Paper presented at the 35" International Conference of the System Dynamics
Society, July 17-21, 2017, Cambridge, MA, USA

Linking Simulator Functionality with Learning: An
Extension of the Taxonomy of Computer Simulations to
Support Learning

Roland Maximilian Happach!® and William Schoenberg?

Institute for Diversity Studies in Engineering, University of Stuttgart
Pfaffenwaldring 9, 70569 Stuttgart, Germany.

%jsee systems inc., Lebanon, NH, USA.

“corresponding author: maximilian.happach@ids.uni-stuttgart.de

Abstract

This paper links learning outcomes in form of knowledge creation and transfer (declarative, procedural,
structural) to the functionality of simulators. We categorize simulators first on the number of player
interacting simultaneously to generate a single run of the simulation model. There are three distinct
simulator categories —analysis tools, management flight simulators and multiplayer simulators. The
outcome of this research helps simulator builders to connect generic learning outcome to the

functionalities of simulators and provides guidelines for briefing and debriefing.

Word count: 8.969 (without Abstract, Tables, Figures, Acknowledgements and References)

Introduction

System dynamics (SD)-based simulators are used for education, training and experimentation
(Davidsen 2000; GréRler 2004; Davidsen and Spector 2015). The field of education and training using
SD-based simulators measures the effect of simulators on the development of mental models, the
dissemination of insights and the development of knowledge (Davidsen 2000). The second field focuses
on experimentation using SD-based simulators, research investigates mental models that drive human
decision making (Davidsen 2000). While the second field continuously produces new research (see e.g.
Moxnes 1998; Moxnes and Jensen 2009; Gary and Wood 2011; Gary et al. 2012), the research on
education and training using SD-based simulators falls short. There are a considerable number of
articles published to promote simulation for education and training (Machuca 2000; Salas et al. 2009;
Sterman 2014), but only a few articles investigate the effectiveness of SD-based simulators on learning
and training. It is somehow surprising that within the field of system dynamics, in which simulation is a
well-accepted instrument (Rouwette et al. 2004), the effectiveness of simulators for education seems to
be accepted and assumed without rigorous examination. This problem was already pointed out by

GroBler (2004) and it seems that most research about education with SD-based simulators is motivated
1

by him. For instance, GroR3ler et al. (2000) derive a general experimental design for research on teaching
using SD-based simulators, and they conduct experiments that empirically shows that users increased
performance via the use of a simulator. However, participants of the experiment lacked the ability to

transfer knowledge to new novel tasks.

Maier and GroR3ler (2000) point out that the system dynamics community is using a variety of terms for
simulators, i.e. management flight simulator, microworlds, decision support system, etc. Further, they
identify the absence of a precise definition as barrier for research on the effectiveness of SD-based
simulators support for learning. By presenting different criteria for categorization and concluding with a
taxonomy, Maier and GréRler (2000) try to clear the way for more comparative evaluation studies on the
effectiveness of simulators. However, it seems that subsequent research is failing to achieve Maier and

Groller’s stated goal of supporting analysis on the effectiveness of simulators.

This paper resumes the work of Maier and GréRler (2000) and presents an extension by connecting the
functionality of SD-based simulators with their learning outcomes. By doing so, we call attention to the
missing foundation between simulator design and learning outcomes, while simultaneously providing a
starting point to close the gap in the research on the effectiveness of SD-based simulators on education

and training.

We want to emphasize that this paper discusses ‘teaching using SD-based simulators’, we do not focus
on learning through model construction, or how to teach system dynamics, but rather on how to teach
using a SD-based simulation tool. Richardson (2014a, 2014b, 2014c) describes an approach to model-
based teaching of system dynamics and Schaffernicht and Groesser (2016) link learning outcomes with
the teaching of system dynamics. Our paper differs since it discusses the communication and transfer
of knowledge via the use of a SD-based simulator. We urge scholars within the field of system dynamics
to resume the work on a taxonomy for simulators, and to do more research on the effectiveness of
simulators in the context of learning. Further, we aim to teach those who develop SD-based simulators
how to design their simulators to support their desired learning objectives both in an educational and

consulting context.

This paper is structured as follows. In the next section, we present a practitioner’s view on the taxonomy
by Maier and Grof3ler (2000) and present the most common game-oriented simulator functionalities. In
the third section, we present a perspective on learning outcomes and knowledge. The fourth section
presents the link between simulator functionality and learning outcomes. In the last two sections, we

discuss our findings and implications, and present a conclusion.

Categories of SD-based simulators

Terminology

Over the last decade simulation and with it simulators, have become increasingly important in teaching
and training (e.g. Langton et al. 1980; Bakken et al. 1992; Alessi 2000; Schunk 2012). Especially with

2

the emergence of cognitive and constructivist learning theories, simulation has become an integral part
of teaching (Alessi 2000; Spector 2000; Schunk 2012). Additionally, the advancements in technology
promotes the use of simulation. The number of SD-based simulators has steadily increased, especially
with the advent of easy-to-use tools provided by vendors in the field. For instance, over the past 5 years
across Forio Simulate, Forio Epicenter and the isee Exchange there have been 6,017 interactive
simulators published. Yet, there is little information about guidelines or best practices on how to

effectively build and use simulators for education and training.

Maier and GroRler (2000) present a first step by suggesting to the field to stop using different terms to
describe the same content. However, their taxonomy has not been accepted and the terms, microworld,
management flight simulator and business simulator are still in use as terms which describe the same
content (GroRBler et al. 2000; Morecroft and Wolstenholme 2007; Stouten et al. 2012, 2012; Sterman
2014). The use of these terms including newer ones like learning environment (Davidsen 2000),
dashboard (Pruyt and Kwakkel 2012) etc. have become an integral part of the field’s lexicon. Maier and
GroBler (2000) highlight this confusion caused by many different terms and they provide an extensive
list of criteria for categorization, shown in Table 1. While the terminology does not provide clear
definitions, the criteria does. Therefore, we present yet another terminology to connect with existent

literature but use the criteria of Table 1, especially the category “functionality”.

In this paper, we focus on game-oriented simulations as our main area of application. Thus, those
simulators which make use of a fully completed SD model. In this way, we use the term ‘simulator’ to
refer to a SD simulation model combined with a graphical user interface. This definition overlaps with
Maier and Grof3ler (2000) who suggest that an interface is an integral part of a simulation for learning
support. However, they define a simulator as single user tool and use a different term — planning game
— to refer to multi player. We argue that the terms single player/multi player are intuitively

understandable.

In the next two sections, we present the experience of the authors and of their discussions and
experiences with others in the field of building SD-based simulators and tools to build simulators for

education and training. The description presents the existent state of most popular SD-based simulators.

