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Abstract: This paper presents a simple soil-water (ecohydrologic) model developed in STELLA™ 

modeling environment. The model development was framed by previous work in both the 

rangeland science and ecohydrology disciplines and was calibrated to four locations of diverse 

soils and climate across Texas, USA. Overall, the model calibration procedure showed that the 

model is fairly well behaved compared to the available observed data at each location. Exploratory 

and sensitivity analyses showed some expected patterns of behavior that illustrate the model is 

sensitive to some extreme conditions and that the directional impacts of the changes followed a 

logical progression. However, there are several model components, particularly the biomass stock 

and the plant-soil related feedbacks on infiltration and runoff were not well parameterized and 

need to be improved before intended applications. Future work includes extending this model to 

include a feedback loop impact component [after Hayward and Boswell (2014), Model behavior 

and the concept of loop impact: A practical method. System Dynamics Review 30(1-2), 29-57] to 

better understand the water dynamics in semi-arid environments arising from climate and grazing 

management changes as well as developing a teaching tool for rangeland, soils, and/or modeling 

courses. 
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1. Introduction 

The field of ecohydrology has provided a hydrologic foundation from which to understand 

observed vegetation characteristics due to the linkages and flows between climate (e.g., stochastic 

precipitation), soil properties (e.g., soil water holding capacity), and vegetation (through soil-

moisture mediated plant transpiration). This has been achieved through rigorous testing of the link 

between soil water and evapotranspiration (Rodriguez-Iturbe 2000; Rodriguez-Iturbe et al. 1999b, 

2001; Seneviratne et al. 2010). Well documented ecohydrology models have focused on 

development and analysis of analytic expressions and probability density functions that describe 

soil moisture characteristics (e.g., Laio et al., 2001 a,b,c; Porporato et al., 2002; De Michele et al., 

2008) and only more recently matching observed values of soil moisture with model predicted 

values (e.g., Xia and Shao 2008; Kumar et al., 2013; Pan et al., 2015). The ecohydrologic paradigm 

is well positioned to address emerging water resource problems since the discipline is based on 

soil moisture, which is the primary source of water taken up and used for plant production (i.e. 

Annual Net Primary Production, ANPP). For this reason, soil moisture has been called “green 

water” (Falkenmark and Rockstrom 2006). The “green water” paradigm is an emerging paradigm 

in hydrology that recognizes the role of soil in regulating hydrological induced ecosystem goods 

and services (EGS) (Swift et al. 2004; Molden 2007; Power 2010). 
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Ecohydrologic models have focused on semi-arid ecosystems like that of rangelands or savannas 

for at least a couple of reasons. First, semi-arid ecosystems are complex systems that are primarily 

water-controlled (i.e., rainfall dependent), where vegetation characteristics are reflective of 

historical climate regimes and soil properties (Rodriguez-Iturbe 2001; Porporato et al. 2002). 

Second, vegetation oftentimes exert control on watershed balances and can be a regulator for many 

land-atmosphere feedbacks while at the same time being subjected to self-inflicted water stress 

(Rodriguez-Iturbe et al. 1999b). Third, soil moisture is a key system component capable of 

integrating disturbance forces from soil, climate, and vegetative characteristics across 

evapotranspiration (ET) regimes (Seneviratne et al. 2010), and therefore is among the principal 

reasons for the existence of particular functional vegetation types (e.g., grasslands, forests, steppe, 

savanna; Cody 1986; Scholes and Archer 1997; Rodriguez-Iturbe et al. 1999a; conceptually, these 

factors are shown in Figure 1). Therefore, semi-arid ecosystems are good laboratories for 

ecohydrologic models because they are generally precipitation limited, have diverse soil and plant 

functional characteristics that regulate or impact numerous EGS, and are observed between 

extreme dry and wet environments where soil moisture generally does not impact ET variability 

(Seneviratne et al. 2010).  

Within these semi-arid ecosystems, disturbances such as grazing, fire, or drought can have distinct 

roles in ecosystem functioning (Cody 1986). Although recognized by previous ecohydrologic 

models (e.g., Laio et al., 2001 a,b,c; Rodriguez-Iturbe et al., 2001), the inclusion of such 

disturbances into soil-water models to examine the long-term interaction effects with stochastic 

precipitation on these systems remain an area on novel investigation. Examining these impacts are 

important because semi-arid ecosystems are not only forced to cope with natural variation in 

precipitation or random natural disturbances (e.g., fire), but also because many such systems are 

humanly-managed (e.g., through animal impact of grazing; controlled burns) in order to meet 

socio-economic goals. Such goals may include, but are not limited to, smallholder livelihoods 

dependent on meat production, forage production, wildlife conservation, wildland recreation, 

among others (du Toit et al., 2010). These disturbance regimes (both natural and man-made) have 

important biologic and economic implications due to their influence on plant community and/or 

soil characteristics (e.g., IPCC 1995; Jackson et al., 2002). In circumstances where livelihoods are 

dependent on the goods and services derived from semi-arid ecosystems, sustainability of soil and 

plant characteristics that contribute to management sustainability is also an important (Teague et 

al., 2009). Although empirical rangeland science has investigated some of these relationships 

between precipitation, disturbance, plant communities, and management (e.g., Teague et al., 2004; 

Teague et al., 2011), few have explicitly incorporated the important role of soil and soil moisture 

into the investigation. 

Models of semi-arid rangelands have received substantial attention over several decades, from 

plant, animal, and economic perspectives (e.g., Thornley 1998; Teague et al. 2009). Besides 

drought and fire, much experimental evidence has documented ecological impacts of livestock 

(either positive or negative; e.g., Schuman et al. 1999; Conant et al. 2001; Fynn and O’Conner 

2000; Teague et al. 2011; Schmalz et al. 2013). However, the soil and hydrologic effects of these 

disturbances have not been fully incorporated into rangeland management models. This has 
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important implications because of uncertain climate change events, water scarcity, and lack of 

model accounting for disturbance event (e.g., drought; fire; grazing) impacts on soil resources.  

With uncertain but ongoing climate change events (e.g., changing precipitation frequency and 

depths; occurrence and severity of drought; Trenberth et al., 2013), plant community responses 

will likely differ based on initial plant community diversity, invasive species, range condition 

(RC), as well as management disturbance strategies (Fuhlendorf et a. 2001). Likewise, as water 

becomes more scarce throughout many semi-arid regions, including rangelands, managers and 

stakeholders will likely be faced with increasing socio-economic and legal challenges for rights to 

water (e.g., consumptive or beneficial use; Falkenmark and Rockstrom 2006), including water 

rights allocation/adjudication to municipal or EGS demands through increased water conservation 

requirements or restrictions on consumptive uses.  

