

AGSM @ UNSW Business School

Never Stand Still

Business School

Unpacking Mental Models through Lab Experiments

Shayne Gary and Robert Wood

What are Mental Models?

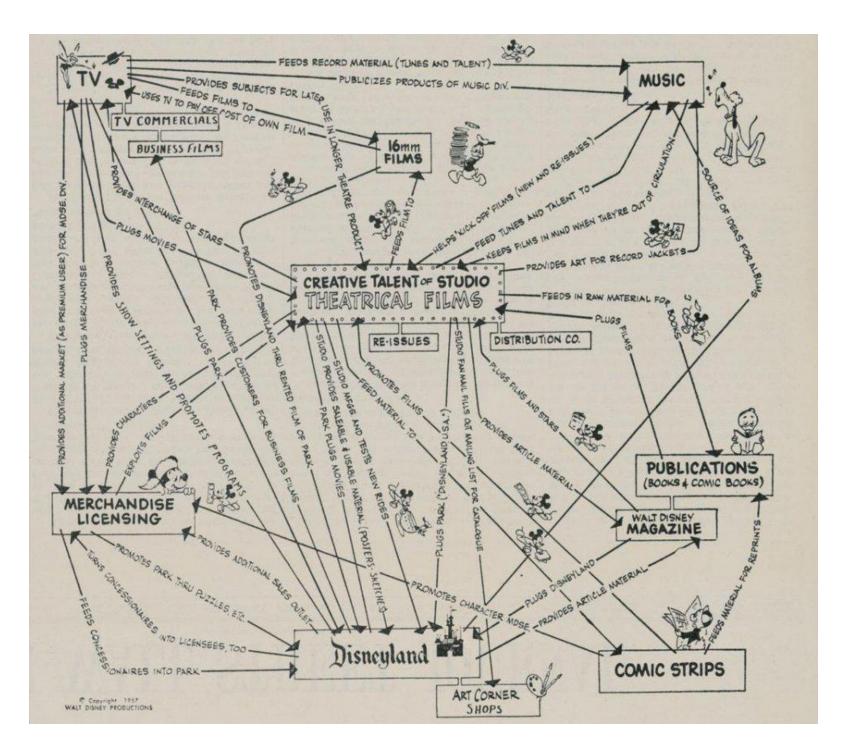
"The psychological core of understanding... consists of having a 'working model' of the phenomenon in your mind. If you understand inflation, a mathematical proof, the way a computer works or DNA... you have a mental representation that serves as a model" (Johnson-Laird 1983: 3)

Alternative terms for Mental Models

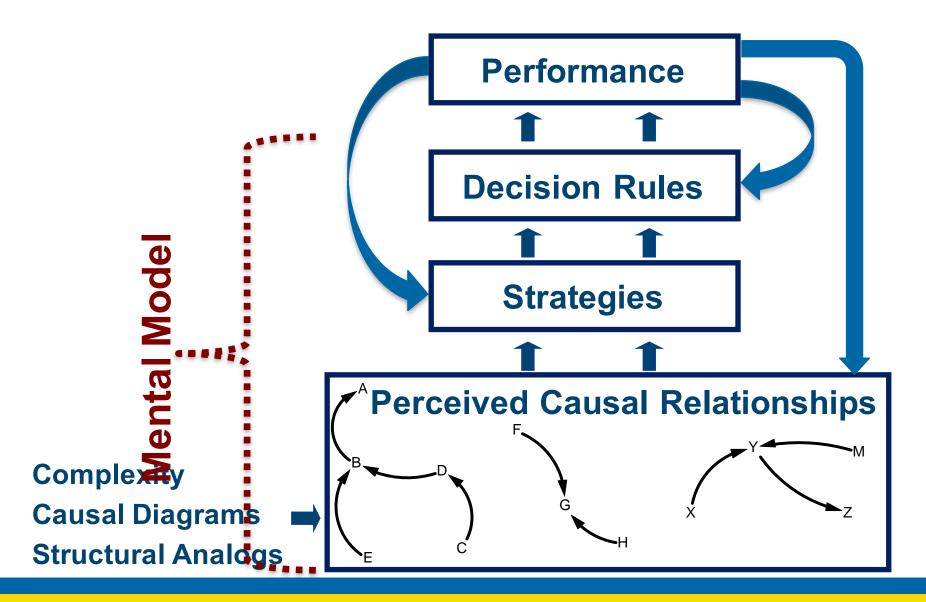
Cognitive maps Interpretative schemes Industry recipes Implicit theories Corporate theory Screens Frames / Strategic frames Mental templates Causal maps **Belief structures** Tacit understanding Schema