Single player simulators
The distinction between single and multiplayer simulators is the top-level classification feature of our
research. Within the category of single player simulators, we distinguish between two categories:
analysis tools and management flight simulators. In analysis tools insight is distilled from reviewing the
results of many simulation runs and comparing results across runs. Analysis tools are recognized most
easily via their use of a single action to simulate the entire model and their heavy use of comparative
graphs. In some cases, analysis tools will compile and display for the user cross run statistics. Analysis
tools do not make use of information hiding, and therefore contain no ‘twists’ or big reveals. Analysis
tools rely on learner-based discovery, and all policies are available for exploration, and assumptions are
made clear and explicit. In certain instances, authors will also expose model assumptions for
3

experimentation as well. Published examples of this kind of simulator include: HealthBound, PRISM, C-
Learn and T21 North America. Typically, analysis tools require models which contain a high level of

detail complexity, and models must be very robust to changes in assumptions and decisions since users

will tend to explore a much fuller spectrum of the state space of the model.

Underlying model

Human-computer interface

Functionality

Real-world domain
Business
Other
Generality of model in regard
to domain
Special area of real world
domain
Whole domain
Structure
Feedback-oriented
Process-oriented (mostly
without feedback)
Behavior
Deterministic
Stochastic
Progress of time in simulation
engine
Discrete
Continuous
Role of simulation model
Active generation of

Chance of intervention while
simulating
Discrete periods
Simulation in one run
Mode of users’ input
Policy-oriented
Decision-oriented
Mode of display
Text
Multimedia
Mode of Interaction
Keyboard
Mouse

Number of users possible
Single person
Multi person
Degree of integration
Stand-alone simulation
Integration in computer-
based environment
Main area of application
Modeling-oriented
Gaming-oriented
Use of teachers/
facilitators/coaches
Totally self-controlled
learning
Support by teacher/
facilitator/coach
Transparency of simulation
model
Black-box
Transparent-box
Advancing of time

decisions Clock-driven
Clearing device for users’ User-driven
decisions

Influence of external data
With such influences
Without such influences

Domain of variables
Integers
Real numbers

Table 1 - Criteria for categorization of computer simulations (Maier und GréR3ler 2000)

Management flight simulators are the second category of single player simulators. They are most easily
recognized through their use of a step by step mechanic for simulating the model. Time can be advanced
directly by the user or indirectly via the use of a timer or other external (facilitator) controlled mechanism.
In management flight simulators insight is distilled through experiences gained over the course of a
single (or limited number) of simulation runs. This category of simulators is more like traditional games,
with a strong real world relationship where the player is putinto a role, the briefing contains a background
story and context setting, players are given tasks and there is the possibility for twists, information hiding
and obscuring. Management flight simulators are also characterized by the fact that player power is
limited and not all decisions can be taken, there is no influence over assumptions and player action is
highly constrained by real world limitations. Examples of this category of simulator include HBSP Pricing

Simulation: Universal Rental Car, and any single player version of the Beer Game or Fishbanks.

There are simulators which contain elements of both analysis tools and management flight simulators.
Typical hybrid simulations play like management flight simulators but have an element of scenario
comparison after playing the simulator two or more times. Because of their step by step time
advancement technique and the scenario comparison only after finishing all runs, we consider them as

management flight simulators.

Multiplayer simulators

Classification within the multiplayer simulator category is more complex than single player. All commonly
published multiplayer simulators exhibit the attributes and characteristics of management flight
simulators as opposed to analysis tools. Time is advanced step by step, insight is distilled over the

course of a single or heavily limited number of runs.

For the class of multiplayer simulators, we will use the terms role, team and facilitator. A role is a way of
identifying what information and decisions a player has access to. Only one user can have each role on
ateam. A team is a group of players with roles who all interact together to create a run of the simulation
model. A facilitator is a special role (super user) who can see the results and decisions of all roles and

can (depending on the simulator design) affect the course of the game (exists in single player too).

Multi player simulators involve interaction and communication between the roles which interact with the
underlying computational model. This means the key behaviors and outcomes of the system are driven
by how the players interact and communicate with each other as opposed to purely from internal model
dynamics. Within this classification, we only consider simulators where the predominant area of player
interaction is within the setting of the simulator. We classify and group multiplayer simulators via their
design decisions in the following 3 areas: (1) intra-team goal alignment, (2) team and role assignment
and (3) time advancement technique.

The first attribute, intra-team goal alignment, refers purely to the incentives of the roles within a team.
There are three forms: competitive, cooperative and hybrid. In the competitive case, each role is in
competition with all other roles, likewise for cooperative cases all roles are incentivized purely by a
common team goal. The hybrid case is where there is a common goal for all users, but individual
incentives may create competition. The second attribute, team and role assignment refers to how teams
are created and roles given to players on the team. There are two forms of team and role assignment,
‘prepared’ and ‘on the fly’. The third and final attribute, time advancement technique, refers to how the
roles interact (or don'’t interact) to advance the state of the simulator. There are four possible time

advancement techniques: with a timer, by a facilitator, by a specific role or via a consensus decision.

A summary of the categorization is given in Figure 1.

Simulate step by step:

Single action to simulate the model: Learn by action within a single
Learn by comparison across runs (or limited number of) run(s)
Analysis Tool:
+ Simulated with a single action
Contain no information hiding, meaning Management Flight Simulator:
no ‘twists’ or big reveals + Run stepby step
Singleplayer + Focuson learner based discovery + More traditional games, real world like
All decisions are made available and + Players power is limited
accessible « Limited number of runs/scenarios

Assumptions made explicitand are
sometimes available

Heavy use of comparative graphs
(bonus: show crossrun statistics)

Multiplayersimulators:
. intra-team goal alignment
MU|tIp|ayer team and role assignment
™ + time advancement techniques

Figure 1 - Categories of Simulator Designs

Learning objectives and knowledge

To link learning objectives with simulator design, we need to explore and make clear our assumptions
from the knowledge and learning fields. Scholars in these fields have so far not agreed upon one unified
theory of how learning occurs, and there are in fact several coexistent theories (Shuell 1986; Schunk
2012). However, most theories have in common the over-arching idea that learning: has to do with
acquiring knowledge and information such as facts and skills (Brown and Palincsar 1986), that it
changes and/or updates existent knowledge, and finally that it provokes enduring change in behavior or
in the capacity to behave differently (Shuell 1986; Schunk 2012).

Within the field of system dynamics, several authors emphasize the importance of involving decision
makers in the whole modeling process to provide the most in-depth learning (Sterman 2000; Lane 1992;
Rouwette, Etienne A. J. A. et al. 2002; Vennix 1996). However, it is not always possible to include all or
even any stakeholders into the whole modelling process, especially when it comes to education and
training. Alessi (2000) therefore distinguishes between building, and using simulation models for
educational and training purposes. While the model building process is very well suited for knowledge
discovery and transfer, it is not the correct choice for every project; in many cases, just the use of a
simulation model in the form of a simulator serves as an effective means for learning. This idea is in line

with other authors who argue that: (1) simulation model usage supports learning about dynamic
6

complexity, policy resistance and policy design (Sterman 2001). (2) That the use of simulation models
influence the formation of mental models (Davidsen 2000) and (3) That using simulation models puts

people in a position to learn about messy problems (Vennix 1996).

In the context of system dynamics, Sterman (2000) specifies learning as double-loop learning — a theory
developed by Argyris (1976). Within this theory, learning consists of two parts: First is a feedback
mechanism that closes the gap between the actual state of a system and the desired one. Decisions
made may change based on the information received because of prior decisions. The second part of
the theory states that decisions are derived from values, beliefs, strategies which are influenced by
mental models, which themselves are altered by the information feedback discussed above (Sterman
2000).