Although only a portion of “green water” is transferred to livestock via grazing, improved grazing 

management has documented effects on soil physical and chemical properties that can enhance 

soil water infiltration, storage, and groundwater recharge (Teague et al. 2011; Schmalz et al. 2013). 

Soil moisture, through its impact on soil organic matter dynamics, also has implications for climate 

change mitigation (Trenerth et al., 2013; Tietjen et al., 2010, Vico et al., 2015). Having an effective 

soil-water-plant modeling framework with minimal parameterizations that can be easily integrated 

into existing plant-animal-grazing models be will increasing important in terms of watershed 

budgets, water conservation, and rangeland management for stakeholder seeking to secure grazing 

and water rights in future conservation and legislative arenas.     

In this paper, I first discuss the gaps in existing rangeland management modeling frameworks and 

their treatment of soil hydrologic properties and soil moisture dynamics (in models where soil 

processes are not explicit) or the differing formulation between models which do include detailed 

soil processes. I then identify existing ecohydrological concepts that could be transferred into 

existing modeling efforts.  I proceed by describing the development of a soil-water balance model 

(based on ecohydrology principles) and presenting a model sensitivity analysis to internal 

parameter changes. Lastly, I provide a discussion of the model structure (given the sensitivity 

results), strategies moving forward to apply the model towards forage and rangeland dynamics, 

and extending the model using the Feedback Loop Impact method (Hayward and Boswell, 2014) 

to better understand the endogenous dynamics given changes in climate, management, or both. 

1.2. Brief overview of some notable semi-arid rangeland and soil ecohydrology models 

Simulation modeling of any kind requires simplifications and trade-offs. This is no exception for 

semi-arid ecosystem models due to the complex and dynamic nature of soils, vegetation, livestock 

and wildlife, and management activities. Trade-offs between such components, as well as 

specification of model parameters (e.g., time scales, time steps, integration methods, etc.), depends 

on the research or management objectives (Grant et al., 1997; Sterman 2000).  

Based on a survey of the literature, primary range management models have focused on ecosystem 

condition (e.g., ANPP; brush management/control), livestock performance (e.g., grazing behavior; 

diet selection; or body condition score, BCS), profitability of smallholder strategies (Net Present 

Value, NPV, of alternative stocking decisions), or wildlife considerations.  



4 
 

Such modeling efforts have been successful in advancing our understanding of whole system 

management on ANPP, range condition (RC), and profitability (NPV) of different stocking rate or 

brush management strategies (Table 1 summarize the key objectives of several well recognized 

grazing models and their treatment of soil-water resources). These models can also be tested for a 

variety of hypotheses including dynamic stocking rate optimization, profitability or RC 

distributions from alternative management decisions with differing initial SR and/or RC values, or 

cost-benefit analysis of long-term brush control, to name a few. However, the treatment of soil 

resources in grazing models has evolved from no treatment, to explicit treatment, to implicit 

treatment (Table 1). This was most likely due to the high parameterization requirements needed to 

model soil water balance and plant growth. By accepting the trade-off of implicit soil treatment 

with less parameterization requirements, a soil’s influence on the grazing system could be included 

albeit without inclusions for water balance or grazing’s positive or negative effect on soil 

hydrologic properties. This has been accomplished by: a) empirical relationships of precipitation 

and plant production; and b) coupling these estimates to assumed coefficients about RC and 

previous rainfall trends; in order to, c) model forage supply usable for grazing through changes in 

RC, irrespective of changes in plant community composition, which is an important driver of 

forage quality. 

Forage supply and quality are determined by seasonal temperatures, random precipitation events 

and depths, plant functional-structural groups, soil physical properties, and grazing’s impact on a 

site’s condition (e.g., improved plant or hydrologic properties; Teague et al. 2004; Teague et al. 

2011). Although grazing models have gone away from explicit soil components there will likely 

be need for such descriptions in the future for at least two reasons: 1) with impending climate 

change effects on precipitation and temperature regimes it is expected that plant communities will 

also undergo change (IPCC 1995; Jackson et al. 2002), which will influence RC, forage quality, 

and stocking rate strategies; and 2) with increased demands on water resources, range professionals 

will need science-based models to account for and promote continued grazing uses, especially in 

semi-arid environments. Therefore, a tractable method of incorporating soil-moisture effects on 

plant productivity as well as the impacts of rangeland disturbances to the soil surface layer capable 

of testing various climate and disturbance regimes should be a worthwhile contribution towards 

understanding soil-water-plant-animal management in semi-arid regions.  

Besides the ecohydrologic models mentioned above (e.g., Laio et al., 2001 a,b,c; Rodriguez-Iturbe 

et al., 2001), the inclusion of grazing disturbances into soil-water models to examine the long-term 

interaction effects with stochastic precipitation on these systems remain an area on novel 

investigation and will aid in continuous model refinement (see section 4 below). For example, 

Eldridge et al. (2015) examined the soil nutrient dynamics resulting from grazing exclusion under 

shrub canopies, showing that shrubs may reduce adverse effects of grazing and retain more water 

and nutrients under canopies. One of the main challenges of soil ecohydrologic models is the 

proper representation the coupling between plant production and soil moisture through 

transpiration. For example, the model presented by Finzel et al. (2015) showed that soil water 

dynamics and total soil water storage at three different sage/steppe locations could be replicated 

with high efficiency, accuracy, and precision, but that plant production was much more variable 

(due to high or low precipitation prior to the growth season) and could only be reasonably 
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estimated for half of the simulated years. Regarding grassland ecosystems important for livestock 

grazing, a SD approach has been used to calibrate a previously developed soil ecohydrology model 

replicated for a number of grassland/savannah ecosystems, but no grazing impacts were 

incorporated at that time (Miller et al., 2012). Lastly, given the consistent nature by which these 

systems have been described as water-controlled ecosystems due to the importance of precipitation 

(i.e., the inflow to the soil moisture level), the SD approach is needed for such investigations since 

SD emphasizes both inflows (precipitation) and outflows (ET driven by soil-plant feedbacks) to 

the soil moisture (stock) level.  