Dominant logic Mindscapes Worldview Managerial lenses Mental pictures Organizing frameworks Blindspots **Perception filters** Organizational ideologies **Heuristics Decision biases** Core causal beliefs

Strategy Puzzle: Why do firms...


adopt different strategies?

achieve different performance levels?



Mental model of Disney's Corporate Strategy

Mental Models in Action

Three Studies on Mental Models

Mental models, decision rules, and performance heterogeneity. SMJ 2011

Dynamic decision making using the balance scorecard framework. TAR 2016

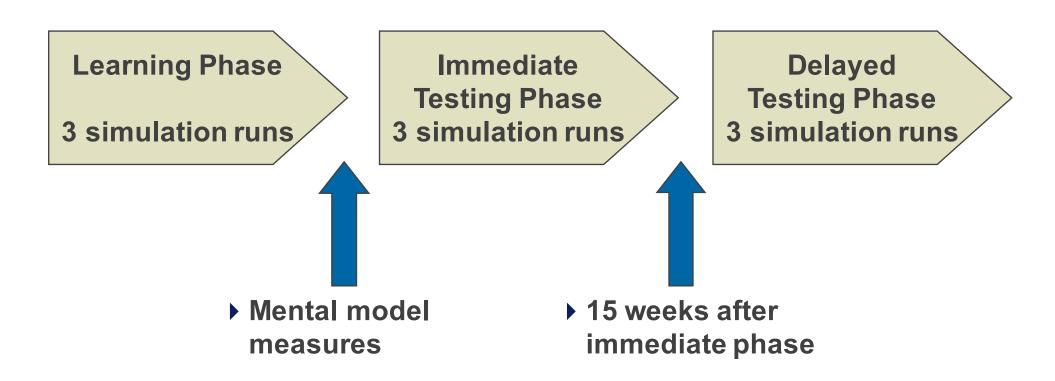
Enhancing mental models, analogical transfer, and performance in strategic decision making. SMJ 2012

Study 1: Examining effects of mental model accuracy on decision rules, strategies, and performance

Study 1: Research Questions

Do more accurate mental models of causal relationships increase performance?

- Is mental model accuracy positively associated with better strategies and decision rules?
- Do more accurate mental models of the key principles increase performance?
- Do more accurate mental models have a greater positive effect on performance under higher dynamic complexity?



Study 1: New Product Launch Sim

Management	OPERA	TIONS		FINAN	CIALS	
Simulator ABC Ltd. Quarter 17 of 40	Orders Backlog Shipments Cancellations	3, 1,	158,117 401,753 359,015	Costs Variable Costs	\$149,488,7 \$8,869,2	228
<u>How To Play</u> <u>Reports</u>	Price Unit Cost		211,587 \$110.00 \$36.53	Fixed Costs Marketing Spend Investment Costs	\$40,770,4 \$7,474,4 \$103,2	137 276
Price \$110.00	Delivery Delay (quarters)		2.50	Net Profit	\$92,271,3	346
Target 1,300,000 Capacity						
Simulate 1 Quarter 💌	Capacity Target Capacity		quarter) 359,015 300,000	Cumulative Profit	\$1,008,597,1	199
Exit Simulation	ORDERS & CAPACI 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000			PRICE HISTORY \$120.00 \$100.00 \$80.00 \$60.00 \$40.00 \$20.00 \$0.00		
	0 8	16 24 quarters	32	40 0 8	16 24 32 quarters	40
		quarters			quarters	

Study 1 Experimental Design

- Repeated measures design: 9 runs & 360 decision trials
- 63 2nd year MBA students randomized into 2 complexity levels

Not easy to recruit participants!