Scholars have identified numerous types of knowledge. Like the definition of learning, there are several
kinds of knowledge. For instance, Reif (1987) distinguishes between compiled, formal, interpretation,
special, coherent and general knowledge. Reif and Allen (1992) add to this by including main
interpretation, ancillary, case-specific, definitional, supplementary, entailed and concept knowledge.
Each of these terms exists to structure the field of cognitive learning theory and to support specific
theories within the field (Jong and Ferguson-Hessler 1996). Two well-known types of knowledge are

declarative and procedural knowledge (Jong and Ferguson-Hessler 1996; Schunk 2012).

Declarative knowledge refers to knowledge about facts, objects and events (Jong and Ferguson-Hessler
1996; Jonassen et al. 1993). Declarative knowledge is referred to as knowledge about ‘What’ (Maier
and Groller 2000) or ‘knowing that’ (Jonassen et al. 1993). It enables a person to describe objects
(Jonassen et al. 1993). Procedural knowledge, on the other hand, refers to knowledge about ‘How’
(Maier and Grof3ler 2000; Jonassen et al. 1993) — thus it contains actions, procedures and manipulations
(Jong and Ferguson-Hessler 1996). It is often also referred to as a skill and the knowledge held by an
individual of how to perform a specific set of actions (Rouwette and Vennix 2006). Further, this paper
uses the term structural knowledge (Jonassen et al. 1993). It describes how concepts are interrelated
and refers to knowledge about ‘Why’ (Jonassen et al. 1993; Maier and GroRler 2000). All three types of
knowledge have been used in the context of system dynamics (see e.g. Schaffernicht 2005; Maier and
GroRler 2000; Doyle and Ford 1998; Rouwette and Vennix 2006).

Declarative, procedural and structural knowledge fit within the context of double-loop learning since they
influence decisions within the first loop and alter and create mental models within the second loop.
Declarative knowledge is the basis for procedural knowledge (Jonassen et al. 1993) and procedural
knowledge is the basis for structural knowledge. In terms of a system dynamics model, we argue that
the transfer of declarative knowledge refers mainly to key variables, their measurements and their real-
world equivalent. It encompasses the static description of a goal and problem, e.g. that a key variable
is 80% lower than the expected value, as well as the basic context (the model is about a specific
business unit, the user simulates as the role of a policy maker etc.). The use of a system dynamics

model transfers procedural knowledge in form of information about behavior over time, polarities,

7

correlations, leverage points and the handling of the simulation. We understand procedural knowledge
comprises much more since it is also defined as the knowledge of how to perform a cognitive activity
(Schunk 2012) but as we analyze education and training using SD-based simulators, we focus on which
knowledge can be transferred. Finally, structural knowledge encompasses cause-effect relations,
feedback loops and their dominance and delays. We have summarized the connection between the

knowledge types and a system dynamics model in Table 2.

Knowledge Items in System Dynamics Model
Declarative (Know what, facts) » Key variables and their connection
to reality

* Measurements

» The Problem description (static)
* The Goal

* The context of the simulation

Procedural (know how, skills) * Behavior over time
+ Porarities

* Leverage Points

+ Correlations

Structural (know why, explain, derive, |+ Cause-Effect relations

infer) * Feedback Loops
* Loop Dominance
* Delays

Table 2 - Connecting Knowledge with a system dynamics model

A specific case is learning within a group of individuals. The types of knowledge and especially mental
models, may refer to individuals or groups but as Kim (2009) explains, a mental model-like concept
shared across a group is not well defined. Kim (2009) argues that all proposed concepts differ at least
in two dimensions: First, there is the continuum of locus of thinking which refers to individual and entire
group level. Second, there is the continuum of the form, which lies between a product, such as
knowledge, or the process. For this reason, Kim (2009) uses the term “processor” which should not
present a mental model-like concept in group setting but rather describes a black box that refers to a
summary of different concepts.

This paper focuses on the outcomes of SD-based simulators. Therefore, we use product-oriented forms
(different types of knowledge) according to Kim (2009). When talking about the learning outcome of
multiplayer SD-based simulators we will use the term group mental model to indicate that some

knowledge within the group is created.

Learning outcomes and simulator functionality

To understand when to use which kind of simulator and which knowledge is most likely to be transferred,

we will discuss the advantages and disadvantages of the simulator functionalities identified in the second
8

section. We derive an overview about the presented classification of simulators and their connection to
the different types of knowledge (declarative, procedural, structural) and if the simulator will stimulate
group mental model building. This overview is shown in Figure 2 (page 18). We will start with two distinct

types of single player simulators before we elaborate on multiplayer simulators.

Appropriate use of analysis tools

Analysis tools are most appropriate when there is a need to communicate information to a specialized
audience that holds detailed knowledge, for example: consider ‘students’ that have extensive knowledge
about a subject like managers, decision makers, implementers. These users typically possess a nearly
complete declarative knowledge of the system, they are familiar with the subject matter, and well versed
with the detail complexity contained within the simulation model but typically do not yet fully understand
the dynamic complexity present within the real-world environment e.g. they need to develop better
procedural and especially structural knowledge of the system. Analysis tools need a detailed briefing,
so that users can acquire and familiarize themselves with all the required declarative knowledge to make
sense of the system presented within the simulator. Therefore, analysis tools are often introduced via

lecture or other traditional media tools to provide the necessary foundation for learning to occur.

Because analysis tools have as their goal the development of structural knowledge users typically desire
full visibility into model assumptions and generally wish to have control over modification and
manipulation of those assumptions. Users typically require control over all decision parameters so they
may fully explore the simulation state space to design and develop robust policy interventions which
hold up under the widest and most commonly accepted sets of assumptions which is key to the transition

from procedural to structural knowledge e.g. the move from trial and error learning to true understanding.

Clearly, analysis tools are especially well-suited when learning should be discovery based. That means
the key insights of the computational model are best understood as derivations from a base case. That
means that policies or scenarios are tested. In simple English, if the results of the simulation are best
understood as ‘implementing policy X with assumptions A, B, C, drives key performance indicator Q up’
then an analysis tool is probably the best design to deliver this knowledge. This is because analysis
tools make heavy use of comparative graphs and tables to highlight the differences in potential ‘What
if..." scenarios and possible policies. We can extend this case to cover models in which the specific
numeric values being reported by the simulation model are unreliable or are other non-physical and
indexed values. This allows interface designers to still communicate the directionality and magnitude of
change without having to focus on specific point value estimates. Results in these cases are typically
presented not as absolute figures but rather as percent change from base case or even just (Good,
Neutral, Bad).

Moreover, analysis tools should be used when the user is expected to connect existent knowledge with
structural knowledge. That means when it is important for users to develop a strong structural
understanding of the system, specifically understanding the difference between assumptions and
policies. This becomes very important when assumptions are not fully shared or agreed upon across

9

the target audience. Analysis tools can be great consensus building tools used to communicate
differences in mental models held by a variety of individuals. By classifying assumptions and allowing
end-users to manipulate those assumptions interface designers enable skeptical end-users to get past
their inherent distrust of the simulation model to generate policies, and to begin the process of simulation
based structural knowledge accumulation. By establishing a formal separation between assumptions
and policies for end-users, interface designers develop and curate their models’ unbiased perception

which is critical for simulation acceptance with hostile or skeptical users.