2. Materials and methods 

2.1. Model overview 

The model represents a soil-water model can be described as a vertically averaged (or bucket) soil 

column, which integrates inflows and outflows of water and with feedbacks for soil moisture 

percentage, s, and percentage plant cover on infiltration (and therefore infiltration-excess runoff) 

and transpiration rates (and therefore plant production; Figure 2). Variables that were exogenous 

to the model included precipitation time-series data input and the required static parameters to 

determine reference ET. The soil-water model (Figure 3) was constructed using the system 

dynamics (SD) program Stella™ modeling environment (iSeeSystems, Inc.; Lebanon, NH, USA). 

The time-step used from simulation was 1 day, with DT=0.25 and a simulation time horizon of 

365 days. The main strength of using the SD platform was the ease of use handling multiple 

feedback mechanisms and a rapid simulation time. The main contributions of the model were the 

inclusion of plant production functions (which have generally been lacking in previous 

ecohydrology models) and the variability in transpiration rates (which have generally been 

assumed as constants over a growing season). In the sections that follow, I describe the soil-water 

model components and connections. Model variable names and equations are provided for 

reference (see Supplementary Material) while the major equations are described in the text.  

2.2. Soil moisture dynamics 

The modeling framework of soil water balance can be expressed using the differential equation: 

nZr

ds

dt
=I(s, t)-E(s)-L(s), 

where n is the soil porosity, Zr is the active soil rooting depth, s is the relative soil moisture content 

(0 ≤ s ≤ 1), I(s, t) is the net rate of infiltration (i.e., precipitation less runoff), E(s) is the rate of 

evapotranspiration (ET), and L(s) is the rate of leakage (or percolation) due to deep infiltration [for 

full methodological descriptions, see Porporato et al. (2002), Rodriquez-Iturbe et al (2001), Laio 

et al. (2001a and 2001b)]. Net infiltration was driven by stochastic precipitation inputs during 

model development (section 2.3) and observed precipitation during calibration (section 2.6). 

Evapotranspiration, E(s), was driven by plant transpiration and soil moisture, s, (section 2.4) while 

soil evaporation per day was estimated via a lookup table. Leakage losses, L(s), were driven by 

additional I(s, t) where soil moisture conditions were at full saturation.  
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Porosity n was estimated based on soil conditions at four Texas locations of varying rainfall 

regimes and soil characteristics (Figure 4). For simplicity, all initial Zr was set to 90 cm. Within 

the SD modeling environment, s is treated as a stock, while I(s, t), E(s), and L(s) are treated as 

flows (Figure 4). Contributing factors (auxiliary variables) to each of the above flows included 

ecosystem plant type (i.e., the proportion of grass and brush present), herbaceous soil cover (and 

its associated effect on infiltration excess-runoff), and plant-water stress are described in sections 

2.3. and 2.4.  

2.3. Precipitation inputs and potential (reference) evapotranspiration 

Previous ecohydrology models have explored the stochastic nature of precipitation times and 

depths [for full methodological descriptions, see Porporato et al. (2002), Rodriquez-Iturbe et al 

(2001), Laio et al. (2001a and 2001b)]. Here, stochastic precipitation representing a semi-arid 

environment was used for model development, where the average precipitation arrival time 

followed the Poisson distribution (mean arrival time = 1/21 day-1; mean precipitation depth = 0.4 

cm), respectively. However, during calibration observed precipitation events were used (described 

in section 2.6), which holds additional value beyond calibration since similar data are already 

incorporated into many rangeland models (Table 1). Potential (or reference) evapotranspiration 

(Ep) was calculated using the Hargraeves method (Hargreaves 1975; Hargreaves and Allen 2003), 

which required minimal inputs including location latitude and monthly temperatures (mean, 

maximum, and minimum). The estimated ETp was then applied to the plant productivity model 

(section 2.4), the major driver of soil moisture loss through ET. 

2.3. Plant productivity model 

The plant productivity model consisted of a single stock of biomass which accumulates through 

growth due to ET and diminishes through losses of senescence (or physical removal through 

grazing or other management treatments; which were assumed to be zero during model 

development). Biomass growth was driven by growth potential, defined as  

  

ETa= 
ETlsw

ETp

 , 

where ETa is the actual evapotranspiration, ETlsw is the ET rate given limited soil water, and ETp 

is the potential (or reference) evapotranspiration rate (calculated using the Hargreaves method). 

Identifying where soil moisture level, s, that begins to effect plant transpiration is critical for 

understanding the soil-water balance dynamics, particularly in semi-arid environments. Although 

there are many soil characteristics that influence water holding capacity and therefore plant 

productivity, this model was restricted to soil physical properties. Soil physical properties were 

parameterized using estimates of soil moisture field capacity, sfc, the soil moisture value below 

which plants become stressed, s*, the soil moisture value inducing plant wilting point, sw, and the 

soil moisture value crossing the plant hygroscopic point, sh [this follows the convention used in 

Porporato et al. (2002), Rodriquez-Iturbe et al (2001), Laio et al. (2001a and 2001b), and Clapp 

and Hornberger 1978]. Losses from ETa were assumed to correspond to ETp where s*<s<1, 
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decreasing linearly with decreasing s until sw, below which only soil evaporation takes place until 

sh is reached. This relationship is shown in Figure 5 and the following mathematical formulation: 

ETlsw= 

{
 
 

 
 ETw

s-sh

sw-sh

,  

ETw+(ETp-ETw)
s-sw

s*-sw

,

ETp,

  

sh< s ≤sw,

sw< s ≤s*,

s*< s ≤1.

  

As described in Laio et al. (2001), this formulation provides a distinction for evaporation and 

transpiration at low levels of soil moisture and therefore better represents the evolution of soil 

moisture and ET during changing conditions (e.g., limited soil moisture due to drought).  

2.5. Feedback linkages between components 

The final feedback linkages provide ecohydrologic connections between plant biomass and the 

inflows to soil moisture (Figure 2). First, transpiration drives the production inflow of the plant 

biomass stock. The biomass stock provides soil cover and greater Leaf Area Index that influence 

the interception, infiltration, and runoff dynamics. Using a series of lookup tables (Table 2), these 

dynamics were estimated using the following mathematical relations for canopy interception and 

runoff that drive infiltration. First, runoff was estimated by the conditional statement.  

IF s ≥1 THEN rainfall ELSE rainfall*(
LAI effect on runoff

100
) 

Second, canopy interception was the product of the rainfall depth intercepted and the biomass 

effect on soil cover, formulated as:  

Canopy interception lookup*(
100-Biomass effect on soil cover

100
) 

Lastly, infiltration was formulated as the different of precipitation (post-interception) and runoff: 

rainfall*(
100-Canopy interception 

100
)-runoff. 