/UNSW Business School

Measures

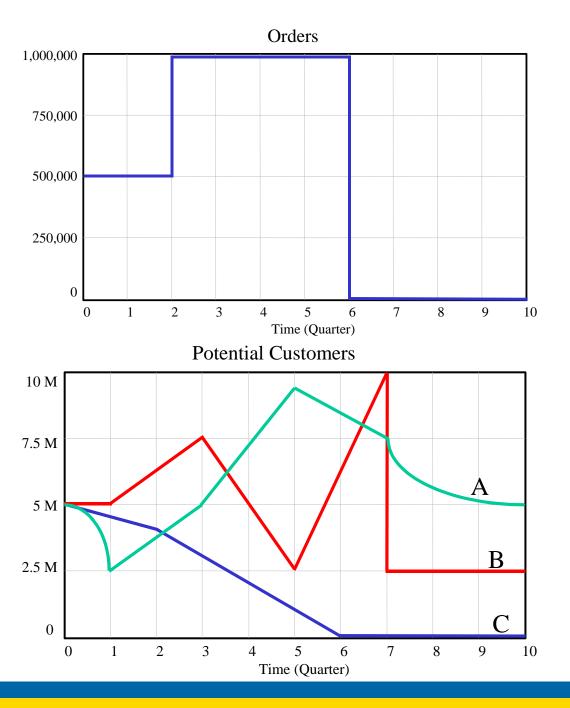
Performance: Cumulative Net Income

Mental Model Accuracy

- Perceived causal relationships
- Mental simulations of small components (Graphical integration)
- Partial knowledge of core feedback structure (market diffusion process)

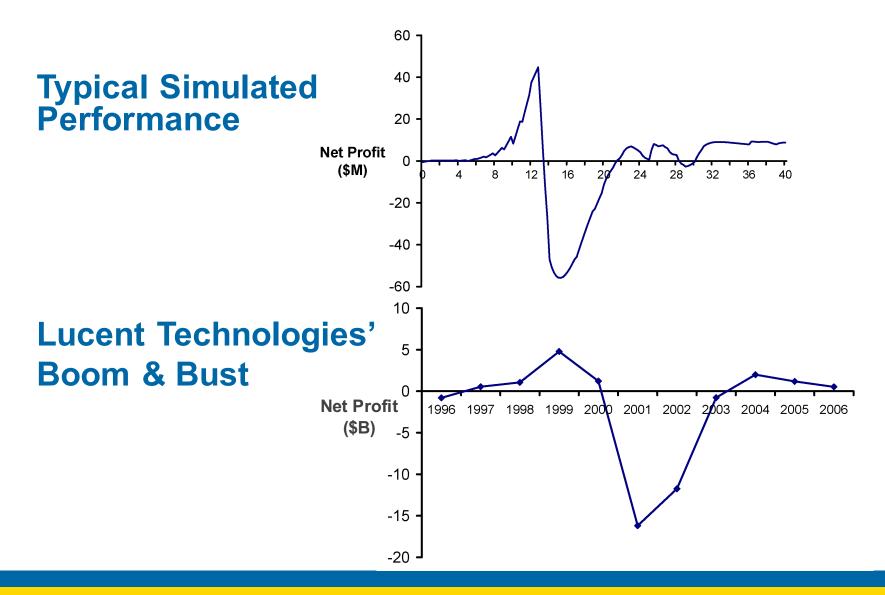
Control variables

- Mental model complexity
- GMAT scores: general cognitive ability
- Self-efficacy: self confidence and motivation

