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Abstract

Diffusion  of  new,  and  innovative  products  in  a  potential  market  has  been  well  studied  in

literature, using the famous Bass Model as the primary model. Recently a few works have also

focussed on the supply planning and distribution strategies for new product introduction under

uncertainty.  This paper aims to further our understanding on the effect of supply and demand

uncertainty on the overall market share.

1.0 Introduction 

Bass diffusion model (Bass, 1969) is not new in marketing literature and perhaps it has been

studied extensively since decades for predicting demands of new innovative products. Most of

the literature until recently have assumed product diffusion under infinite supply (Mahajan et al.,

1990; Peres et al., 2010) while in reality, the constraints on supply affect the diffusion dynamics

significantly. There is few literature (Ho et al., 2002; Kumar & Swaminathan, 2003; Higuchi &

Troutt, 2004; Shen et al., 2011; Negahban et al., 2014; Negahban & Smith, 2016) to study Bass

diffusion model and supply chain model combined.  Ho et al. (2002) have considered a more

generalized Bass model, where the total population is decomposed into four classes viz. Potential

customer,  waiting  in  queue,  adopter,  and  lost-sale  and  studied  in  the  presence  of  supply

constraint.  Using optimal  control  theory,  authors  established closed form expressions for the

demand and sales trajectories over the product lifecycle. They further concluded that the product

launch can  be  delayed  for  building  up an  initial  inventory stockpile  but  demand  fulfillment

should not be delayed when the firm is having inventory. Kumar & Swaminathan (2003) have

modified the classic Bass diffusion model in order to capture the effect of supply constraint on

future period demands. They have concluded that always selling the maximum of demand and

inventory may not be optimal but rather the firm should wait to build up the optimal  initial

inventory level and then start selling in order to reduce lost sales. Higuchi & Troutt (2004) have

shown the importance of integration of supply chain model with product diffusion model, taking

a video game product of Bandai Co. as a case study. Bandai Co. had launched a video game viz.



TamagotchiTM in  1996  which  immediately  gained  popularity  through  word  of  mouth  and

exceeded the supply capacity. Realizing such huge demand, after some time delay when Bandai

Co. increased their production capacity, people lost their interest in the product and resulted in

huge unsold inventory leftover for Bandai Co. Negahban et al. (2014) have developed an agent-

based simulation model for managing production level after launching a new product and found

effect  of  various  factors  (such  as  social  network  structure,  production  strategy  etc.)  on

production/inventory cost and lost sales. They have used a classical Bass model to forecast the

actual  demand  of  future periods  and dynamically  update  the  parameters  of  forecasting  Bass

model at every decision cycle, while the actual diffusion process was modelled as a variant of

Bass diffusion model with multiple customer stages. Negahban et al. (2016) have studied the

impact  of  demand  and  supply  uncertainties  on  optimal  production  and  sales  plan  for  new

innovative  products  using  Monte  Carlo  simulation.  Authors  have  used  a  model  similar  to

modified Bass model,  as proposed by Kumar & Swaminathan (2003), for simulating product

diffusion.  They have  concluded that  the  optimal  sales  and production  plan  for  deterministic

setting may not remain optimal under uncertainty of demand and supply. However, the authors

have used a relatively simple ordering rule, where any production lead time is not considered.

The other stream of literature (Tan, 2002; Gupta & Maranas, 2003; Li et al., 2009) in supply

chain  management  have  studied  the  effect  of  demand  and  supply  uncertainty  on  customer

satisfaction, production cost etc. considering demand as exogenous to the system/model and thus

not valid for new product diffusion.