These relationships were parameterized via simple assumptions (i.e., with little to no guidance 

from other sources or models) with the goal to use minimal additional variables to the model in 

order to arrive at a working simulation as quickly as possible. Therefore they are the largest area 

for improvement in this model. For example, soil physical properties (percentage sand, silt, and 

clay) are major determinants of soil infiltration and runoff rates. Also, rooting dynamics of various 

plants types (e.g., shallow vs. deep rooted; tap vs. fibrous root system) will also play a major role 

influence the soil moisture dynamics. Such relationships were outside the scope of the model 

development at this time but will valuable additions as the model is improved.   

2.6. Calibration measurements 

In order to calibrate the developed model, soil-water data were obtained through Texas A&M 

University’s National Soil Moisture Database (available at: http://soilmoisture.tamu.edu) for four 
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locations in the state Texas, USA (Figure 4), representing contrasting ecoregions and precipitation 

regimes. Initial s was set to the initial soil moisture level for an observation year containing up to 

365 days. Climate data to include for driving both precipitation and Hargreaves ETp were 

downloaded from Weather Underground (wunderground.com) for each of the locations. Since 

precipitation data were obtained in proximity to and not directly at the locations where soil 

moisture was recorded, an adjustment had to be made for clear outlier precipitation events that did 

occur in the general area but did not occur at the specific soil monitoring point. In total, 

precipitation events had to be reduced or eliminated for 27 days (out of a total 1460 days, or 365 

days for each of the 4 locations), or 1.8% of the total simulation days. After accounting for these 

events, calibration measurements were taken for metrics of accuracy (Mean Bias), precision 

(coefficient of determination, r2), and overall model fit (Theil inequality measures) for each of the 

four sites.  

2.7. Sensitivity analyses 

After examining the calibration of each of the sites, the model was returned to its generic soil 

characteristics used during model development prior to calibration. Several sensitivity analyses 

were done to examine the general model’s behavior to three key components: precipitation and 

grazing intensity (external drivers) and soil rooting zone depth (Zr; an internal driver). The 

objective of these tests were to examine the model behavior to expected patterns of soil moisture 

given changing magnitude of precipitation depths and rooting zone depths. Altering precipitation 

intensity around the observed precipitation events should yield patterns of behavior similar to 

historical soil moisture levels with higher peaks when sensitivity values are greater than 1 and with 

increasingly smaller peaks until soil moisture remains at 0 when sensitivity values are between 0 

and 1. Precipitation depth was altered from 0 to 150% of modeled depths over the course of a 

synthetic model run. Although grazing intensity has been implicitly linked to soil and soil moisture 

dynamics through observations of landscape change (e.g., plant communities) or watershed 

function (e.g., erosion and compaction), grazing has only been explicitly linked with soil and soil 

moisture dynamic in a few models (see Table 1). Several grazing treatments (grazing start 

time=day 120; grazing days = 150; active grazing loss volume = 0.5*grazing sensi; 0<grazing 

sensi<2 for 50 simulations) were applied to explore the soil-moisture dynamic created by plant 

removal over the grazing season (i.e., no hoof action or long-term grazing impacts were explored 

at this time). Lastly, observations of soil moisture in soils with alternative root depths have shown 

some dynamic relationships, since soils with shallower rooting depths have shown to have higher 

peaks of relative soil moisture percentage (post-precipitation events) but have much more rapid 

recession patterns (see Laio et al., 2001a for statistical description) effectively creating a crossing 

behavior in soil moisture evolution between shallower and deeper rooted soils. Rooting depths 

were altered to from the base 90 cm to 30 cm (in 15 cm increments) to measure this response in 

the model compared to expected patterns.      
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3. Results 

3.1. Model calibration and evaluation measures 

Overall, the initial model was fairly well behaved (Table 3). Accuracy, measured by mean bias (in 

soil moisture percentage terms) was extremely low, and precision estimates were excellent for two 

sites (Edinburg and Palestine), fair for one site (Seymour), and low for one site that did not have a 

representative 365 day sample (Freeman Ranch). Behavior-over-time graphs for the initial model 

predictions compared to observed soil moisture levels as well as for Theil Inequality Statistics are 

provided (Figures 6 and 7). The major model errors for each of the four sites were assessed as 

follows:  

 Edinburg: The major errors associated with the Edinburg simulation occurred later in the 

simulation, with some precipitation events occurring at differing days between day 225 and 

295. After day 295, the model simulated soil moisture did not decline at as rapid a rate as 

the observed time series, indicating that moisture losses (or outflows) were smaller in the 

model than in the real world. This was likely due in part to the timing of precipitation 

events but also to the specification of soil evaporation for the ending months at this site 

was too low.  

 Freeman Ranch: The Theil Inequality statistics for the Freeman Ranch site may indicate 

that the specification for this site is approaching an acceptable level, however the observed 

and predicted time series tell another story. First, the data for the Freeman Ranch were the 

scarcest, leading to fewer days of allowable comparison. For the days we can compare, 

discrepancies indicate that there may be some important errors in this model. Although the 

time-series both peak at similar points corresponding to precipitation events, the slope of 

the recession limb post precipitation is much steeper in the observed data, indicating that 

the outflows in the model are not increasing at the appropriate rate.  

 Palestine: Comparing the observed and predicted Palestine data indicate that the model 

may be fairly well behaved except for the three months of the simulation, where the 

precipitation peaks are not as high (or numerous) compared to the historical data and the 

slope of the recession limb is much steeper. As the simulation continues, the peaks of soil 

moisture tend to be somewhat lower or higher compared to the historical data while the 

slope of soil moisture drawdowns remain consistent. Unlike the previous two sites, where 

the outflows were likely not powerful enough to ‘drain’ the soil moisture stock as quickly, 

the outflows for the Palestine case seem to be very well matched (i.e., similar slope 

regardless of precipitation event). Therefore, the major errors associated with this model 

are likely the location of precipitation events driving the model in relation to the soil 

observation point or better parameterization of infiltration and runoff based on the Plant 

Biomass stock. The Palestine case can likely be highly improved with simply more 

representative precipitation information and some minor improvements in 

parameterization.  

 Seymour: According to the Theil statistics, the Seymour site appears to be the model that 

is the best behaved. Most of the error resides in the covariance fraction. Comparing the 

observed and predicted data, there are some discrepancies between the timing of 



10 
 

precipitation events relevant to the site (e.g., days 57-85; days 183-211; etc.). There is 

likely minimal parameterization improvements needed for the Seymour model other than 

having a precipitation record closer to the soil observation point.  