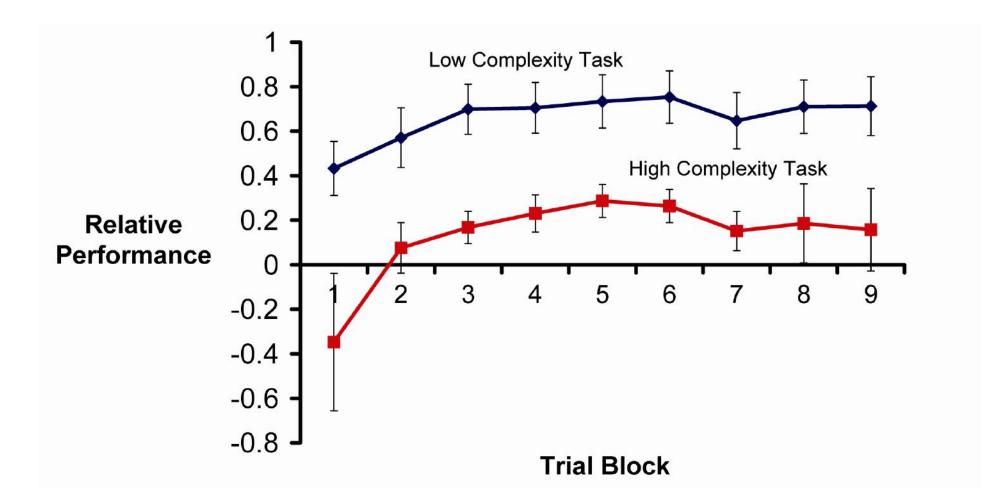

Example Causal Relationship Questions

X Y	An increase in X results in an increase in Y, or a decrease in X results in a decrease in Y. X and Y move in the SAME direction.
X O Y	X and Y move in the OPPOSITE direction. An increase in X results in a decrease in Y, or a decrease in X results in an increase in Y.

1.	Orders	Backlog
2.	Shipments	Backlog
3.	Backlog	Delivery Delay



Example graphical scenario question


Results: Decision makers replicate boom & bust patterns observed in the field

Gary et al. 2008. Boom and Bust Behavior: On the Persistence of Strategic Decision Biases

Performance Relative to Benchmark

Mental Model Accuracy & Performance

More accurate mental models improve performance

- Range .32 .81, mean .56 (.11)
- Increasing MMA 1 std deviation 1 performance 22-40%
- More accurate mental models of key principles improve performance
 - 1 std deviation 1 performance 17-38%
- Two types of mental model errors
 - Causal blind spots
 - Superstitious causal beliefs

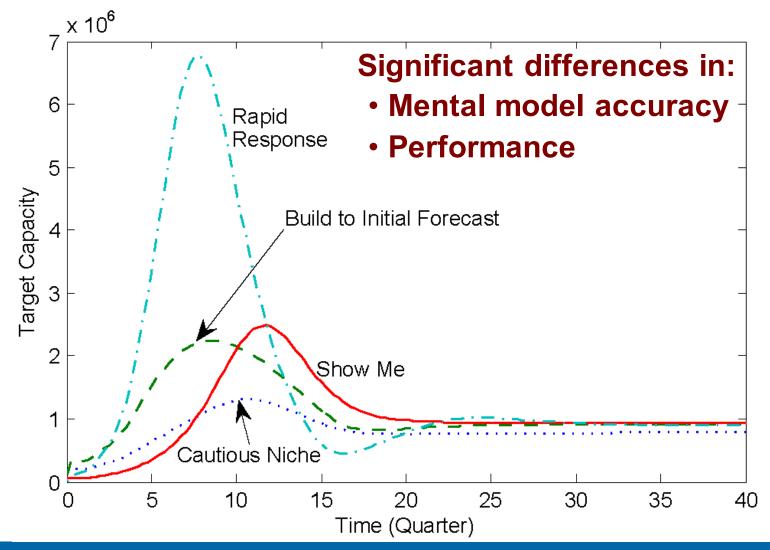
Decision Rules

Capacity investment rule:

 $\log(C_t^*) = c + a_0 \log(D_{t-1}) + a_1 \log(1 + g_{t-1}) + a_2 \log(B_{t-1} / C_{t-1}) + \varepsilon_1$

Price decision rule:

 $\log(P_{t}) = b_{0} + b_{1} \log(UVC_{t-1}) + b_{2} \log(B_{t-1} / C_{t-1}) + \varepsilon_{2}$


Mental Models and Decision Rules

More accurate mental models improve decision rules

- Increasing MMA reduces deviation from optimal information weights for behavioral rules
- More accurate mental models of key principles improve decision rules
- Increasing dynamic complexity impairs decision rules
- Participants' decision rules stabilized rapidly
 - No differences in information weights after 4th trial block

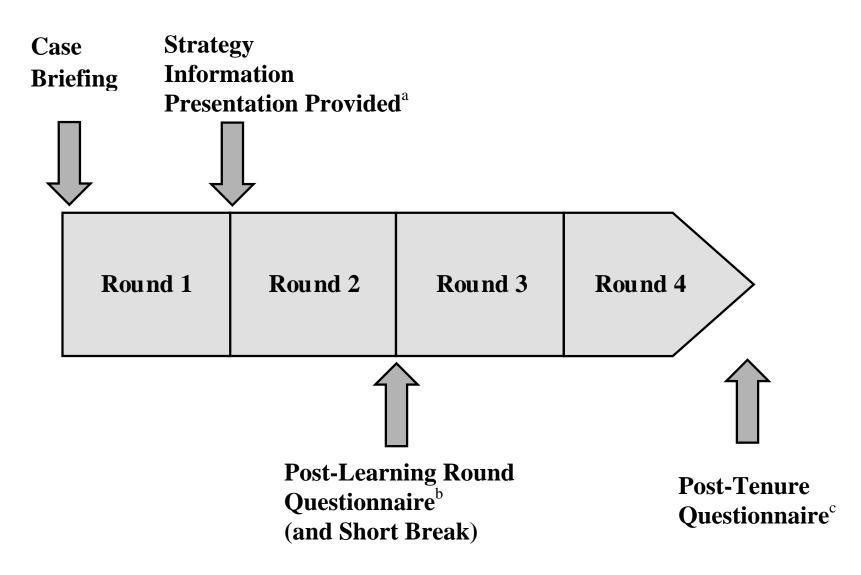
Identified 4 Distinct Strategies on High Complexity Task

In a Nutshell...

Connects heterogeneity in mental model accuracy, decision rules, and strategies to variation in performance outcomes

 Important role of mental models in the origins of successful strategies

Study 2: Examining effects of a strategy map with causal relationships and time delay information on mental model accuracy and performance


Study 2: Research Questions

Does providing a strategy map with key causal relationships increase mental model accuracy and performance?

Does providing a strategy map with key causal relationships and time delays increase mental model accuracy and performance?

Study 2: Experimental Design

Study 2: Balanced Scorecard Sim

50%

-255

-100%

3 Month

4

2

	oftware Panel	1		Last Month	Current Month	% Improveme
Decisions		Financial	Revenue (\$000/month)	20,622	20,608	-0.1%
		Tinurola	New customer revenue growth (%)	-30.9%	-0.1%	99.7%
Hiring / Firing of Customer Service Staff (employees / month)	0		Profit margin (%)	25.5%	20.1%	-21.2%
atal Customer Service Statt: 128	Enter a value between -50 and 50		Net profit (\$000/month)	5,259	4,148	-21.1%
Training per Customer Service Staff (\$ / employee / month) Average daily training cost: \$2,500 / employee Investment in Product Development (% revenue / month)		Customer	Market share (%)	19.0%	19.3%	1.6%
	\$10,000		Product appeal relative to competitors (/100)	13	13	0.0%
			Perceived service quality (/100)	68	72	5.9%
	Enter a value between \$0 and \$25,000		Service appeal relative to competitors (/100)	52	54	3.8%
		Internal Business Process	Power feature release rate (features/month)	8	8	0.0%
	15%		Total number of power features released	103	103	0.0%
	Enter a value between 0% and 50%		Average customer service staff productivity (service hrs/month)	163	169	3.7%
			Customer service lead time (months)	1.7	1.0	41.2%
Price of Software (\$) Average competitor price: \$1,000	\$1,500	Learning & Growth	Power feature development rate (features/month)	6	6	0.0%
	Enter a value between \$0 and \$5,000		Power feature development expense (\$000/month)	2,773	2,990	7.8%
			Average customer service skills (/100)	53	54	1.9%
Run			Customer service training expense (\$000/month)	1,274	2,156	69.2%