2.0 The Bass Model

The classical Bass model is as shown in Figure 1. The target population (N) is divided into the

population of potential adopters (P) and the population of adopters (A). The total adoption rate of

the new product is then defined as the sum of the adoptions resulting from advertising (and any

external  means)  and from word of mouth  (and any implicit  positive  feedback driven by the

adopters population).  The underlying equations are given as follows:

Adoption Rate , AR (t )= pP(t )⏟
Adoptions− Advertising

+ qP(t )A (t )/N⏟
Adoptions−word− of−mouth

(1)



Where, p is the coefficient of innovation, q the coefficient of innovation. The term pP indicates

the Adoptions from advertising and  qPA/N indicates the adoptions from word of mouth.  The

population of adopters (A) and potential adopters (P) evolve as follows:

P(t)=∫
0

t

− AR (t )  and A(t )=∫
0

t

AR (t )

Figure 1: Stock-Flow representation of the Bass Model

The behavior of the model is characterized by the two loops. The marketing effect loop, which

solves the problem of startup since the adoption from advertising is independent of the Adopter

population (Sterman, 2001). The adoptions from the advertising display an accelerated delay,

followed by an  exponential  decay.  The word of  mouth  loop essentially  drives  the  model  to

exhibit  the  classic  S-shaped growth of  Adopters.  The adoptions  from word of  mouth  grows

rapidly, peaks, and then declines as the Adopters saturate the market. The steady state is reached

when  the  entire  target  population  become adopters,  i.e.,  A(t*)  =  N,  or  P(t*)  =  0.  The total

duration t* can be termed as the duration of diffusion.

The above Bass model includes several assumptions:

● The target population (N) is fixed and does not change with time. This may be reasonable

for  diffusions  happening at  a  small  time  scale.  However,  for  models  with  diffusions

spanning larger time scale,  the effect of births,  deaths,  migration etc may need to be

incorporated.

● The effect of word of mouth strictly results in a positive impact.



● The values of p and q remain unchanged with time.

● There is uniform mixing of the population, that is everyone can come into contact with 

anyone else.

● The price of the product has no effect on the size of potential adopters nor on the 

adoption rate.

● The adoption of the new product is considered to be independent of the adoption (or non-

adoption) of other products, independent of social, economic and political conditions.

● Customer decision instantaneously changes from potential adopter to an adopter. Multi-

stage models can be used to capture the evolution of customers through an ‘awareness’ 

stage and ‘showing interest’ stage before becoming adopters.

● There are no repeat or replacement purchases.

● Sufficient supply of new product inventory is available to meet the required adoption 

rate.

● Spatial or geographical spread of diffusion is not considered.

Many works have been presented in literature where the Bass model is extended by relaxing one 

or more of the above assumptions, as discussed earlier.

 

Interestingly, it is noted that for a given p and q, the behavior of the Bass model is independent

of  the  population.  That  is,  the fraction  of  adopters  (A)  to  the target  population  (N)  remains

independent of N. This behavior is illustrated in Figure 2(a) and 2(b). The values of p and q are

taken as 0.008 and 0.25. Fig. 2(a) shows the adoption rates when N = 4,000, 7,000 and 13,000. In

Fig. 2(b), the fractional rate of adoption (= AR(t)/  N) is plotted.  It is clearly observed that the

model behavior is independent of N.



2(a) Adoption Rate 2(b) Fractional rate of adoption

Figure 2: Dynamics with different values of target population N

Further,  the  model  can  also  be  expected  to  be  robust  to  any  demand  variations.  Since  the

populations are conserved (i.e., A(t) = N - P(t)), random perturbations in the adoption rates from

its mean (as governed by the Bass model) will not affect the total diffusion duration t*. Demand

uncertainty can be incorporated in the model by including a perturbation term,  in computing the

Adoption Rate, where  is a random variable with zero mean and non-zero variance, as:

AR (t )=pP (t )+qP (t) A (t )/N+ε (2)

It is noted that to ensure the conservation of population (A(t) = N - P(t)) and prevent backward

flow, it is to be ensured that the adoption rate does not exceed the current population of potential

adopters, and is not negative. This is achieved by:

AR (t )=Min(Max( pP(t )+qP(t ) A(t)/N+ε , 0), P) (3)

Figure 3(a) and 3(b) show the dynamics of diffusion under demand uncertainty. The values of p,

q and  N are taken as 0.008, 0.25 and 4000. Figure 3(a) shows the adoption rates for different

settings  of  .  In  Fig.  3(b),  the  adopters  (A(t))  is  plotted.  It  is  clearly  observed  that  demand

uncertainty per se affects neither the total adopters nor the diffusion duration. These behaviors,

while making the Bass model robust, also significantly overlooks the impact of supply on the

spread of diffusions. This paper explores the impact of supply uncertainty on the Bass model

dynamics.