3.2. Sensitivity analyses 

Several sensitivity tests were conducted to examine the model behavior to extreme conditions in 

several internal and external forcing to the soil moisture stock. First, precipitation depth of a model 

generated precipitation year was altered from 0 to 150% over 150 simulations. As expected, 

altering precipitation depth (increased/decreased) had a corresponding increase or decrease in soil 

moisture dynamics, with higher peaks due to increased precipitation moving toward no change 

under the drought scenario (precipitation=0) (Figure 8). This test corresponds to the expected 

pattern of behavior for water controlled-ecosystems given that the potential variability in soil 

moisture dynamics are driven by the depth of each rainfall event over time.   

Second, grazing was applied to the model to remove vegetation from the plant biomass stock, 

which influences soil moisture through the feedbacks of soil cover effects on infiltration and 

runoff. Given the weaknesses in model parametrization of these components (as described above), 

these results are exploratory only. As shown in Figure 9a, increasing biomass consumption per 

day resulted in increasingly less biomass accumulation over the year of simulation. In this regard 

the biomass stock-and-flow component is well behaved. The mean biomass level over the grazing 

season given increasing grazing intensity (Figure 9b) also confirms that the biomass stock 

approximates the correct behavior. However, when examining the feedback between biomass and 

soil moisture, a clear pattern emerged. With less severe grazing intensity (i.e., larger accumulations 

of biomass), mean daily ET was around 0.188 cm. As daily grazing intensity increased, mean daily 

ET also decreased as the biomass effect on transpiration was less impactful (Figure 9c). 

Eventually, biomass reached such critically low levels that mean ET reached a stable minimum. 

Trends in cumulative ET reflect this behavior as well. From this test, it was assumed that biomass 

removal per day was too high to properly evaluate the dynamics between biomass and ET (as 

influenced by soil moisture levels). Therefore, an additional test was run with the model’s active 

grazing loss equal to 0.00333 percent per day (or reduction of biomass stock 50% over the 150 

day grazing period) and grazing sensitivity values ranging from 0 to 300 (or 0-to 100 percent 

removal). .  

Lastly, soil rooting depth was shortened from 90 to 30 cm in 15 cm increments to examine the 

recession of soil moisture over time due to lower soil water holding capacity. With decreasing soil 

water holding capacity, each precipitation event has an increasingly large effect on soil moisture 

percentage (i.e., higher peaks post-precipitation events) and a more rapid recession limb (i.e., ETa/s 

is larger for smaller stocks of soil-water) (Figure 10). With increasing depth, precipitation events 

have a smaller proportional effect on soil moisture percentage, and Eta/s is proportionally smaller, 

leading to a shallower sloping recession limb. This behavior matches expected patterns previously 

presented (Laio et al., 2001 a,b,c; Porporato et al., 2002).  



11 
 

4. Discussion and Future Work 

The soil moisture model presented here describes a simple parameterization approach using two 

stocks (i.e., second order feedback loops between soil moisture and plant biomass through 

evapotranspiration and infiltration and runoff dynamics) to reproduce some basic behaviors 

regarding soil moisture across a number of diverse ecological sites in Texas, USA. Overall, the 

model was fairly well behaved, with acceptable or near acceptable calibration measurements to 

the observed patterns of behavior. However, the plant biomass stock and its associated impact on 

infiltration and runoff dynamics is an area that needs additional refinement to insure that the 

corresponding equations match accepted formulations from other models or that they are clearly 

grounded from other observations presented in the literature. Also, closer comparisons can be 

made to other models in the ecohydrology field (Eldridge et al., 2015; Finzel et al., 2015), 

including those using system dynamics (Miller et al., 2012).  

Besides the model improvements and comparisons described above there is another major model 

exploration and objective that is being worked towards with this model. For most of the models 

identified in the literature, the major objectives have centered on developing statistical descriptions 

of observed data, calibration of models to observed data, or sensitivity analyses to various 

treatments (e.g., changing stocking rates, altered range conditions, alternative precipitation 

patterns, etc.). What most models have not done is explore the endogenous dynamics that control 

the patterns of behaviors observed in the real system (i.e., most have really on soil physical 

characteristics and precipitation regime to drive the model dynamics). Although there is nothing 

theoretically wrong with such approaches, they are less helpful for understanding why the patterns 

emerge the way that they do or how differing soils respond to changing conditions (e.g., unset of 

or recovery from drought). A system dynamics approach is well suited to close this gaps through 

identification of feedback loop impact/feedback loop dominance analysis.   

Recently, a practical feedback loop impact approach was presented that incorporates the analysis 

directly into the programming of a model (Hayward and Boswell, 2014). The approach stems from 

the Pathway Participation Metric method of measuring feedback loop impact and was successfully 

demonstrated on several small (generic) first- and second-order models with up to five feedback 

loops. The soil ecohydrology model described here is a second-order (or two-stock) model with at 

least seven feedback loops that is relatively well calibrated to four diverse sites. Once fully 

calibrated, particularly for the biomass stock, plant-soil feedback linkages, and grazing 

interactions, this model could be used for a novel feedback loop impact investigation to quantify 

the endogenous strength of each loop given changes of climate, precipitation, or grazing impacts. 

Such an analysis could yield important insights for management of adaptive grazing strategies in 

rangeland science in diverse locations. A secondary benefit would be a visually simple and 

effective teaching tool that could be used in range science, plant-soil-water relations, or system 

dynamics modeling classes.   

5. Conclusions 

This paper presented a simple soil-water (ecohydrologic) model developed in STELLA™ 

modeling environment. The model development was framed by previous work in both the 



12 
 

rangeland science and ecohydrology disciplines and was calibrated to four locations of diverse 

soils and climate across Texas, USA. Overall, the model calibration showed that the model was 

fairly well behaved compared to the available data at each location. Exploratory and sensitivity 

analyses showed some expected patterns of behavior that illustrate the model is sensitive to some 

extreme conditions and that the directional impacts of the changes followed a logical progression. 

However, there are several model components, particularly the dynamic surrounding biomass and 

the plant-soil related feedbacks on infiltration and runoff, that were not well parameterized and 

need to be improved before further analyses. Future work included extending this model to include 

a feedback loop impact to better understand the dynamics of water in semi-arid environments given 

climate and grazing management changes as well as potentially developing a teaching tool for 

rangeland, soils, or modeling courses. 

References 

Baker, B.B., Bourdon, R.M., Hanson, J.D. (1992). FORAGE: a model of forage intake in beef 

cattle. Ecological Modelling 60:257-279.  