Furthermore, analysis tools should be used when it is necessary to be able to change assumptions, and
discuss their importance in the context of KPIs. Developing robust policies requires the manipulation of
assumptions and it is therefore critical to be able to change assumptions when the learning goals are
based around policy development. The comparative nature of analysis tools complements and supports

this mode of exploration.

Finally, the use of analysis tools is appropriate when the decision state space of the computational
model is large. This is only if for the simple mechanical reasons of playing 100 runs of a game which

require you to simulate step by step will be totally impractical within allocated time bounds.

Advantages of analysis tools

Typically, well-constructed analysis tools lend themselves to a deep exploration of subject matter and
the development of procedural and structural knowledge from declarative knowledge. They present less
of a bias because they are so much more transparent about their assumptions. Because of these
benefits analysis tools tend to give users a more systemic understanding especially in cases with large
decision state spaces, and therefore tend to be viewed as more power user oriented. As stated above
analysis tools can work well when end-users are skeptical or openly hostile to simulation based learning,

and are best used in cases where robust policy development is a key expected outcome.

Disadvantages of analysis tools

Typically, well-constructed analysis tools are perceived as dry and boring. They require much better
understanding of the context by the end-user and therefore the development of strong briefing materials
becomes critically important. The final disadvantage of analysis tools is that because they engender
deep exploration they require robust, well tested models and typically require lots of detail complexity

because end-users need to be able ‘find themselves within the model’.

Appropriate use of management flight simulators

The most famous use of management flight simulators is training, specifically training users to perform
a specific task with the aim to develop declarative and procedural knowledge about the underlying
system. The more game-like nature of management flight simulators makes them much more suitable
for training purposes: users get immediate feedback on decisions taken. Management flight simulators

do not concentrate on developing deep structural understanding since the model structure tends to be

10

hidden. High engagement, and the real-world feel of these simulators enhance their ability to promote
knowledge transfer from in-game to in world. Typically, models used for this case are highly
deterministic, and there is an ahead of time known proper solution. The goal of these kinds of
management flight simulators is to support and encourage a predetermined form of behavior bringing
users from no knowledge of the system to having full declarative and procedural knowledge of the

system with limited structural knowledge.

This is a core distinction from analysis tools. While analysis tools require in-depth briefing about
declarative knowledge and produces structural knowledge about the system, management flight
simulators require the briefing to include context and role definition, but most declarative knowledge is
transferred during the use the management flight simulator. The debriefing, should then strive to
reinforce the declarative and procedural knowledge and if so desired broach the subject of structural

knowledge.

Further, we argue that management flight simulators are appropriate when user engagement is
important. When done well management flight simulators are much more engaging than analysis tools
because of the in-depth development of a story and context: first given in the briefing but then further
developed over the course of using the management flight simulator. For the case where user
engagement is critical, the importance of briefing materials, context setting, and role development

become critical to the success of the simulator.

Additionally, we see management flight simulators fit to situations when users are completely hostile to
any form of simulation (or model) based learning and therefore the model needs to be ‘hidden’. The
gaming nature of management flight simulators makes it possible to completely hide the underlying
simulation model. If end users are completely hostile to even the approach of simulation modeling it is
possible to disguise and downplay the importance of the simulation model and just present the tool as

a game, avoiding potential bias that some users may have against simulation based learning.

An important caveat to keep in mind when considering the use of management flight simulators is that
key model insights must be revealed within the context of a limited number of runs. Management flight
simulators by their very nature are simulated over time in a step by step fashion, therefore the learning
must occur as a direct result of user action within the context of a limited number of runs. Typically,
management flight simulators take anywhere between 5 and 60 minutes to run through completely so

therefore it is unreasonable to expect that many simulation runs will occur.

Management flight simulators can be used as a test for understanding of a concept. Often, they are
developed as a testing and evaluation tool for measuring end-user ability to manage a complex system,
or perform a task in a dynamic and changing environment. Their real-world boundaries and typical pre-
determined solutions make them ideal as testing and evaluation tools for the same reasons as

management flight simulators are ideal for training.

11

Management flight simulators can also be used in groups to encourage competition among a group.
When management flight simulators make use of heavy context setting and emphasize their more game
like nature it is easy to encourage competition among a group of individuals by incentivizing them to
achieve a better outcome on a certain performance indicator. The reason that management flight
simulators work much better for this objective than analysis tools is that because of the unlimited nature
of analysis tools users will eventually (and often quickly) fall into a trial and error based approach.
Whereas with management flight simulators the limit on the number of runs to be done (both externally
forced, and time based) requires a greater focus on learning about the problem and internally developing
a consistent and successful strategy avoiding the pitfalls and brute force behavior associated with trial

and error approaches.

Advantages of management flight simulators

Typically, well-constructed management flight simulators have much higher user engagement, and are
highly real world realistic. Because computational models are hidden there is less questioning and it is
easier to explain simulation logic. Users tend not to give nearly as much critical thought to the
functionality and construction of the underlying simulation model as they do in analysis tools, and instead
use that extra thought when properly motived to their performance and understanding of the specific
task at hand. This is also reflected in the role of briefing. The briefing sets the role and the context and
often the user does not necessarily need any specialized knowledge of the topic of the management
flight simulator. Thus, less time for briefing is needed when compared to a similar audience using a
comparable analysis tool. The final advantage to these tools is that the models required are typically
much simpler, and are less robust across a wide variety of assumptions because only a limit decision

state space can possibly be explored.

Disadvantages of management flight simulators

Typically, even well-constructed management flight simulators on their own do not develop a full
structural understanding of the underlying simulation model, focusing on almost purely declarative and
procedural knowledge acquisition. Knowledge gained is typically directly transferred to a highly similar
real world event because of easy recognition, but not applied horizontally to other apparently dis-similar
cases. Thus, to support the building of structural knowledge, a debriefing needs to be carefully planned.
The hidden model structure can be revealed and assumptions and implications may be discussed. If not
executed at the highest levels of quality including briefing and debriefing, management flight simulators
can come off as patronizing, and hokey which negate all their engagement and realism based
advantages. Especially, if the debriefing is done inappropriately, users will have learned to navigate the

simulator but will not be able to connect their gained knowledge to real world applications.

Appropriate use of multiplayer simulators

We identified earlier three attributes which we use to characterize this class of simulators: intra-team
goal alignment, team and role assignment and time advancement technigues. In the following sections,

we will discuss the appropriate choices to make for each of the three attributes based on desired

12

outcomes. We argue that intra-team goal alignment has the most impact on learning outcomes.
However, it is also important to discuss the other attributes to give a full picture of the simulators

functionalities.

Attribute 1: Intra-team goal alignment

The choice of a simulators intra-team goal alignment strongly affects the transfer of procedural
knowledge and the creation of a group mental model generated by the users. While competitive
simulators encourage competition among all users and therefore motivate users to have the best
performance, they are also used to teach about teamwork and leadership through anti-examples via a
strong debriefing. Competitive simulators are used when the dynamics of the underlying model require
competition and information hiding to be exhibited, e.g. imagine a game where if everyone collaborates
everyone does better whereas if everyone backstabs everyone does worse. Competitive simulators can

also be used to sort and rank individuals within a team.

