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Abstract: 

A prerequisite for the implementation of targeted policies aiming at improving resource 

efficiency of industrial metals is a clear understanding of physical material flows and use 

patterns on the global and national level, including material distribution along the value chain 

and across economic sectors. This paper deals with different concepts for dynamic material 

flow modeling based on the System Dynamics approach. We present different exemplary 

outcomes of such material flow models for global and European copper flows. Using the 

commodity codes of trade data analyses for the European copper model as a connection 

point, we discuss a concept which links the material flow model to multisectoral economic 

models. The global copper flow model is finally supplemented by market dynamics in order to 

develop a flexible tool for global market forecasts, taking into account both restrictions of 

physical raw material supply and different forms of feedback effects on the supply and 

demand side of the metal market. 
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1. Introduction: life cycles, cumulative material demand and market 

dynamics of industrial metals 

Against the background of continuously increasing human demand for non fuel metals and 

minerals and the associated environmental pollution, there is an urgent need for higher 

resource efficiency. Especially improvements in waste management and recycling can save 

resources and energy (Nuss and Eckelman 2014). 

A further motivation to achieve higher resource efficiency is the growing competition 

regarding the access to raw materials and the control of raw material supply. In this context, 

a detailed knowledge of raw material dependencies by industry sector, sectoral 

interdependencies within an economy and cumulative raw material demand enable a better 

understanding of the economic importance of and the dependence on specific raw materials.  

On the other hand, high market dynamics, cyclical market behavior and price volatility pose a 

severe challenge to raw material producing and processing industries as well as the 

recycling sector because price changes in procurement can not necessarily be passed on 

directly to the customer. 

In this paper we provide different concepts and examples of how System Dynamics (SD) 

models can help to better understand and meet the aforementioned current challenges. 

Therefore, in the following section, we start with discussing concepts of dynamic material 

flow modeling and the simulation of product and material life cycles. 

Taking commodity codes for trade data analysis as a connection point, we then present a 

concept of how to link dynamic material flow models on a national or multinational level with 

economic models based on input-output tables. 

Subsequently, using the example of a global copper flow model, we describe how the 

material flow model may be enhanced by market dynamics in order to develop a useful tool 

for market analysis and price forecasts based on exogenous assumptions regarding the 

development of the global economy (global GDP). 
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2. Modeling physical material flows within the SD environment 

The aim of modeling anthropogenic metal cycles is to quantify where materials are 

introduced into economies, how they are processed and used, where they are stored in 

society over the product life spans, and how they are recycled or discarded (see Figure 1 for 

a general metal cycle). Dynamic material flow analysis (MFA) is a concept that has gained 

wide acceptance in previous years in this area, sometimes also referred to as Substance 

Flow Analysis (SFA) when only one specific substance (e.g. one specific metal) is analyzed 

(Brunner 2012). A significant advantage of MFA is that it is a “systemic” approach: a system 

is defined which summarizes the raw material value-chain and the flows between items 

(processes) of this value chain (e.g., extraction, processing, manufacturing, use, waste 

management and recycling) are quantified. Performing calculations over a time window 

(dynamic analysis) provides an accounting of stock variations within the individual items of 

the value chain (e.g. in-use stocks) and captures the development of material flows over 

time. 

  

Figure 1 General simplified model structure of the life cycle of an industrial metal. 

Despite the rising number of publications and research work in the field of Material and 

Substance Flow Analysis in recent years, dynamic modeling approaches of anthropogenic 

metal cycles are largely underrepresented compared to static analyses (Chen and Graedel 
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Table 1 A literature review of publications about anthropogenic material flow systems from 2012 shows a 

significant lack of dynamic approaches when describing and analyzing metal cycles and material flow systems 

(Chen and Graedel 2012). 

Model dimensions global regional national total 

static 47 105 791 943 

dynamic 9 7 60 76 

total 56 112 851 1019 

 

This is due to both higher effort with respect to model development and extensive data 

requirements (Chen and Graedel 2012). However, analyzing past and future material use 

patterns, simulating material accumulation over time, determining resource efficiency and 

modeling product life cycles in order to assess recycling potentials and material stocks in 

society are scientific challenges at present that can only be met by dynamic modeling 

approaches. Müller et al. (2014) demonstrate the trend towards dynamic material flow 

modeling and the increasing role of dynamic approaches for the analysis of metal flow 

systems in recent years (cf. Figure 2).  