Figure 3(a) Dynamics of adoption rate AR(t) under uncertain demand

Figure 3(b) Dynamics of Adopters  A(t) under uncertain demand

3.0 Exploring and Extending the Bass Model

3.1 Constrained Supply

The effect of supply can be modeled as a co-flow, as shown in Figure 4. A stock of inventory is

maintained, and the adoption rate can then be set to not exceed the available inventory on hand,

I(t). The underlying equations of the extended model are as follows:



Figure 4: SFD model of extended Bass model with explicit modeling of supply

AR (t )=Min( pP(t )+qP (t ) A(t )/N⏟
Desired− Adoption− Rate , DAR(t )

, I (t ))
(4)

I (t )=SupplyRate (t )− AR (t)  (5)

Now, suppose the cumulative supply is more than the target population, and all potential adopters

wait as-long-as-required for the product, then the dynamics are quite intuitive. In periods when

the on-hand inventory exceeds the adoption rate, the dynamics will be comparable to the original

Bass model. In periods when the adoption rate is constrained by the inventory (I(t) > 0), the

system will exhibit a linear growth in adopters. Eventually, the target population of adopters will

be reached, with the delay in diffusion proportional to the supply delays, i.e., the number of days

inventory was insufficient to meet desired demand. Figure 5 illustrates the behavior of the system

for varied patterns of supply (constant rate of supply and batch supply). When the supply is at a

constant rate of 100 units/ period, the adoption rate in the first 10 periods equals the desired

adoption rate.   The accumulation of excess inventory in periods 1 to 5 provides to meet  the

demand in period 6 to 10. In periods 11 to 35, the inventory availability determines the adoption

rate, and after 36 time periods, the adoption follows an exponential decay, reaching a saturation

of 4000 in 50 periods. The total duration of diffusion t* has increased when compared to the

scenario of non-delayed supply.  Suppose the products are supplied in a batch size of 1000 at

time periods 0, 10, 20 and 30, the dynamics will be similar to the red color lines in the graphs in

Fig. 5. The cumulative adopters reach 2000 (exhausting the first two deliveries) in period 15

which results in a plateau (AR=0) until the next lot arrives. This alternate sales and periods of

idleness continue until the target is reached.  It can be observed that the increase in the duration

of diffusion t* is approximately equal to the number of periods when INV is less than the desired

adoption rate (in the example considered, the t* increases by about 11 periods).  Also, of the total

50 periods of diffusion, in 10 periods (i.e. 20%) the distribution does not take place (i.e., on days

of zero AR(t)). This can have a serious impact on the motivation of future performance of the

sales workforce, which is not considered in the current model.



Figure 5: AR(t) and A(t) under different supply scenarios

3.2 Constrained Supply with abandonment

It will be interesting to next understand the dynamics when the potential adopters are impatient.

That is, unavailability of the product (say,  due to supply delay) creates a negative impression

resulting in some proportion of potential unsatisfied customers abandoning the future purchase of

the product (they might have purchased another equivalent product from the market or simply

lost interest due to delay).  This aspect is captured by including another outflow to the stock of

Potential Adopters, called as Abandon Rate (AbR(t)). AbR(t) is a product of the abandonment

fraction f  and  the  instantaneous  proportion  of  dissatisfied  customers.  Also,  the  total  target

population N is reduced by AbR in order to conserve the population.  The extended SFD model

that includes abandonment is shown in Figure 6. 

Figure 6: SFD model of extended Bass model with explicit modeling of supply & abandonment



The additional underlying equations are as follows:

P(t)=∫
0

t

− AR (t )− AbR (t ) (6)

AbR(t)=f ∗ (DAR(t )− AR (t ))=max( pP(t )+qP (t ) A(t)/N (t )− I (t ),0) (7)

N (t )=∫
0

t

− AbR (t ) (8)

Simulation results comparing the performance with and without abandonment are presented in

Figure 7. The values of  p,  q,  f,  and  N are taken as 0.008, 0.25, 0.25 and 4000. Two different

supply patterns are considered. When the supply is at a constant rate of 100 units/ period, it can

be seen that the total adopters saturate (reach)  3550 with 450 abandoning the purchase of the

product  (see  Figure  7(a)).  However,  from  the  manufacturer’s  point  of  view  the  sales  rate