Cooperative simulators build teamwork and leadership skills, and improve communication within the
group by giving players the opportunity to work together and try out strategies in a relatively risk-free
environment. These simulators tend to give users a better declarative and procedural understanding of
a specific role’s requirements. Cooperative simulators can be used to sort or rank groups of individuals
together (as a team), or they can be used when solving the objective is hard and it requires many minds

to perform the task.

Hybrid goal alignment simulators are the most real-world realistic and help to discover players selfish
vs. altruistic tendencies via the use of competing team and role incentives. They are often used to
develop and measure teamwork and leadership skills in a real world realistic environment. Ultimately
goal alignment comes down to replicating real-world group dynamics and all forms of intra-team goal

alignment besides hybrid are typically abstractions and simplifications of real-world scenarios.

In all multiplayer simulators participants develop deeper insight into the requirements of their specific
role and with that procedural knowledge of their roles and a shared understanding of the context of the
simulator. This gives hints to the requirements of the briefing and debriefing. Special attention must be
paid for briefing multiplayer simulators. For hybrid or competitive multiplayer simulators, it is typical for
a separate briefing to be developed for each role. In all cases the briefing should provide enough
declarative knowledge for the role, the primary motivation, incentives and the context of the situation.
Because of information feedback on decisions made, procedural knowledge is expected to be gained.
Structural knowledge, however, is unlikely to be gained because users usually do not have enough
access to model structure and assumptions and these simulators do not offer enough opportunity for

experimentation with different strategies.

To encourage the development of structural knowledge authors must rely on debriefing materials and
potentially even a paired analysis tools. In the competitive setting, every user is making decisions

individually and thus the generated feedback is interpreted individually as well. Therefore, we argue that

13

in competitive multiplayer simulators (without considering the quality of the debriefing), the transfer of
structural knowledge is lowest. For all multiplayer simulators groups of individuals are communicating
and learning from each other. This communication comes in many forms either, directly (via chat, or
talking) or indirectly through user action or inaction (e.g. setting a high price, ‘forgetting’ to fulfil a promise
etc.) and this communication plays an important role in learning. Different interpretations of the
information feedback are perceived and either during the game (or in the debrief) are discussed within

the team and this drives the creation of group mental model, aligning individual mental models.

The debriefing is important for each multiplayer simulator. First, since competition is created, every
game risks the creation of conflict. We suggest that all individuals should be given the opportunity to
discuss their solution to any conflict generated over the course of the simulation to stimulate the growth
of their individual mental model and to help facilitate the spread of that mental model across the team.
Second, the underlying model should be discussed with the players to support the transfer of structural
knowledge. Third, the individual mental models held by the players should be discussed to modify and
solidify the group mental model. The shared experience will help the teacher to anchor knowledge and
to refer to it. The teacher should be aware that in case of different roles, the game will serve as a

boundary object.

Attribute 2: Team and role assignment

There are two forms of team and role assignment, prepared and on the fly. Simulators which use
prepared team and role assignment have a facilitator who creates the teams and assign the roles to
individuals on the team. When user’s login to the simulator it immediately starts and there isn’t any
choice by the player about the role they are going to play or the other members of their team. The
second form of team and role assignment is on the fly where users create their own teams and pick
roles on those teams based on what is currently available. In this case users login, examine teams in
progress of forming, see what roles are available and either choose to join an in progress forming team
or start their own new team with any role of their choice. This form of team and role assignment is

required when the players aren’t known in advance.

Prepared team and role alignment is used when all the individuals in the audience are known ahead of
time. This form of team creation works well when dealing with communication issues among a specific
set of individuals and it gives facilitators fine grained control over group dynamics. Prepared team and
role assignment can be used to create a copy of a real world situation; thus, individuals are typically
assigned to roles that fit their knowledge and strengths and teams will represent groups of individuals
that know each other, work together or have any kind of relation, e.g. individuals that share a language
when all others are from different countries. Although in some cases assigning roles like that is not ideal,
and it is best to assign players to unfamiliar or conflicting roles in order to force individuals to gain
perspective and develop new communication techniques. Prepared team and role assignment has the
capacity for creating the most extreme group dynamics and modes of behavior. Finally, from a technical

perspective it is the easiest implement.

14

On the fly team and role assignment is the only choice for mass market simulators, or any simulators
where the audience is not known ahead of time. It's the hardest to implement from a technical
perspective, but works well when users are spread out in time and space and therefore it is not possible

to predict when people will be available to devote time to the simulator.

Team and role assignment can have a significant influence on learning outcomes, especially when
teams are prepared to create conflict or exhibit other more extreme behaviors within group dynamics.
While every individual will have the opportunity to learn declarative and procedural knowledge by using
the simulator, the transfer of structural knowledge and the creation of a group mental model is highly
dependent on the team composition and communication. Groups of individuals that know each other
and that have roles of their knowledge domain may be more effective in deriving decisions but may be
prone to group think or domain specific thinking (e.g. déformation professionelle). If teams are
assembled of people that do not know each other and roles are assigned according to weaknesses of
knowledge domains other than held by the individual, communication barriers may play an important

role. Further, domain specific terminology may extend the time for playing the game.

Prepared team and role assignment should therefore be planned in detail. The explanation of roles and
tasks are a big part of the briefing. Especially, communication barriers (like unknown terms, special rules
of interaction) should be tackled and declarative knowledge should be delivered in the beginning. The

debriefing should treat especially the group processes and modify group mental models.

Attribute 3: Time advancement techniques

There are four forms of time advancement used in multiplayer simulators. Time can be advanced by a
single role e.g. a single individual on the team is the only player who can advance time. Time can be
advanced automatically using a timer, there are two sub forms of timers, the first are timers which
operate relatively quickly e.g. teams have 5 minutes to make decisions before time moves to the next
time step; the second are long running simulators which run in ‘real’ time where each in simulator day
is equal to a day of real world time (or nearly so). The third form of time advancement is via consensus
where all roles must agree to advance time together. This form of time advancement is often paired with
a timer to keep the simulator moving with at least some predictability. The fourth and final form of time
advancement is via a facilitator where a professor, or some other individual external to the team is

responsible for moving time forward.

Single role time advancement is the simplest to implement from a technical perspective and establishes
a leader or dominant role on the team shaping the shared knowledge, i.e. group mental model created
by playing the simulator. Single role time advancement is not advisable in the purely competitive setting
since it would give one player an advantage over all others. In cooperative and hybrid simulators, it is
applicable and forces communication between the other players and the player who has the power to
advance time. This time advancement technique can create long games if not paired with a timer and

players are obsessive.

15

Timer based time advancement is also straightforward to implement from a technical perspective and
establishes a non-biased timing and creates games which last for a predictable amount of time. When
using timers with a long duration it is possible to create simulators where users do not have to be logged
in simultaneously. Short timers create pressure to make decisions and this has a loosely correlated

positive impact on communication when paired with cooperative or hybrid goal alignment simulators.