 

Figure 2 Number of publications on dynamic material flow 

models in previous years (cf. Müller et al. 2014, the values for 

2014 were added by own literature research). 

 

Figure 3 Top-down and bottom-up approach 

to quantify material flows. Both concepts can 

be realized with the conceptual material flow 

models discussed below. 

Especially when using the models for the identification of past and future trends in raw 

material supply and material use patterns, dynamic approaches are indispensable. 
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Figure 3 displays the difference between top-down and bottom-up approaches. On a global 

level, due to the broad availability of production and market data, top-down approaches have 

shown high suitability for dynamic material flow models (Glöser et al. 2013b). On a regional 

level, trade data and material contents within different commodities along the entire value 

chain have to be taken into account, which makes a product specific bottom up approach at 

least for the analysis of material flows across the system boundaries necessary. Technology 

based bottom-up models are suitable to analyze future demand due to the diffusion of new 

technologies (see for example (Angerer et al. 2009; Hoenderdaal et al. 2013; Habib and 

Wenzel 2014). For such analyses of future market developments and potential material 

constraints, SD models are highly suitable due to the possibility of combining material flows 

and market dynamics within a single model (Novinsky et al. 2014; Sprecher et al. 2015). 

As described in the following section, the System Dynamics approach enables broad 

possibilities in simulating product life cycles and material flows reaching from simple material 

accumulation in a single stock to detailed aging chains modeling the aging process of 

consumer products. While single material flow models use the delay structure and stocks 

and flows within the SD environment to simulate material accumulation over use phases, 

they do not include any feedback loops. However, System Dynamics has proved highly 

suitable to model these dynamic material cycles (Bornhöft et al. 2013; Glöser et al. 2013c). 

Figure 4 displays the concept of material accumulation over the use phase of a product 

within a single stock. In this case a flow to flow relation is necessary to achieve a correct 

accumulation over the useful lifespan. In the simplest case this relation is realized with a fix 

average lifetime (Figure 4 left side), whereas lifetime distributions (Figure 4 right side) enable 

a more realistic modeling of product life spans.  

 

Figure 4 Accumulation of material over the use phase within a single stock. In this case a direct flow to flow 

relation is necessary to ensure the correct stock accumulation over the product lifespan. 
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Typical shapes and density functions for lifetime distributions of technical products from the 

field of safety engineering are summarized in the appendix in Figure 20. While in the simple 

concept shown in Figure 4 the “stock in use” is entirely accumulated in a single variable and 

there is only one total end-of-life (EoL) material flow, the concept of an aging chain enables a 

detailed simulation of stock accumulation and waste flows by age (cf. Figure 5). 

 

Figure 5 concept of the aging chain in order to achieve a detailed simulation of material stocks over time including 

the stock age and the age and composition of EoL material flows (Glöser and Hartwig 2015). 

When examining use phases of metal applications in the field of building and construction or 
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Figure 6. 
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The methodologies of material flow modeling using SD software as described above are 

generally applicable for simulating all kinds of material flow systems and product life cycles. 

Such models are necessary to identify and communicate further recycling potentials and to 

quantify their contribution to improving resource efficiency. While the example of the copper 

cycle as described below already shows a relatively established recycling system with 

comparatively high recycling rates, the majority of technology metals are poorly recovered 

from waste flows. This is partly due to economic feasibility but also due to a lack of 

knowledge about material dispersion in society and poor performance of collection and waste 

management. Dynamic material flow models comparable to the exemplary copper flow 

models described below will contribute to a better understanding of recycling potentials. Next 

to focusing on specific materials and analyzing their routes through the technosphere, such 

models may also be used for the simulation of the use phase of entire electronic products 

such as cell phones, tablets or laptops containing all kinds of different high-tech metals. In 

the following section we provide examples of a global and a European copper flow model. 

 

The examples of a global and a European model of copper stocks and flows 

The global copper flow model simulates the entire copper life cycle from mining and refining 

over the fabrication of semi-finished goods to the end use of copper over product life spans 

and the recycling of copper scrap. The model builds upon historical production data going 

back 100 years which is necessary due to the long use phases of different copper 

applications, especially in the field of building and construction. In a second step, a separate 

European model was realized, taking into account trade flows along the entire value chain. 