(adoption rate) is actually quite stable until period 30 after which it decays exponentially, and

saturating at 3550 adopters. Suppose the products are supplied in a batch size of 1000 at time

periods 0, 10, 20 and 30 (see Figure 7(b)).  The sales (adoption) first and the second batch of

1000 are identical under with and without abandonment.  The third batch of 1000 is also sold

(adopted) but over a longer duration (5 periods instead of 4 periods). However, the last batch of

1000, when supplied, never gets fully sold. Also, interestingly,  both supply patterns results in

almost the number of adopters post-abandonment. The key implication of the above results is

that the manufacturers will not be aware of the potential decline in adoptions until very late,

resulting in unspent inventory, additional costs and loss of market, since abandonment rates are

quite difficult to estimate.



Figure 7(a): AR(t) and A(t) when supply is a constant at 100 units per period and abandonment

Figure 7(b): AR(t) and A(t) under batch supply of 1000 units per 10 periods and abandonment

3.3 Implications of a grand product launch

Most new products  are  launched in  a  ‘grand’ manner  to  help  kick start  the  adoption  of  the

product.  This refers to the initial  quantity of products sold (adopted) by highly concentrated

efforts  aimed  to  create  awareness  among  the  target  population.  However,  post  this,  the

manufacturer may choose to significantly reduce the efforts on advertising and rely more on the

word of mouth effects generated by the initial set of adoptions. This is captured in the original

Bass model by modifying the coefficient of innovation parameter  p, such that  p takes a high

initial  value  (modeled  as  a  PULSE()  input)  followed  by  the  significantly  lower  value.

Simulation  experiments  are  conducted  to  quantify  the  effects  of  the  grand  product  launch

(p=0.008  in  all  periods  except  in  period  1  when  p  = 0.05),  under  limited  supply  and with

abandonment. The results of these experiments are presented in Figure 8. 

Figure 8(a) displays the adoption rates under grand launch with infinite supply. It is observed, as

expected, that there is a sharp increase in sales (~230 units) in the period since more products are

adopted in the early stages, which is further reinforced by the word-of-mouth effects resulting in

the overall reduction of the duration of diffusion by 3 periods. Figure 8(b) summarizes the results

under  a  constant  supply  of  100  units/  period  (with  an  initial  stock  of  100).  Figure  8(c)

summarizes the results when products are supplied in a batch size of 1000 at time periods 0, 10,

20 and 30.  The total adopters for both supply patterns are lesser when the big launch is carried



out as compared with the case without a big launch. Also, it  is seen that the batch supplied

saturated at a lower level of adopters (~3355) as compared when to constant supply (~3370).

Figure 8(a): Result of Bass model with and without a grand launch

Figure 8(b): Result of extended Bass model under constant supply, abandonment, grand launch

Figure 8(c): Result of extended Bass model under batch supply, abandonment and grand launch

4. Conclusions and Future Work



Simple  extensions  of  the  Bass  model  has  been  discussed  in  this  paper  to  help  further  the

understanding of the uncertainties in demand and supply on the new product diffusion dynamics.

Batched supplies can cause significant periods of idleness (adoption rate equals 0) leading to loss

of  motivation.  Suppose  customers  decide  to  abandon  their  purchases,  then  the  total  target

population will never be reached, and more importantly, the manufacturer will not be aware of

this  until  the  very  end  of  the  diffusion  period.  Also,  it  is  observed  that  grand  launches  of

products, if not followed up with regular supply will result in an overall decrease in adoptions.  

On going research work is being carried out to understand, model and analyse the diffusion of a

new product  at  multiple  unconnected  geographical  regions,  but  which  are  constrained  by a

common supplier of materials. Also, explicit modeling of the impact of idle periods (periods with

adoption rates) on the motivation of the workers can be investigated. Further, given the (real life)

adoption rates of products which includes periods of idleness (either due to supply uncertainty or

demand uncertainty) the estimation of the coefficient of innovation and imitations, along with the

reasons for supply delays are of interest. These investigations will help in designing a robust plan

for diffusion of new products under uncertainty.
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