Consensus based time advancement is the hardest to implement from a technical perspective. It relieves
the pressure to make decisions (except when combined with a timer) and it has a strong positive
correlation with communication and lets the team develop its own leadership strategy. This technique
nurtures communication, and gives everyone a chance to get their say. This form of time advancement

works well with any goal alignment.

Facilitator based time advancement is easier to implement then consensus based time advancement
and is on the same level as advancing via a timer. It gives the facilitator precise control over pacing

which lets them create or relieve stress as necessary. It works well with any form of goal alignment.

Outside of pressure, and leadership dynamics discussed above, we do not see a large influence of time
advancement technigues on knowledge transfer. Authors should therefore keep in mind that the time
spent in the simulator can be regulated depending on the time advancement, but that the acquisition of

knowledge and development of communication skills will need time and repetition.

Discussion and Implications

Our assumptions

After having derived the distinct contributions of SD-based simulators, we want to reflect on the
assumptions and discuss our findings. We started this paper by presenting the situation of teaching a
subject with the use of a SD-based simulator. Current research, however, looks at how to teach system
dynamics (Richardson 2014a, 2014b, 2014c; Schaffernicht and Groesser 2016) with models, modelling,
simulators and simulation. Our paper connects to current research since the teaching methods may
include simulators. Richardson (2014b), for instance, presents the exploration of an existent model as
basis for becoming an experienced modeler. In our case, the model would have been combined with
graphical user interface to become a simulator. Further, Schaffernicht and Groesser (2016) point out
that the dynamic reasoning and model analysis are crucial skill sets in learning system dynamics. We
argue that some of the skills listed in the competence framework can be achieved by using simulators.
In short, our paper connects to current research about teaching system dynamics but is not only
restricted to it since other topics can be taught by using SD-based simulators without teaching system
dynamics. Therefore, we place our paper not only in the field of system dynamics but also in different
knowledge domains which may use the representation of the topic to be taught by a system dynamics

model.

16

Single player

Scenario Analysis Tool

Knowledge

Group
Mental
Model

Briefing

Role of

Debriefing

Detailed briefing about
declarative knowledge
Assumptions

Time intensive

Less time intensive
Discussion about findings
(policies, scenarios)

Management Flight Simulator

Focus on role and context
description

Clarify goal

Less time intensive

Time intensive

Clarify structural knowledge
Reveal causes of twists/hidden
model structure

Clarify solution

Multiplayer

Competitive Multiplayer
Simulator

Set rules, goal and roles
Less time intensive

Time intensive

Clarify structural knowledge
Reveal hidden model structure
Work with individual mental
models / interpretations

Solve conflict

Cooperative Multiplayer
Simulator

® © 0 O [~

Clarify team and role
assignment

Set rules and goals
Explain context

Clarify each team’s mental
model, align different team’s
mental models

Reveal hidden model structure
Solve conflict

Hybrid Multiplayer
Simulator

e O . . O |Dec|arative

@ & O |0 @ |

® 6 & O

Clarify team and role
assignment

Set rules and goals
Explain context

Clarify each team’s mental
model, align different team’s
mental models

Reveal hidden model structure
Solve conflict

Figure 2 - Learning outcomes and simulator functionality

17

With the purpose of presenting the most famous functionalities, we present five different designs:
analysis tools, management flight simulators, competitive, cooperative and hybrid multiplayer
simulators. By introducing these terms, we thwarted the aim of Maier and Grof3ler (2000) to use common
terms. We agree that a vast variety of terms may create confusion and hinder ongoing research. We
connected to the proposed taxonomy but we feel the need to extend it since the division into
subcategories based on time advancement plays an important role for knowledge transfer. We argue
that after the publication of the taxonomy, scholars of the field did not switch to the suggested
terminology. We do not believe that suggestions by Maier and GroRler (2000) are not accepted but
rather that something is missing to stimulate further research. This is why we try to extend the taxonomy

by adding the connection to learning outcomes.

The presented categories are not a result of a scientific literature search but are formulated based upon
the experience of the authors in discussion with others across the SD field who have been working on
building simulators and tools to create simulators over the past decade. A rigorous collection and
deconstruction with analysis of the most famous simulators is missing and encouraged. Especially a
comparative study of the functionalities and the learning outcome may shed new light on the

effectiveness of simulators and updates to our taxonomic system.

In this paper, we connect the functionality of simulators with learning outcomes. We treat the creation
and transfer of knowledge as learning outcomes. Specifically, we look at declarative, procedural and
structural knowledge. That is an immense reduction of the variety of types of knowledge existent in the
literature. Nonetheless, these three types of knowledge are well-accepted concepts (see e.g.
Schaffernicht 2005; Maier and Grof3ler 2000; Doyle and Ford 1998; Rouwette and Vennix 2006). We
argue that every type of knowledge serves its theory where the term is embedded in and these terms
are well-accepted in constructivist learning theories, the area in which double-loop learning is
embedded. Therefore, we believe that the use of these knowledge types is reasonable. However, by
using the three knowledge types and applying them to SD-based simulators, we reduce these concepts.
By definition, declarative knowledge does not only contain facts but also certain beliefs and domain-
specific methods; and procedural knowledge contains the skill of applying methods to certain problems
(Schunk 2012). We reduce those definitions since we answer the question which knowledge is created
or transferred by using a SD-based simulator. We conclude the results shown in Table 2 (page 8). We
think it is reasonable to connect those items of a system dynamics model to the indicated knowledge
types. We acknowledge that the knowledge types contain much more than only the indicated items —
however, since this paper is no experiment on learning processes we only focus on these product-
oriented reduced knowledge types. The processes that lead to the acquisition of knowledge are of high

importance but are not a subject of this paper.

Last, we use the term “group mental model” without proper definition. We rather refer to it as a blurry
term that describes that something is happening to a group of people that involves learning, discussion,
decision making. Using this term, we follow Kim (2009) suggestion that such a term contains too many

different concepts that more research is needed on constructs of group learning. For us group mental

18

models contain the knowledge of the individuals, thus the aforementioned declarative, procedural and
structural knowledge, sometimes it is shared and agreed sometimes not. We intendedly did not focus
on the discussion of what exactly it means but we want to raise attention that something is happening
to the group of individuals and we think that the extent to what something is happening differs depending

on the functionality. We consequently use this term to relate to games.

Implications of the results of our research

In this section, we want to present our findings chronologically and discuss them.

As mentioned before, we introduced the new terms analysis tool, management flight simulator and
multiplayer simulators to the taxonomy developed by GroRler et al. (2000) . We regard these terms as
an extension of the taxonomy since we used the criteria for classification to define them. Though the
aim of the taxonomy was to clarify the use, we increased the amount of terms used. But somehow, we
believe that the taxonomy did not intend to limit research on simulators but rather clarify. It helped us to
categorize existent simulators and therefore our contribution is a little extension. It shows that further
clarification is needed to derive the use of simulators and thus conduct research on the effectiveness of

simulators to support learning.