The intention behind the development of this material flow model is the analysis of the 

performance of copper recycling on a global and regional level. 

A detailed description of the global material flow model is provided by Glöser et al. (2013a). 

In this section we only give a short overview of this dynamic material flow model applied to 

simulate the global and European anthropogenic copper cycle.  

As shown in Figure 7, the copper flow model takes mining and production data of semi 

finished goods as the major input flows. While these two flows are well reported on a global 

level, the occurrence of copper containing scrap and waste flows is unknown as there are no 

statistics of satisfactory detail of waste occurrence on a global level. Therefore, this flow is 

simulated based on historic fabrication data and lifetime distributions in the different sectors 



Modeling material flows, cumulative material demand and market dynamics of industrial 

metals within a system dynamics framework 

 
The 34th International Conference of the System Dynamics Society 

Delft, The Netherlands 
July 2016 

8 

using the concept of an aging chain as describe above. The fabrication efficiency of copper 

(and the related occurrence of production residues or new scrap) and the mine production as 

well as the total metal use are relatively well reported and thus, as described in Figure 7, the 

total amount of effective recycling from EoL scrap can be calculated from these data. By 

adjusting the collection rate of EoL scrap to the historic production data, a closed mass 

balance is achieved over time (cf. equations in Figure 7). 

 

Figure 7 Enabling a closed mass balance over time by defining the global collection rate of EoL (End-of-Life) 

copper scrap as a function of reported global production data. 
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8. This leads to a better understanding of the effect of data uncertainty on the calculated 

recycling indicators. Different probability distributions over uncertainty intervals (cf. Figure 8a) 

enable a detailed analysis of data uncertainties and sensitivities which is a point that was not 

sufficiently addressed in several previous studies (Laner et al. 2014). 

 
Figure 8 Analyzing the effect of data uncertainty on the calculated collection rate (CR) of copper from waste flows 

(Glöser et al. 2013a). 

Furthermore, the material flow models enable the quantification of copper stocks in use and 

waste flows as well as losses to landfills or to the environment (see Figure 9). 

 

Figure 9 Further results from the global copper flow model are for example the accumulation of material stocks in 

use, material content in waste flows or cumulative losses to the environment. 
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The global aggregated copper cycle for the base year 2012 in the form of a Sankey diagram 

is depicted in Figure 10. 

 

Figure 10 Accumulated global material cycle of copper for the base year 2012. 

The European model follows the same concept as the global model with respect to 

implementation except for the additional consideration of trade flows. As mentioned before, 

the challenge for regional modeling is the consideration of trade data along the entire value 

chain. For the analysis of the European copper cycle, a detailed assessment of trade data 

was necessary. Therefore, all HS1 codes of commodities containing copper were identified 

and an estimation of average copper content per commodity was made based on existing 

literature (Kupfer im regionalen Ressourcenhaushalt - Ein methodischer Beitrag zur 

Exploration urbaner Lagerstätten 2006) and further research. 

While we identified around 350 commodity codes based on the HS system being relevant for 

the copper material flow analysis, Table 2 summarizes several codes in the first steps of the 

value chain.  

  

                                                
1
 The Harmonized System is a global standard for commodity specification in trade data  
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Table 2 Exemplary copper containing commodity codes (according to the Harmonized System, HS) 

HS Code Description copper content 

260300 Copper ores and concentrates 30% 

740200 Unrefined copper, copper anodes, electrolytic refining 95% 

740311 Copper cathodes and sections of cathodes unwrought 100% 

740710 Bars, rods & profiles of refined copper 100% 

262030 Ash or residues containing mainly copper 10% 

740400 Copper/copper alloy waste or scrap 90% 

… … …
 

… … …
 

… … …
 

The resulting cumulative European trade balance of copper flows based on the trade data 
analysis along the value chain in shown in Figure 11. 

 
Figure 11 Trade flows across EU borders (Glöser et al. 2014). 
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EU level) copper flow model is discussed below. Regarding the global copper cycle, we built 

a model of market dynamics around the material flow model in order to analyze historic and 

future market developments. This is described in section 4. 