Blackburn, H.D., Kothman, M.M. (1991). Modelling diet selection and intake for grazing 

herbivores. Ecological Modelling 57:145-163.  

Blackburn, H.D., Kothmann, M.M. (1989). A forage dynamics model for use in range and pasture 

environments. Grass and Forage Science 44:283-294.  

Clapp, R.B., Hornberger, G.N. (1978). Empirical equations for some soil hydraulic properties. 

Water Resources Research 14(8):601-604.  

Cody, M.L. 1986. Structural niches in plant communities. In: Diamond, J., Case, T. (eds.). 

Community ecology. Harper Row, New York.  

Conant, R.T., Paustian, K., Elliott, E.T. (2001). Grassland management and conversion into 

grassland: effects on soil carbon. Ecological Applications 11(2):343-355.  

De Michele, C., Vezzoli, R., Pavlopoulos, H., Scholes, R.J. (2008). A minimal model of soil water-

vegetation interactions forced by stochastic rainfall in water-limited ecosystems. Ecological 

Modelling 212:397-407.  

Díaz-Solis, H., Grant, W.E, Kothmann, M.M., Teague, W.R., Diaz-Garcia, J.A. (2009). Adaptive 

management of stocking rates to reduce the effects of drought on cow-calf production systems in 

semi-arid rangelands. Agricultural Systems 100:43-50.  

Díaz-Solis, H., Kothmann, M.M., Hamilton, W.T., Grant, W.E. (2003). A simple ecological 

sustainability simulator (SESS) for stocking rate management on semi-arid grazinglands. 

Agricultural Systems 76:655-680.  

du Toit, J.T., Kock, R., Deutsch, J.C. (eds). (2010). Wild Rangelands: Conserving Wildlife While 

Maintaining Livestock in Semi-arid Ecosystems. Conservation Sceince and Practice No. 6, Wiley-

Blackwell, West Sussex, UK.  



13 
 

Eldridge, D.J., Beecham, G., Grace, J.B. (2015). Do shrubs reduce the adverse effects of grazing 

on soil properties? Ecohydrology (Feb 2015) DOI: 10.1002/eco.1600. 

Falkenmark, M., Rockstrom, J. (2006). The New Blue and Green Water Paradigm: Breaking New 

Ground for Water Resources Planning and Management. Journal of Water Resources Planning and 

Management May/June 129-132. 

Finzel, J.A., Seyfried, M.S., Weltz, M.A., Launchbaugh, K.L. (2015). Simulation of long-term soil 

water dynamics at Reynolds Creek, Idaho: implications for rangeland productivity. Ecohydrology 

(Sep 2015) DOI: 10.1002/eco.1666. 

Fuhlendorf, S.D., Briske, D.D., Smeins, F.E. (2001). Herbaceous vegetation change in variable 

rangeland environments: the relative contribution of grazing and climate variability. Applied 

Vegetation Science 4:177-188.  

Fynn, R.W.S., O’Conner, T.G. (2000). Effects of stocking rate and rainfall on rangeland dynamics 

and cattle performance in a semi-arid savanna, South Africa. Journal of Applied Ecology 37:491-

507.  

Glasscock, S.N., Grant, W.E., Drawe, D.L. (2005). Simulation of vegetation dynamics and 

management strategies on south Texas, semi-arid rangeland. Journal of Environmental 

Management 75:379-397.  

Grant, W.E., Pedersen, E.K., Marín, S.L. (1997). Ecology and Natural Resource Management: 

Systems Analysis and Simulation. John Wiley & Sons, Inc. ISBN 978-0471137863. 

Hargreaves, G.H. (1975) Moisture availability and crop production. Trans. ASAE 18, 980–984. 

Hargreaves, G.H., Allen, R.G. (2003) History and evaluation of Hargreaves evapotranspiration 

equation. J. Irrig. Drain. Eng. ASCE, 129, 53–63. 

Hayward, J., Boswell, G.P. (2014). Model behavior and the concept of loop impact: A practical 

method. System Dynamics Review 30(1-2), 29-57. 

IPCC Second Assessment Report: Climate Change 1995. (1995). Watson, R.T., Zinyowera, M.C., 

Moss, R.H. (eds.). Available at https://ipcc-wg2.gov/publications/SAR/index.html. 

Jackson, R.B., Banner, J.L., Jobbagy, E.G., Pockman, W.T., Wall, D.H. (2002). Ecosystem carbon 

loss with woody plant invasion of grasslands. Nature 418:623-626.  

Kumar, R., Jat, M.K., Shankar, V. (2013). Evaluation of modeling of water ecohydrologic 

dynamics in soil-root system. Ecological Modelling 269:51-60.  

Laio, F., Porporato, A., Ridolfi, L., Rodriguez-Iturbe, I. (2001a). Plants in water-controlled 

ecosystems: active role in hydrologic processes and response to water stress II. Probabilistic soil 

moisture dynamics. Advances in Water Resources, 24:707-723. 

Laio, F., Porporato, A., Fernandez-Illescas, C.P., Rodriguez-Iturbe, I. (2001b). Plants in water-

controlled ecosystems: active role in hydrologic processes and response to water stress III. 

Vegetation water stress. Advances in Water Resources, 24:725-744. 



14 
 

Laio, F., Porporato, A., Ridolfi, L. Rodriguez Iturbe, I. (2001c). Plants in water controlled 

ecosystems: active role in hydrologic processes and response to water stress-IV. Discussion of real 

cases. Advances in Water Resources 24(7):707-723.  

Loewer, O.J., Taul, K.L., Turner, L.W., Gay, N., Muntifering, R. (1987). GRAZE: A Model of 

Selective Grazing by Beef Animals. Agricultural Systems 25:297-309.  

Miller, G.R., Cable, J.M., McDonald, A.K., Bond, B., Franz, T.E., Wang, L., Gou, S., Tyler, A.P., 

Zou, C.B., Scott, R.L. (2012). Understanding ecohydrological connectivity in savannas: a system 

dynamics modelling approach. Ecohydrology 5(2):200-220.  

Molden, D. (ed.) (2007). Water for food, water for life. London, UK: Earthscan. 

Moore, A.D., Donnelly, J.R., Freer, M. (1997). GRAZPLAN: Decision support systems for 

Australian Grazing Enterprises. III. Pasture growth and soil moisture submodels, and the GrassGro 

DSS. Agricultural Systems 55(4):535-582.  

Pan, F.., Nieswiadomy, M., Qian, S. (2015). Application of a soil moisture diagnostic equation for 

estimating root-zone soil moisture in arid and semi-arid regions. Journal of Hydrology 524:296-

310. 