50%

23

05

3 Month

2

÷.

4

5

- 6

3 Month

14

5

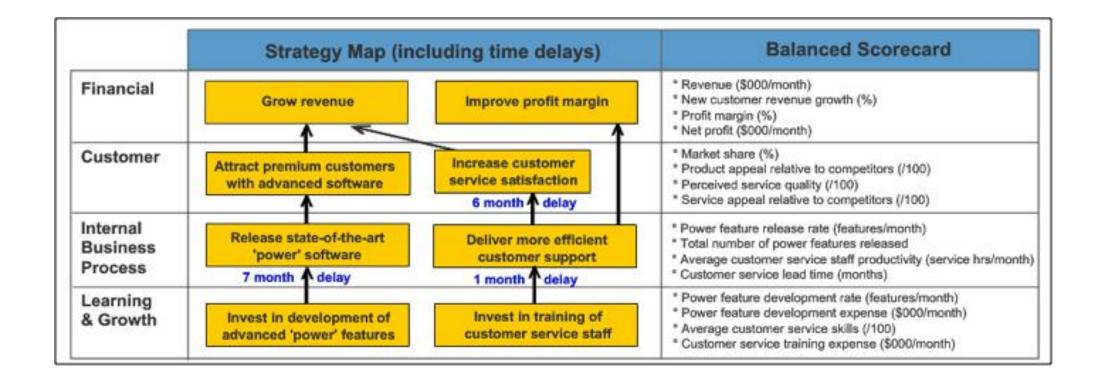
2

11,910-

1.00

Month

2


ंड

4

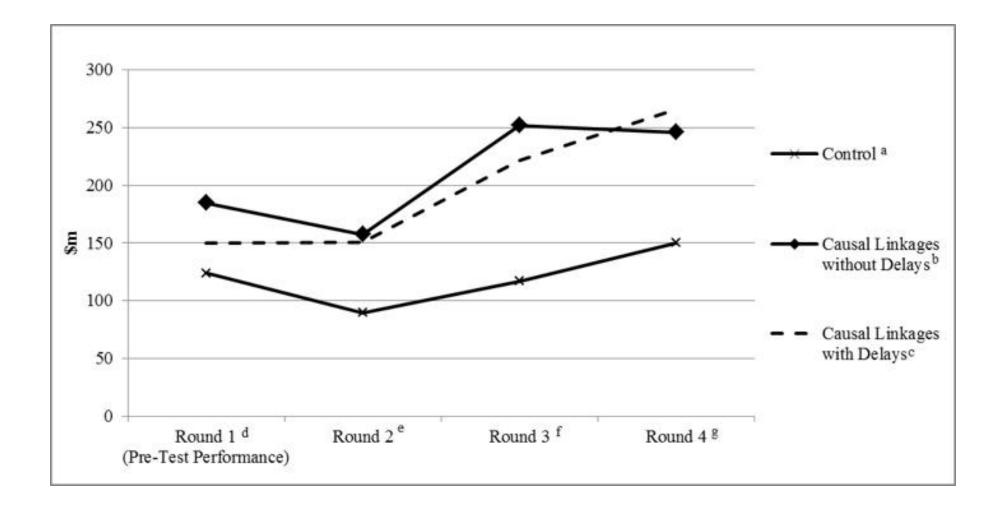
33,643

18.872

Treatments: Strategy Map

- Repeated measures design: 4 runs & 144 decision trials
- 69 graduate students randomized across 3 treatments