 
Figure 12 Cumulative European (EU27) material flows for the base year 2012 (cf. European Copper Institute ECI) 

 

3. Linking regional material flow models with economic input-

output tables – a conceptual approach 

The physical system of material flows and the economic system are deeply interconnected: 

material flows are strongly driven by economic activity while the economy depends heavily 

on material inputs. As was already pointed out by Duchin (1992a), in order to be able to 

adequately inform policies related to raw materials, it is necessary to have a detailed 

understanding of the interplay between material flows and economic dynamics, particularly 

on the level of individual economic sectors This understanding can be furthered by 

combining material flow analysis with input-output analysis and thereby utilizing the relative 

strengths of both approaches. 

Input-output analysis is well suited to capture the interconnectedness of sectors within an 

economy, thereby allowing for the calculation of indirect and cumulative deliveries between 

http://copperalliance.eu/about-copper/recycling
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sectors. For instance, sectors which do not directly demand high material inputs, such as 

services, may nevertheless display considerable indirect material requirements. As Beylot 

and Villeneuve (2015) have shown for the case of copper, the overall dependence on copper 

may be higher for such sectors with only indirect material demands than for sectors which 

directly receive copper inputs but have low upstream copper requirements along the value 

chain. 

While input-output models are capable of portraying such value chain effects, the standard 

versions published by statistical offices are generally too aggregated for a detailed analysis 

of material or substance flows. The economic transactions between sectors portrayed in 

these monetary input-output tables are thus an inadequate representation of physical 

transactions of materials. This is illustrated in Figure 13, which on the one hand displays 

monetary intermediate deliveries of the nonferrous metals sector (in which the majority of 

semi-finished copper products are produced) according to the German Input-output table of 

2012 (Destatis 2014), and on the other hand copper flows from this sector to other sectors 

based on a substance flow analysis of copper for the same year. The relative distribution of 

inputs from the nonferrous metal sector to other sectors differs significantly from the 

distribution of semi-finished copper products. 

 

 

Figure 13: Comparison of total and copper intermediate deliveries from the nonferrous metals sector to relevant 

other sectors (in NACE Rev. 2 classification) for Germany in 2012 
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The knowledge of material/substance flows on a product level (through HS, CN or CPA 

codes respectively) can thus be used as a connection point between material flow and 

economic input-output models. The connection between commodity codes for trade data 

analysis (HS, CN), data from the European Prodcom database (CPA) and NACE2 sectors 

(which form the basis of EU input-output tables and those of its member states) is shown in 

Figure 14. 

 

 

 

Figure 14 Connection between trade data (HS, CN), production data (CPA) and the European industry activity 

classification (NACE). 
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A number of studies have developed hybrid approaches which generally consist of a 

combination of input-output analysis and life cycle assessment, and mostly focus on specific 

processes (e.g. Joshi 2000, Suh 2004, Suh et al. 2004, Acquaye et al. 2011, Wiedmann et 

al. 2011, Liu et al. 2012). Here, a methodology is briefly presented which combines input-

output analysis with material flow analysis on the national level. This approach leaves the 

standard input-output tables intact and uses satellite matrices that display physical material 

flows as a function of economic flows of the input-output table. Because copper containing 

products display a wide range of copper contents relative to their respective prices, these 

matrices are defined on the product level. For each product the material flows are assigned 

to the individual intermediate deliveries between the production sectors as well as the 

components of final demand of the input-output table.  

 

 

Figure 15: Schematic representation of conversion matrices. 

Each intermediate delivery and each final demand transaction of the economic model is thus 

matched with a product flow. The product flows, together with information on material content 

and value added can then be used to deduct physical material flows. This link between the 

economic and the physical spheres can be used in two ways: to analyze the effects of 

economic developments on material use patterns, and to analyze the macroeconomic effects 

of changes in material use, for example through efficiency gains. While the former is an 

established research topic, the latter has not been researched comprehensively, possibly 

due to a lack of suitable methodologies. The approach presented above may prove to 

advance this field of research. 
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4. Modeling the dynamics in metal markets based on global 

material flows 

While the dynamic material flow models described in section 2 only use the stock and flow 

structure of the SD approach to simulate aging chains, material life cycles and stock 

accumulation over time, they do not include any feedback loops. However, especially for 

global material flow models covering global supply from primary (mining) and secondary 

(recycling) sources and global material use patterns, an enhancement of the models with 

market dynamics seems reasonable. This enables the development of a tool for market 

analysis covering both physical material flows and feedback effects including typical delay 

structures in commodity markets. As summarized in the causal loop diagram in Figure 16, 

there are numerous feedback effects.  