Pickup, G. (1995). A simple model for predicting herbage production from rainfall in rangelands 

and its calibration using remotely sensed data. Journal of Arid Environments 30:227-245.  

Pickup, G. (1996). Estimating the effects of land degradation and rainfall variation on productivity 

in rangelands: an approach using remote sensing and models of grazing and herbage dynamics. 

Journal of Applied Ecology 33:819-832.  

Porporato, A., D’Odorico, P., Laio, F., Ridolfi, L., Rodriguez-Iturbe, I. (2002). Ecohydrology of 

water-controlled ecosystems. Advances in Water Resources, 25:1335-1348. 

Power, A.G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Phil. Trans. R. 

Soc. B 365:2959–2971 

Richardson, F.D., Hahn, B.D. (2007). A short-term mechanistic model of forage and livestock in 

the semi-arid Succulent Karoo: 1. Description of the model and sensitivity analyses. Agricultural 

Systems 95:49-61. 

Rodriguez Iturbe, I., D’Odorico, P., Porporato, A., Ridolfi, L. (1999a). Tree grass coexistence in 

savannas: the role of spatial dynamics and climate fluctuations. Geophysical Research Letters 

26(2):247-250.  

Rodriguez Iturbe, I., D’Odorico, P., Porporato, A., Ridolfi, L. (1999b). On the spatial and temporal 

links between vegetation, climate and soil moisture. Water Resources Research 35(12):3709-3722. 

Rodriguez-Iturbe, I. (2000). Ecohydrology: A hydrologic perspective of climate-soil-vegetation 

dynamics. Water Resources Research 36(1):3-9.  



15 
 

Rodriguez-Iturbe, I., Porporato, A., Laio, F., Ridolfi, L. (2001). Plants in water-controlled 

ecosystems: active role in hydrologic processes and response to water stress I. Scope and general 

outline. Advances in Water Resources, 24:695-705. 

Schmalz, H.J., Taylor, R.V., Johnson, T.N., Kennedy, P.L., DeBano, S.J., Newingham, B.A., 

McDaniel, P.A. (2013). Soil morphologic properties and cattle stocking rate affect dynamic soil 

properties. Rangeland Ecology and Management 66:445-453.  

Schuman, G.E., Reeder, J.D., Manley, J.T., Hart, R.H., Manley, W.A. (1999). Impact of grazing 

management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecological 

Applications 9(1):65-71.  

Scholes, R.J., Archer, S.R. (1997). Tree-grass interaction in savannas. Ann Rev Ecol Syst 28:517-

544. 

Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., 

Teuling, A.J. (2010). Investigating soil moisture-climate interactions in a changing climate: A 

review. Earth-Science Reviews 99:125-161.  

Sterman, J.D. 2000. Business Dynamics: Systems Thinking and Modeling for a Complex World. 

New York: Irwin/McGraw-Hill. ISBN: 978-0072389159 

Swift, M. J., Izac, A. M. N., van Noordwijk, M. (2004). Biodiversity and ecosystem services in 

agricultural landscapes: are we asking the right questions? Agric. Ecosyst. Environ. 104, 113–134. 

Teague, R., Grant, B., Wang, H.H. (2015). Assessing optimal configurations of multi-paddock 

grazing strategies in tallgrass prairie using a simulation model. Journal of Environmental 

Management 150:262-273.  

Teague, W.R., Dowhower, S.L., Baker, S.A., Haile, N., DeLaune, P.B., Conover, D.M. (2011). 

Grazing management impacts on vegetation, soil biota, and soil chemical, physical and 

hydrological properties in tall grass prairie. Agriculture, Ecosystems and Environment 141:310-

322. 

Teague, W.R., Dowhower, S.L., Waggoner, J.A. (2004). Drought and grazing patch dynamics 

under different grazing management. Journal of Arid Environments 58:97-117.  

Teague, W.R., Kreuter, U.P., Grant, W.E., Diaz-Solis, H., Kothmann, M.M. (2008). An ecological 

economic simulation model for assessing fire and grazing management effects on mesquite 

rangelands in Texas. Ecological Economics 64:611-624 

Teague, W.R., Kreuter, U.P., Grant, W.E., Diaz-Solis, H., Kothmann, M.M. (2009). Economic 

implications of maintaining rangeland ecosystem health in a semi-arid savanna. Ecological 

Economics 68:1417-1429.  

Thornley, J.H.M. (1998). Grassland Dynamics: An Ecosystem Simulation Model. CAB 

International, Wallingford, Oxon, UK.  



16 
 

Tietjen, B., Jeltsch, F., Zehe, E., Classen, N., Groengroeft, A., Schiffers, K., Oldeland, J. (2010). 

Effects of climate change on the coupled dynamics of water and vegetation in drylands. 

Ecohydrology 3(2):226-237.  

Trenberth, K.E.; Dai, A.; van der Schrier, G.; Jones, P.D.; Barinchivich, J.; Briffa, K.R.; Sheffield. 

Global warming and changes in drought. Nature Climate Change 2013, 4, 17-22, DOI: 

10.1038/NCLIMATE2067. 

Vico, G., Thompson, S.E., Manzoni, S., Molini, A., Albertson, J.D., Almeida-Cortez, J.S., Fay, 

P.A., Feng, X., Guswa, A.J., Liu, H., Wilson, T.G., Porporato, A. (2015). Climatic, 

ecophysiological, and phenological controls on plant ecohydrological strategies in seasonally dry 

ecosystems. Ecohydrology 8(4):660-681.  

Xia, Y.Q., Shao, M.A. (2008). Soil water carrying capacity for vegetation: A hydrologic and 

biogeochemical process model solution. Ecological Modelling 214:112-124. 



17 
 

Tables 

Table 1. Overview of selected rangeland models with descriptions of the model’s soil component, time considerations, outputs, and 

parameterization requirements. 
Model documentationa Soil treatment within model Time treatmentb 

 

Authors Year 
Soil 

treatment 

Soil-water-plant 

elements 
Time unit 

Time 

step 

Time 

horizon 
Key outputsc 

Level of 

parameterizationd 

Loewer et al. 1987 None n/a 
1 day to 15 

minutes 
n/a <1 yr. Livestock intake & ADG High 

Blackburn and 

Kothmann 
1989 None n/a 1 day n/a <1 yr. Forage quantity & quality Moderate 

Blackburn and 

Kothmann 
1991 None n/a 1 day n/a <1 yr. 