By the categorization presented in Figure 1 (page 6), we show that there seems to be a lack of
multiplayer simulators that simulate on one action and generate knowledge through comparative
analysis. The question however arises what kind of simulator might that be? This category implies that
every user has all information and they would work together to immediately create new policies based
on the behavior of all participants. With full information, it seems that such a design might connect to
game theory since the behavior of the different teams/users is uncertain but the basis for model
outcome. Competition does not seem to work in such a setting since one action will create a scenario.
The C-Roads simulator might be described as a simulator close to this category since it simulates on
one action and scenarios are compared. However, C-Roads is an analysis tool since it does not have
multiple users simultaneously interacting to create those scenarios. We believe that the functionalities
of such a class of tools is probably being handled today via the use of analysis tools where users can
share runs with each other and build new scenarios by taking policy changes from other users. With
that said, we encourage research into the subject of how best to fulfil the learning objectives of analysis

tools within a multiplayer context.

We connect learning outcomes with simulator functionality. We show that analysis tools are the most
appropriate tools to transfer structural knowledge. Management flight simulators are more appropriate
when the focus of training and teaching lies on procedural and declarative knowledge. Multiplayer
simulators focus on team building, communication and group mental models. The summary of our
research is shown in Figure 2. By using the empty circles, we do not rule out knowledge transfer of a
certain kind. We argue that the functionality does not seem appropriate to deliver this knowledge or that

the briefing / debriefing should deliver this knowledge if desired.

19

The classification scheme presented is useful for both traditional educators as well as consultants when
they are constructing and using simulators. It is our hope that all builders of simulators will be able to
make the key design decisions for their tools in the way which best supports their learning objectives
based on the kinds of learning they want to encourage. This extension of the taxonomy of computer
simulation to support learning ought to influence software vendors to produce tooling which support all
varieties of simulators described. Especially for multiplayer simulators there are significant technical
challenges. For analysis tools, for instance, we highlight the importance of displaying percent change
metrics, and other cross run statistics. Thus, our research outcome can also be used by software
vendors as an aid to help novice authors to design the basic form of their simulation via in software

based wizards which generate page templates to avoid ‘blank page syndrome’.

While all high-quality simulators require briefing and debriefing materials, this system helps authors to
understand the kinds of knowledge which must be embedded into those materials to encourage the full
spectrum of learning (across all knowledge types). E.g. for management flight simulators and multiplayer
learning environments to maximize the chances for structural knowledge creation to take place
debriefing materials are critically important because the simulator itself is typically deficient in its ability
to create this kind of knowledge in its users. For analysis tools the briefing and introductory materials
must make sure that users have a good handle on the declarative knowledge contained within the
system because without that, the structural and procedural learning which is usually the purpose of
building such systems becomes out of reach.

Conclusion

The motivation behind our research is to promote and support learning about complex dynamic systems.
There is wide agreement in the system dynamics field that the best way to promote the deepest learning
is to involve key decision makers in the whole model-building process, but this is not always possible.
Hence, key decision makers and students are confronted with ready-made system dynamics models for
interaction. Consequently, promoting learning via SD-based simulators is important, and therefore the
design of those simulators is critical. The presented extension of the taxonomy makes it easier for

simulator authors to create tools which meet their learning objectives and to promote deeper learning.

We categorize simulators first on the number of player interacting simultaneously to generate a single
run of the simulation model. For single player simulators, we then define two categories. Category 1.:
Analysis tools are simulators that are characterized by simulating with a single action, and make heavy
use of comparative graphs and tables to support learning across a series of runs. Analysis tools are
best used to impart procedural and structural knowledge of the system to users and require extensive
declarative knowledge of the system to make use of. Category 2: Management flight simulators, on the
other hand, are simulators which are characterized by their step by step time advancement technique
and lack of comparative graphs and tables. They support learning that happens over the course of a
single or limited number of runs. Management flight simulators are best used to impart declarative and

procedural knowledge of a system to their users.

20

The classification of multiplayer simulators is much more complex. First, multiplayer simulators are
highly related to management flight simulators imparting declarative and procedural knowledge best,
and tend heavily towards supporting knowledge creation over the course of a single or limited number
of runs. We have noticed that there are no commonly known simulators which are multiplayer which
would fall into a category more closely matching the analysis tool where learning occurs over the course
of multiple runs. Therefore, we categorize these simulators based on three attributes: intra-team goal
alignment, team and role assignment technique, and time advancement technique. Through design
decisions made by simulator authors on each of these attributes we can generalize about learning
objectives and outcomes which are useful to new simulator authors getting started with new work.

Finally, through the paper, we linked learning outcomes in form of the knowledge types (declarative,
procedural and structural), the creation of a group mental model and the role of briefing and debriefing
to the functionality of the simulators. We believe that this link is critical for the effective development of

useful and productive SD based simulators to support learning in education and training environments.

Acknowledgements

We thank the members of SDS Peer Mentoring Group in which this research was presented. The fruitful
discussion enabled this structure and made clear what precisely we want to say.

Further, the Onlinekolloquium was very forthcoming with intense feedback, which we used to develop
the figures presented to even better support our arguments.

Finally, we also thank Forio and isee systems for providing us with the number of simulators published
to their online platforms.

References

Alessi, S. (2000): Designing Educational Support in System-Dynamics-Based Interactive Learning
Environments. In: Simulation & Gaming 31 (2), S. 178-196. DOI: 10.1177/104687810003100205.

Argyris, C. (1976): Single-Loop and Double-Loop Models in Research on Decision Making. In:
Administrative Science Quarterly 21 (3), S. 363—-375.

Bakken, Bent; Gould, Janet; Kim, Daniel (1992): Experimentation in learning organizations A
management flight simulator approach. In: European Journal of Operational Research 59 (1), S.
167-182. DOI: 10.1016/0377-2217(92)90013-Y.

Brown, A. L.; Palincsar, A. S. (1986): Guided, cooperative learning and individual knowledge acquisition.
Cambridge, Mass.: Bolt Beranek and Newman Inc. (Technical report no. 372).

Davidsen, P. I. (2000): Issues in the Design and Use of System-Dynamics-Based Interactive Learning
Environments. In: Simulation & Gaming 31 (2), S. 170-177. DOI: 10.1177/104687810003100204.

Davidsen, P. I.; Spector, J. M. (2015): Critical Reflections on System Dynamics and Simulation/Gaming.
In: Simulation & Gaming 46 (3-4), S. 430—444. DOI: 10.1177/1046878115596526.

Doyle, James K.; Ford, David N. (1998): Mental models concepts for system dynamics research. In:
System Dynamics Review 14 (1), S. 3-29. DOI: 10.1002/(SICI)1099-1727(199821)14:1<3::AlD-
SDR140>3.0.CO;2-K

21

Gary, Michael Shayne; Wood, Robert E. (2011); Mental models, decision rules, and performance
heterogeneity. In: Strategic. Management Journal 32 (6), S. 569-594. DOI: 10.1002/sm;.899.
Gary, Michael Shayne; Wood, Robert E.; Pillinger, Tracey (2012): Enhancing mental models, analogical
transfer, and performance in strategic decision making. In: Strategic Management Journal 33 (11),

S. 1229-1246. DOI: 10.1002/smj.1979.

GroBler, A.; Maier, F.; Milling, P. (2000): Enhancing learning capabilities by providing transparency in
business simulators. In: Simulation & Gaming 31 (2), S. 257-278.