 

Figure 16 General causal loop diagram of a commodity market taking into account demand and supply side 

feedback effects (Glöser and Faulstich 2012). 
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market behavior. As demonstrated with the simple model in Figure 17, the SD approach is 

highly suitable to model these delays in supply adjustment.  

 
Figure 17 Simple exemplary model of price fluctuations due to delayed supply adjustment (Glöser and Hartwig 

2015). 

The example of a copper market model based on the global material flow model 

The basic concept of the exemplary model shown in Figure 17 was implemented into an 

enhanced market model for copper as illustrated in Figure 18. While a detailed description of 

this model is published in Glöser and Hartwig (2015), here we provide a short overview of 

this model aiming at highlighting the possibilities of System Dynamics for market analysis.  

 
Figure 18 Copper market model combining physical material flows and market dynamics. 
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The copper market model combines the material flow model described above with the major 

feedback effects on raw material. As each copper end-use sector has different substitution 

potentials and thus reacts differently to price changes, the demand in each sector is 

calculated individually based on exogenous GDP development and the substitution intensity 

which is directly influenced by the price level. 

The material flow model provides specific supply data regarding both recycling, taking into 

account total scrap availability and mining data influenced by the delayed capacity building 

from investments in new mining projects. This combination of physical material flows with 

dynamic aspects of market adjustment mechanisms forms a flexible tool for advanced 

market analyses.  

The model was calibrated to historic copper price and mining development in order to 

analyze its ability to reproduce real market behavior based on past GDP development (cf. 

Figure 19a). We performed a first copper price forecast based on expected global economic 

development published by the World Bank (Global Economic Prospects 2015). With a 

stochastic variation of future GDP growth rates, this model can be use as a forecasting tool 

of copper price development (cf. Figure 19b). 

 

Figure 19 Results from the copper market model. 
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reservation. However, it underlines that the System Dynamics approach combining time 

delays and feedback effects is highly suitable to model raw material markets taking into 

account physical material flows and market dynamics. In our opinion, the possibility of a 

more systemic approach and flexibility in varying exogenous variables for sensitivity analyses 

makes System Dynamics superior to econometric analyses such as auto regression or 

structural equation models which are widely used by market analysts.  

5. Summary and conclusions 

With this paper we intended to give insight into different ongoing SD modeling work in the 

field of industrial metals material flows, cumulative material use and market dynamics. The 

System Dynamics approach provides different advantages for describing raw material 

systems such as the broad possibilities of modeling both physical material flows and market 

dynamics caused by partly delayed feedbacks due to price alterations. 

Regional material flow models on national or multinational levels require a detailed analysis 

of commodity trade and production data. This forms a connection point to sectoral economic 

models building upon input output tables. While regional material flow models may be linked 

to macro-economic models providing a better understanding of demand by sector or 

cumulative material use respectively, global material flow models can form the basis for 

market analysis tools covering physical restrictions in material supply from primary and 

secondary sources and dynamic market behavior. 

The examples provided in this paper are limited to copper as an exemplary industrial metal, 

however, the modeling concepts discussed here may be transferred to all kinds of further 

commodities and raw materials.  

Besides the modelling of industrial metals markets as performed on the example of the 

copper market in this paper, SD models based on global material cycles can be applied for 

advanced scenario analysis taking into account restrictions from the supply side. Particularly 

for the analysis of future raw material demand driven by the diffusion and dissemination of 

emerging technologies such models are useful. These advanced scenario analyses taking 

into account different forms of feedback effects are in contrast to simple separate supply and 

demand side forecasts and a subsequent comparison of both timelines. 
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6. Appendix 

 

Figure 20 Typical lifetime distribution functions from the field of safety and quality engineering (Kahle and 

Liebscher 2013) . 
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