Proportion live leaf 

material 
Low 

Baker et al. 1992 None n/a n/a n/a >1 yr. Intake; Standing crop Moderate 

Pickup 1995 Explicit 
Soil stock with ET 

losses; single WUE  
1 month n/a >1 yr. 

ANPP & biomass 

consumption 
Moderate 

Pickup 1996 Explicit 
Soil stock with ET 

losses; single WUE  
1 month n/a >1 yr. 

ANPP & biomass 

consumption 
Moderate 

Moore et al. 1997 Explicit 
Soil water balance; 

biomass turnover  
1 day n/a 1 yr. 

ANPP & animal 

production 
High 

Thornley 1998 Explicit 
ET, soil- and plant-

water potential 
1 day 1/64 >1 yr. 

C and N fluxes & water 

balance 
High 

Diaz-Solis et 

al. 
2003 Implicit Dimensionless scaler 1 month n/a >1 yr. 

Grazing efficiency; RC & 

BCS 
Moderate 

Glasscock et 

al. 
2005 Explicit 

Soil types for unique 

plant forcings 
1 month n/a >1 yr. 

Herbaceous and canopy 

cover; SR 
High 

Richardson and 

Hahn 
2007 Explicit 

Soil horizons but no 

plant-soil feedbacks on 

soil moisture 

1 day n/a 1 yr.  
ANPP; intake & milk 

yield 
High 

Teague et al. 2008 Implicit Dimensionless scaler 1 month n/a >1 yr. RC & NPV Moderate 

Diaz-Solis et 

al. 
2009 Implicit Dimensionless scaler 1 month n/a >1 yr. 

RC; BCS; cow herd 

performance 
Moderate 

Teague et al. 2009 Implicit Dimensionless scaler 1 month n/a >1 yr. RC & NPV Moderate 

Teague et al. 2015 Implicit Dimensionless scaler 1 day n/a >1 yr. RC & NPV Moderate 
a - This is a non-exhaustive list of grazing models.  
b - Reports of model time features varied from all three time definitions (time unit, time step, and simulation horizon) to only one; many were not explicitly 

stated but were extracted from some parts of the text. Where time features were not obvious based on the text, 'n/a' was written. 

c - Some major outputs presented in model documentation, not the total potential variables that might be analyzed. 

d - This author's impression based on description of the model as presented (i.e., no working experience simulating the models). 
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Table 2. Lookup table values for the plant biomass effect on soil cover and leaf area index (LAI), 

precipitation and canopy interception, and LAI effect on runoff generation. 

Biomass lookup tables  Precipitation lookup  LAI Effect on Runoff 

Biomass 

(input) 

Soil cover 

(%) 

(output) 

Leaf Area 

Index 

(output) 

 Rainfall 

(input) 

Canopy 

interception (%) 

(output)  

LAI 

(input) 

Runoff (% of 

precipitation) 

(output) 

0 0 0.000  0 -  0 100 

500 20 0.275  0.1 98  1.25 22.5 

1000 40 0.650  0.2 20  2.5 5 

1500 56 1.075  0.3 7  3.75 1.5 

2000 73 1.550  0.4 6  5 0 

2500 86 2.050  0.5 5    

3000 90 2.600  0.6 4.5    

3500 95 3.000  0.7 3    

4000 97 3.375  0.8 2    

4500 99.5 3.750  0.9 0.3    

5000 99.5 4.000  >1 0    
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Table 3. Summary of calibration and evaluation metrics. 

   Theil Values 

Site 

Coefficient of 

Determination, r2 

Mean Bias  

(% soil moisture) 
Um Us Uc 

Edinburg 0.61 -0.0088 0.24 0.70 0.69 

Freeman Ranch* 0.16 -0.0475 0.24 0.00 0.76 

Palestine 0.61 0.0488 0.5 0.09 0.41 

Seymour 0.46 -0.0055 0.03 0.04 0.92 

*incomplete dataset for representative year (n=290 rather than 365).    
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Figures 

 

Figure 1. Schematic representation of critical zone water flow (indicated by the blue arrows) 

relevant in semi-arid ecosystems and used throughout many ecohydrologic models. 
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Figure 2. Conceptual diagram of the simplified soil profile model for a given soil of depth, Zr, of 

homogeneous soil texture with inflows and outflows (thick blue arrows) acting upon the soil-

water balance within the column (infiltration, leakage or percolation, and evapotranspiration), 

which is influenced through several feedback mechanisms (thin black arrows) for the soil 

moisture effect on infiltration, soil moisture effect on transpiration, and transpiration effect on 

infiltration through improved soil cover. The “+” and “–“ symbols represent link polarity 

between variables, while the B and R symbols represent the polarity of the feedback loop 

(reinforcing or balancing) created by the set of linkages between variables.  
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Figure 3. Stock-flow model parameterized in STELLA™ modeling software.  
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Figure 4. Locations in Texas, USA, used for model calibration and evaluation against observed 

data.  
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Figure 5. Dynamic feedback behavior of evapotranspiration and leakage from soil water storage 

as a function of percentage soil moisture, s, where sh, sw, s*, and sfc are the soil moisture levels 

that induce plant-water hydroscopic stress, plant-water wiliting stress, the soil moisture level that 

is non-limiting to ET, and soil moisture field capacity, respectively. ETp is the potential 

evapotranspiration, ETw is the plant wilting point, and ETlsw is the evapotranspiration gradient 

under limited soil water conditions.  
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Figure 6. Behavior-over-time graphs for the initial calibration model for each of the four 

locations.  
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Figure 7. Evolution of Theil Inequality Statistics (i.e., percentage of error term arising from the 

mean, Um, variance, Us, and covariance, Uc) for each of the four sites.   
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Figure 8. Behavior-over-time graph of the precipitation sensitivity test applied to the generic 

(synthetic) soil-model formulation created during model development.  
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Figure 9. Behavior-over time for biomass stock (panel a) and the mean biomass (panel b) and ET 

over the grazing season (panel c) given varying grazing intensity (treatments were set to: grazing 

start time=day 120; grazing days = 150; active grazing loss volume = 0.5*grazing sensi; 

0<grazing sensi<2). The grazing test was modified (grazing start time=day 120; grazing days = 

150; active grazing loss volume = 0.0033*grazing sensi; 0<grazing sensi<300) (panel d) which 

yielded a similar threshold for mean ET around 15% percent biomass removed per day.    
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Figure 10. Sensitivity analysis for altered rooting depth, Zr, from 90 to 30 cm, for the generic 

(synthetic) soil-model formulation created during model development.  


