlab 

Deployment 

Project: 

Computations

Web 

Application: 

Get derivative 

model

Model file *.mdl

Model file *.vpm

Model file *.mdl

Vensim

Model file *.vpm
Web 

Application: 

RUN LEEA

Vensim: 

Simulate 

model

Gain & Elasticity 

Graphs

 

Figure 1. Software operating structure 

 

Once the model has been derived, the user can download the new model (with the definitions of the 

derivatives and the gains of the pathways) to be published (using Vensim DSS software) and loaded 

to the system. 

When loading the new model, the user selects the state variable. Then, the gain matrix is read and 

the SILS is calculated altogether with the elasticities loops; the direct array is set, and corresponding 

charts are generated by Matlab for the analysis of the user. 

The implementation of the software is given under the client-server scheme. There is a computer 

with an IIS Web server (Internet Information Services) and the .NET Framework 4.5 to allow the 

access of customers from a Web browser application.  

Interested persons can directly access the application from internet.1 

 

                                                           
1 http://c2c.uninorte.edu.co/LEEA/Default.aspx 



4. Testing tool 

 

We selected three models in the literature to perform testing of the tool. Models correspond to those 

presented by Rogelio Oliva and Eric Kampmann in his own application of LEEA: Three case 

studies (Kampmann C. E. & R. Oliva 2006). For each of these models there are records of the 

results of LEEA against which we can make comparisons. 

 

4.1 Industrial structures model 

The first model is a simple industrial structures model. Vensim equations are provided in the 

appendix. Below is the SILS found, that exactly matches the feedback loops in the literature. 

Loop no. Variable sequence 

1 IS,DEM 

2 IS,NI 

3 WR,EWA,WC 

4 IS,WD,EWS,NI 

5 IS,WD,WC,EWS,NI 

6 IS,WD,EWA,WC,EWS,NI 
Table 1. Feedback loops in the SILS in Industrial structures model 

 In figure 2 you can see the progress eigenvalues over time. To find out if two series are statistically 

equal, a test for paired comparisons is made. 

 

Figure 2. Progress Eingenvalues in Industrial structures model 

We define statistical hypothesis as follows: H0: μ1 = μ2 y H1: μ1 ≠ μ2. The values obtained for the 

differences of the series for the first eigenvalue are: d̅1 = 0.00281, sd = 0.01508, t0 = 1.31621, 



t0.025,49 = 2.01. This test is done for a significance level of α = 0.05. Then, as the absolute value 

of 𝑡 it is not greater than 𝑡𝛼
2⁄ ,𝑛−1

  we don’t reject the null hypothesis. The series are equals. 

The values obtained for the differences of the series for the second eigenvalue are: d̅2 = 0.003034, 

sd = 0.01537, t0 = 1.396, t0.025,49 = 2.01. Then, as the absolute value of 𝑡 it is not greater than 

𝑡𝛼
2⁄ ,𝑛−1

  we don’t reject the null hypothesis. The series are equals. 

4.2 Lorenz model 

 The Lorenz model is an example of deterministic chaos. This model has three stock variables. 

Below the SILS found. 

Loop no. Variable sequence 

1 X,dx 

2 Y,dy 

3 Z,dz 

4 X,dy,Y,dx 

5 Y,dz,Z,dy 

6 X,dz,Z,dy,Y,dx 

Table 2. Feedback loops in the SILS in Lorenz Model 

These loops exactly match the feedback loops in the literature. In figure 3 you can see the progress 

eigenvalues over time 

 

 

Figure 3. Progress Eingenvalues in Lorenz model 



 The values obtained for the differences of the series for the first eigenvalue are: d̅1 = 0.232, sd =

1.463, t0 = 1.001, t0.025,39 = 2.02. This test is done for a significance level of α = 0.05,  we don’t 

reject the null hypothesis. 

 The values obtained for the differences of the series for the second eigenvalue are: d̅2 =

0.0000417, sd = 0.00041, t0 = 0.634, t0.025,39 = 2.02.for the third eigenvalue we have: d̅3 =

0.231, sd = 1.463, t0 = 1.001, t0.025,39 = 2.02.  We don’t reject the null hypothesis. 

 

4.3 Mass Model 

The third model used to validate the tool is important because it is fairly large model and presents 

many oscillations. Below the SILS found: 