Study 2 Measures


Performance: Cumulative Profit

Mental Model Accuracy of causal relationships and delays

- Perceived causal relationships
- Mental simulations of small components
- Partial knowledge of key principles

Cumulative Profit by Sim Round & Treatment

Strategy Map, Mental models, & Performance

Both strategy map treatments û MMA of causal relationships compared with control group (μ= .65, .67, & .56; p's < .01)

Strategy map with delays treatment û MMA of delays (μ= .42) compared with strategy map without delays (μ= .30, p=0.03) and control group (μ= .30, p=0.02)

Both strategy map treatments ☆ performance compared with control group (µ= \$249m, \$244m, & \$134m; p's < 0.01)

More accurate mental models of causal relationships and delays û performance (p's<0.05)

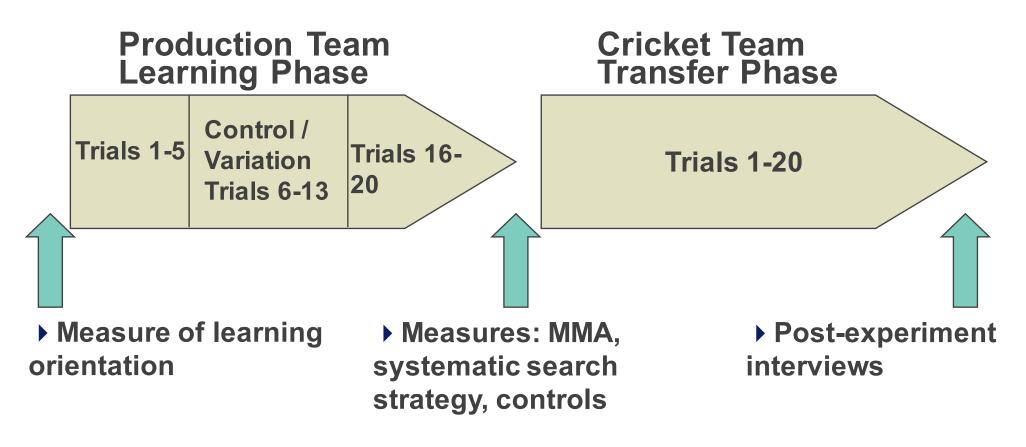
In a nutshell...

Strategy maps with information about causal relationships and time delays improve mental models and performance

Study 3: Examining mental models and transfer performance between structural analogs

Situations with same feedback structure but different surface features

Study 3: Research Questions


Do more accurate mental models of a management situation increase (transfer) performance on a structurally analogous situation?

Does variation in the initial management situation increase transfer performance?

Does increasing use of a systematic search strategy to explore the initial management situation increase transfer performance?

Study 3: Experimental Design

- 96 university students randomized across two conditions
- Baseline study with 16 university students on Cricket team sim