GroBler, Andreas (2004): Don't let history repeat itself - methodological issues concerning the use of
simulators in teaching and experimentation. In: System Dynamics Review 20 (3), S. 263-274. DOI:
10.1002/sdr.286.

Hsu, E. (1989): Role-Event Gaming Simulation in Management Education A Conceptual Framework
and Review. In: Simulation & Gaming 20 (4), S. 409-438. DOI: 10.1177/104687818902000402.

Jonassen, David H.; Beissner, Katherine; Yacci, Michel (1993): Structural knowledge Techniques for
representing, conveying, and acquiring structural knowledge. Hillsdale, NJ: Erlbaum.

Jong, Ton de; Ferguson-Hessler, Monica G.M. (1996): Types and qualities of knowledge. In: Educational
Psychologist 31 (2), S. 105-113. DOI: 10.1207/s15326985ep3102_2.

Kim, Hyunjung (2009): In search of a mental model-like concept for group-level modeling. In: System
Dynamics Review 25 (3), S. 207-223. DOI: 10.1002/sdr.422.

Lane, David C. (1992): Modelling as learning A consultancy methodology for enhancing learning in
management teams. In: European Journal of Operational Research 59 (1), S. 64-84. DOI:
10.1016/0377-2217(92)90007-V.

Langton, N. H.; Addinall, E.; Ellington, H. I.; Percival, F. (1980): The Value of Simulations and Games
in the Teaching of Sciennce. In: European Journal of Education 15 (3), S. 261. DOI:
10.2307/1503242.

Machuca, J. A. D. (2000): Transparent-box business simulators: An aid to manage the complexity of
organizations. In: Simulation & Gaming 31 (2), S. 230-239.

Maier, Frank H.; Grof3ler, Andreas (2000): What are we talking about? A taxonomy of computer
simulations to support learning. In: System Dynamics Review 16 (2), S. 135-148. DOI:
10.1002/1099-1727(200022)16:2<135::AID-SDR193>3.0.CO;2-P.

Morecroft, John; Wolstenholme, Eric (2007): System dynamics in the U.K A journey from Stirling to
Oxford and beyond. In: System Dynamics Review 23 (2-3), S. 205-214. DOI: 10.1002/sdr.368.

Moxnes, E. (1998): Not Only the Tragedy of the Commons: Misperceptions of Bioeconomics. In:
Management Science 44 (9), S. 1234-1248.

Moxnes, Erling; Jensen, Lene (2009): Drunker than intended: misperceptions and information
treatments. In: Drug and alcohol dependence 105 (1-2), S. 63-70. DOI:
10.1016/j.drugalcdep.2009.06.012.

Pruyt, E.; Kwakkel, J. H. (2012): A Bright Future for System Dynamics: From Art to Computational
Science and Beyond. In: E. Husemann und D. C. Lane (Hg.): 30th international conference of the
System Dynamics Society 2012. St. Gallen, Switzerland, 22 - 26 July 2012. Red Hook, NY: Curran.

22

Reif, F. (1987): Instructional design, cognition, and technology Applications to the teaching of scientific
concepts. In: Journal of Research in Science Teaching 24 (4), S. 309-324. DOI:
10.1002/tea.3660240405.

Reif, Frederick; Allen, Sue (1992): Cognition for Interpreting Scientific Concepts A Study of Acceleration.
In: Cognition and Instruction 9 (1), S. 1-44. DOI: 10.1207/s1532690xci0901_1.

Richardson, George P. (2014b): "Model" teaching | Examples for the early stages. In: System Dynamics
Review 30 (4), S. 283-290. DOI: 10.1002/sdr.1520.

Richardson, George P. (2014c): "Model" teaching Il Examples for the later stages. In: System Dynamics
Review 30 (4), S. 291-299. DOI: 10.1002/sdr.1524.

Richardson, George P. (2014a): “Model” teaching. In: System Dynamics Review 30 (1-2), S. 81-88.
DOI: 10.1002/sdr.1512.

Rouwette, Etiénne A. J. A.; Grol3ler, Andreas; Vennix, Jac A. M. (2004): Exploring influencing factors
on rationality A literature review of dynamic decision-making studies in system dynamics. In:
Systems Research and Behavioral Science 21 (4), S. 351-370. DOI: 10.1002/sres.647.

Rouwette, Etiénne A. J. A.; Vennix, Jac A. M. (2006): System dynamics and organizational interventions.
In: Systems Research and Behavioral Science 23 (4), S. 451-466. DOI:; 10.1002/sres.772.

Rouwette, Etienne A. J. A.; Vennix, Jac A. M.; van Mullekom, Theo (2002): Group model building
effectiveness A review of assessment studies. In: Syst. Dyn. Rev. 18 (1), S. 5-45. DOI:
10.1002/sdr.229.

Salas, Eduardo; Wildman, Jessica L.; Piccolo, Ronald F. (2009): Using Simulation-Based Training to
Enhance Management Education. In: Academy of Management Learning & Education 8 (4), S.
559-573. DOI: 10.5465/AMLE.2009.47785474.

Schaffernicht, M. (2005): Are you experienced? — a model of learning systems thinking skills. In: J. D.
Sterman und N. D. Repenning (Hg.): Proceedings of the 23rd. International Conference of the
System Dynamics Society, July 17-21 2005, Boston, Massachuesetts, US.

Schaffernicht, Martin F. G.; Groesser, Stefan N. (2016): A competence development framework for
learning and teaching system dynamics. In: System Dynamics Review 32 (1), S. 52-81. DOI:
10.1002/sdr.1550.

Schunk, Dale H. (2012): Learning theories An educational perspective. 6. ed. Boston, Mass.: Pearson.

Shuell, T. J. (1986): Cognitive Conceptions of Learning. In: Review of Educational Research 56 (4), S.
411-436. DOI: 10.3102/00346543056004411.

Spector, J. M. (2000): System Dynamics and Interactive Learning Environments Lessons Learned and
Implications for the Future. In: Simulation & Gaming 31 (4), S. 528-535. DOI:
10.1177/104687810003100406.

Sterman, J. D. (2000): Business Dynamics Systems Thinking and Modeling for a Complex World.
Boston: Irwin/McGraw-Hill.

Sterman, J. D. (2001): System Dynamics Modeling Tools for Learning in a Complex World. In: California
Management Review 43 (4), S. 8-25.

Sterman, John (2014): Interactive web-based simulations for strategy and sustainability The MIT Sloan
LearningEdge management flight simulators, Part I. In: System Dynamics Review 30 (1-2), S. 89—
121. DOI: 10.1002/sdr.1513.

23

Stouten, Hendrik; Heene, Aimé; Gellynck, Xavier; Polet, Hans (2012): Learning from playing with
microworlds in policy making An experimental evaluation in fisheries management. In: Computers
in Human Behavior 28 (2), S. 757-770. DOI: 10.1016/j.chb.2011.12.002.

Vennix, J. A. M. (1996): Group Model Building: Facilitating Team Learning Using System Dynamics.
Chichester: Wiley.

24