Loop no. Variable sequence 

1 ANVC,chANVC 

2 AOK,chAOK 

3 APR,chAPR 

4 Vac,HR 

5 K,KD 

6 KOO,KA 

7 L,TR 

8 ANVC,NVC,chANVC 

9 AOK,OK,chAOK 

10 ANVC,RDOL,MLDOL,NVC,chANVC 

11 AOK,RDKO,MKDOOFC,OK,chAOK 

12 KOO,IKOC,RDKO,MKDOOFC,OK 

13 AOK,DKOO,IKOC,RDKO,MKDOOFC,OK,chAOK 

14 KOO,KA,K,IKOC,RDKO,MKDOOFC,OK 

15 Vac,IVC,RDOL,MLDOL,NVC 

16 ANVC,DVac,IVC,RDOL,MLDOL,NVC,chANVC 

17 L,IVC,RDOL,MLDOL,NVC,Vac,HR 

18 BL,BLR,BLMS,SR 

19 Inv,INVR,IMS,SR 

20 L,LR,MLDDE,ADE,TR 

21 K,KR,MKDLC,ALK,KD 

22 APR,PRR,KUF,EK,Normz EK,PR,chAPR 

23 APR,DProd,PRR,KUF,EK,Normz EK,PR,chAPR 

24 Inv,DProd,PRR,KUF,EK,Normz EK,PR 

25 APR,SR,Inv,DProd,PRR,KUF,EK,Normz EK,PR,chAPR 

26 APR,SR,BL,DProd,PRR,KUF,EK,Normz EK,PR,chAPR 



27 APR,DBL,DProd,PRR,KUF,EK,Normz EK,PR,chAPR 

28 APR,DBL,BLR,BLMS,SR,BL,DProd,PRR,KUF,EK,Normz EK,PR,chAPR 

29 APR,DInv,DProd,PRR,KUF,EK,Normz EK,PR,chAPR 

30 APR,DInv,INVR,IMS,SR,BL,DProd,PRR,KUF,EK,Normz EK,PR,chAPR 

31 K,EK,Normz EK,PR,Inv,DProd,DK,KR,MKDLC,ALK,KD 

32 KOO,KA,K,EK,Normz EK,PR,Inv,DProd,DK,IKOC,RDKO,MKDOOFC,OK 

33 K,EK,Normz EK,PR,EGRP,MGDK,DK,KR,MKDLC,ALK,KD 

34 APR,EGRP,MGDK,DK,KR,MKDLC,ALK,KD,K,EK,Normz EK,PR,chAPR 

35 L,EL,Normz EL,PR,Inv,DProd,DL,LR,MLDDE,ADE,TR 

36 Vac,HR,L,EL,Normz EL,PR,Inv,DProd,DL,IVC,RDOL,MLDOL,NVC 

37 L,EL,Normz EL,PR,EGRP,MGDL,DL,LR,MLDDE,ADE,TR 

38 APR,PRR,MLD OT,MHY,RLWW,EL,Normz EL,PR,chAPR 

Table 3.  Feedback loops in the SILS in Mass Model 

The tool found 38 loops in the SILS, and these loops exactly matches the feedback loops in the 

literature. In figure 4 you can see the progress eigenvalues over time 

 

Figure 4. Progress Eingenvalues in Mass model 



 The values obtained for the differences of the series for the first eigenvalue are: d̅1 = −0.054, 

sd = 0.143, t0 = −1.194, t0.025,9 = 2.26.  This test is done for a significance level of α = 0.05, 

Then, as the absolute value of 𝑡 it is not greater than 𝑡𝛼
2⁄ ,𝑛−1

  we don’t reject the null hypothesis. 

The series are equals. 

The values obtained for the differences of the series for the first eigenvalue are: d̅2 = 0.131, sd =

0.731, t0 = 0.567, t0.025,9 = 2.26. For the third eigenvalue we have: d̅3 = −0.431, sd = 0.769, 

t0 = −1.77, t0.025,9 = 2.26. For the fourth eigenvalue: d̅4 = −0.521, sd = 1.592, t0 = −1.04 , 

t0.025,9 = 2.26.In each case we don’t reject the null hypothesis. The series are equals. 

Previous tests correspond to the values with different values over time. 

4.4 Computing Times 

We present computational times for models with different numbers of variables and simulation 

time. The Computing time was measured on a PC Intel® Core™ i7 2.20 GHz (8 GB RAM) running 

with Windows.  

The number of state variables defines the order of model, which, in turn increase the size of gain 

matrix. The number of total variables in most cases it involves more pathways and perhaps more 

loops. 

Number of state 

variables  

Number of total 

variables 

Number of loops in 

the SILS 

Time (minutes) 

2 15 6 0.23 

3 9 6 0.2 

3 25 16 2.3 

9 81 38 4.42 

17 227 37 15.1 

Table 4. Computing Times 

The above results show that computational time increase meanly by both numbers of state and total 

variables. For smaller models the computational time is less than a minute.For large models is 

greater than then minutes. 



 

Conclusions 

This research was focused on the implementation of a software tool that applies the LEEA (Loop 

Elasticity Eigenvalue Analysis) methodology for automated large-scale models. The existing tools 

have required from the users depth knowledge on the model, deriving expressions, or limiting the 

model with some specific functions to be used in a specialized software, etc. 

The software is developed in C # language. It is connected by DLL with a project in Matlab for 

computational intensive calculations and receives from Vensim (for DLL) the simulated values for 

the model. 

For the validation of the tool, three existing models in the literature have been tested and statistical 

and graph theory validation was made. The results were good, even for larger models. 

Such as contribution, this work gives a more accessible tool for the scientific community. The 

software receives a model from Vensim without constraints (it can be used all functions and 

settings) allowing the user to modify or delete the model functions due to effects of compatibility. 

Then, the major contribution of this research corresponds to the complete automation of LEEA and 

the generation of an open source tool for users. 
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Appendix 

Equations for simple industrial structures model 

EWS= p1/(1 + EXP(p2*(WC/WD - p3))) 

  Effect of water resources on new structures 

 

EWA= p1/(1 + EXP(p2*(WR/WD/rwrc - p3)))   

Effect of water availability on consumption 

 

p2= -6.98405 

  Coefficient in function 

 

p1= 1 

  Coefficient in function 

rwrc= 10 



  Reference water resource coverage 

df= 0.05   

Demolition fraction 

p3= 0.4715 

  Coefficient in function 

WR= INTEG ( -WC, 10000) 

WC= WD*EWA 

DEM= IS*df 

  Demolition 

IS= INTEG (+NI-DEM, 10) 

Industrial structures 

NI= IS*EWS*ng 

  New industries 

ng= 0.12 

  Normal growth rate 

 

WD= IS*wdpi 

  Water demand 

wdpi= 10 

  Water demand per industry 

 