Measures

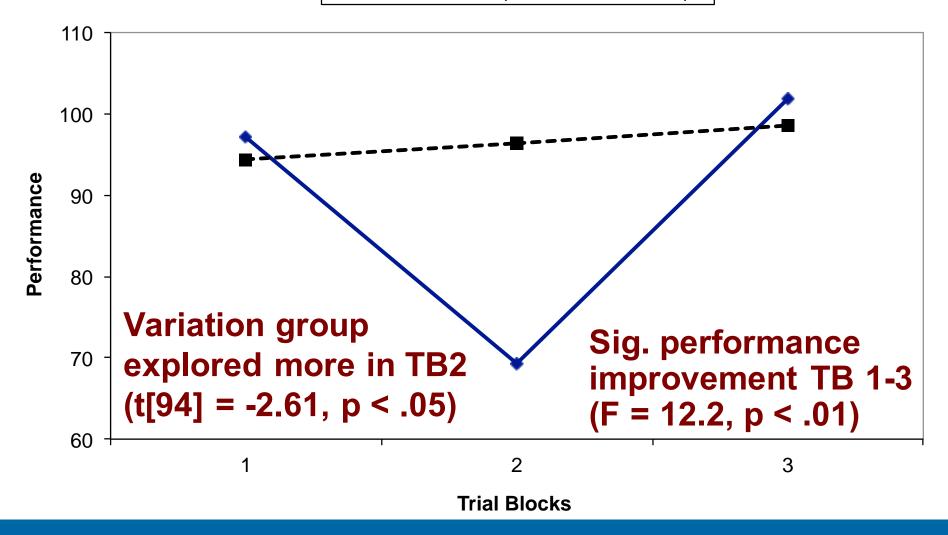
Performance score

Mental Model Accuracy

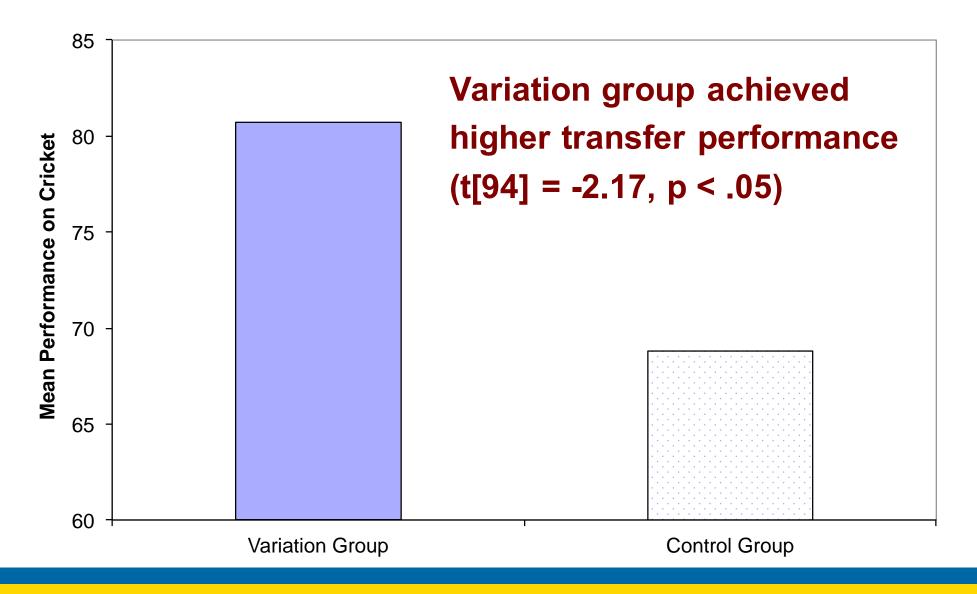
- Knowledge of causal relationships

Systematic search strategy

- # of unconfounded changes (VOTAT) for each trial block


Control variables

- Learning goal orientation
- Metacognitive activity
- Interest


Performance on Initial Microworld

→ Variation Group → Control Group

Performance on Analogous Microworld

Mental Model Accuracy, Search, and Transfer Performance

Increasing mental model accuracy û performance on initial microworld (p < .01)

- Higher performance on initial microworld increases transfer performance on the structurally analogous microworld (p < .01)
- Higher levels of systematic search on the initial microworld increase transfer performance (p < .05)
- Only 42% of participants realized the 2 microworlds were structural analogs: 52% in variation condition vs. 31% in control (p < .05)

A Lot More Research is Needed!

Interventions for developing accurate mental models

- Testing decision aids (e.g. stock & flow diagraming, CLDs, microworlds, goal setting, mental simulation)
- Testing different learning paths & exposure to scenarios
- Identify common management challenges/problems and build models rigorously grounded in empirical data so we can develop microworlds to use in experiments
- Systematic simplifications in mental models, decision rules, & the consequences
- Transferring knowledge across similar management situations (generic structures & analogical reasoning)

