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Abstract 

Food cycle creates a mechanism through which nutrients and other components of life are 

available for living organisms. Improper function of one component of the cycle may lead to 

emerging disruption in the life cycle of organisms. In this paper, the dynamic behavior of 

phosphorus was studied by considering three state variables: productive organisms (organic 

phosphorus), dead organisms (organic phosphorus) and inorganic phosphorus. The system 

dynamics model intelligibly provides information about changing state variables levels with 

respect to all interactions and feedbacks. The model was applied to Lake Ontario and run for a 

year with daily time steps. The model demonstrates acceptable performance in estimating the 

variables’ concentration. Stratification and mixing condition have a significant effect on the 

variables’ concentration during two periods (Day 100 to 158 and day 315 to 335) leading to a 

decrease in the soluble reactive phosphorus concentration of 80% in the hypolimnion 

(compared to the epilimnion) as well as an increase of phytoplankton concentration from 0.2 to 

0.4 (mg/l) in the epilimnion. 
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1. Introduction 

The food cycle is an ecological process in which nutrients change from one form to another. 

The existence of the ecosystem depends on this cycle. Without it, productive organisms would 

not be able to acquire the nutrients necessary for their survival (Föllmi, 1996). 

Several processes including solar radiation, prey-predator dynamics, and hydrological and 

climatic parameters directly affect the food cycle. However, solar energy has the most impact on 

the natural process of growth and death in nature. The sun supplies the required energy for the 

plants (producers) and they absorb light to photosynthesize (Deaton & Winebrake, 2000). 

During photosynthesis, the plants convert light, carbon dioxide, and mineral nutrients to 

chemical energy so as to produce more complex compounds of carbon, which may then be used 

as a fuel source for growth. The consumers eat these producers and break down the complex 

compounds within them to obtain energy and nutrients. After the consumers die, they will be 

decomposed, and returned to the ecosystem, in the form of a primary nutrient, which can again 

be used by the producers. 

The primary cycle of biomass in the environment is more complex. To simply describe the 

dynamics of the phosphorus cycle, we should consider at least three storages including the 

storage of productive organisms (nutrients could be found within them in their living form), 

dead organisms, and decomposed organisms (bacteria turn the dead organism into primary 

mineral nutrients) (Föllmi, 1996). 
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Studying the phosphorus cycle is of paramount significance for assessing water quality. Over 

the past decades eutrophication has been one of the most common problems affecting water 

quality of lakes (Andersen et al., 2002; Chapra, 1997; Jong et al., 2002). Eutrophication is a 

complex natural process occurring gradually due to nutrient enrichment in water bodies which 

can irreversibly affect the ecosystem. Phosphorous has been recognized as the main limiting 

factor for algal growth (Gilbert et al., 2010). In most cases, as the concentration of phosphorous 

declines, the growth rate will also decline due to lack of available nutrients. Therefore, studying 

the phosphorous cycle in water bodies could be beneficial to clearly understand a simple food 

web process. 

Over the last years, making use of object-oriented models has become very common in analyzing 

complex phenomena. Such models create a flexible and user-friendly framework to develop up-

scaled models for analyzing complex systems (Ahmad & Simonovic, 2000). System dynamics is 

a feedback based method, which usually does not require advanced mathematical descriptions. 

Some advantages of such simulation methods are appropriate understanding of a phenomena, 

high speed numerical calculation, modeling reliability, and the possibility of expanding and 

easily changing model structure (Loucks et al., 1981; Simonovic & Fahmy, 1999). System 

dynamics approach has been used for eutrophication models, predicting long-term water quality 

changes, analysis of the Quality Control policies in river basins, water allocation, and the 

operation of multi-purpose dams (Mitra & Flynn, 2010; Geene, 1996; Vezjak et al., 1998). In 

this study, the concentration of phosphorus was simulated with daily time step in three forms 

i.e. productive organisms (organic phosphorus), dead organisms (organic phosphorus) and 

inorganic phosphorus. We also used system dynamics to simulate the behavior of phosphorous 

in lakes during the annual stratification and mixing cycles. 

 

2. Material and Methods 

2.1. Model description 

The system dynamics approach is a powerful tool for developing object-oriented models to 

simulate complex phenomena over time that involve feedback effects (Sterman, 2000; 

Elshorbagy & Ormsbee, 2006). In this study, system dynamics was used to simulate the 

phosphorus cycle. It is a powerful and simple approach to model complex systems. This 

approach works based on feedbacks among variables and regulates itself with respect to the past 

behavior of the system (Forrester, 2007). In these models, an initial causal loop diagram of  t he 

desired problem is drawn and a graphical diagram of the model is then plotted using stocks, 

flows, arrows, and converters (Ford, 1999).  

The causal loop diagram of the phosphorus cycle model consists of reinforcing and balancing 

loops. The combination of positive and negative feedback loops allows the system to reach steady 

state. Figure 1 shows the causal loop diagrams of the main state variables in the system and 

their feedback loops. 

3. Theory: subsystems of the phosphorus cycle simulation model 

As the phytoplankton concentration increases, the concentration of soluble reactive phosphorus 

will decrease due to consumption. Increasing the phytoplankton concentration leads to greater 

nutrient uptake. As a result, reducing nutrient concentration slows the growth of phytoplankton 

(balancing loop). On the other hand, decomposition of phytoplankton increases the 

concentration of organic compounds. Additionally, if non-soluble phosphorus concentration is 

on the increase, the nutrient concentration will increase and eventually the phytoplankton 

concentration will rise (reinforcing loop). All the paramount parameters, their relationships, 



and their impacts on the state variables were determined and the structure of the model was 

developed for each state variable based on its control equations. 

In this study, the soluble reactive phosphorus, non-soluble reactive phosphorus and 

phytoplankton were considered as the key state variables in the epilimnion and hypolimnion. 

The model was applied to Lake Ontario. To demonstrate the validation and accuracy of the 

model, we used a range of factors and coefficients suggested by Chapra (1999). This model 

considers seasonal temperature changes. The stratification divides the lake into two layers (the 

epilimnion and hypolimnion), which were considered to be completely mixed volumes. 

Turbulent diffusion connects the two layers and the inputs and outputs flow from the 

epilimnion. Table 1 defines all symbols used in the following the equations. 

 
Fig. 1. The causal loop diagram of phosphorus cycle. 

 
Table 1. Values of all the parameters used in the phosphours cycle model 

Parameters Symbol Value Parameters Symbol Value 

Concentration of phytoplankton 

(mgChla m-3) 
  

Concentration of SRP (mgP m-

3) srpc   

Phytoplankton growth rate @ 

T=20 oC (d-1) 
 2 Thermocline area (m2)  185*108 

Phytoplankton losses due to 

respiration and excretion (d-1) 
 0.025 Epilimnion volume (m3)  254*109 

Phytoplankton settling velocity (m 

d-1) 
 0.2 Hypolimnion volume (m3)  14*1011 

Optimal light level (ly d-1)  350 Out flow (m3 yr-1)  212*109 

Temprature factor  1.066 Thermocline diffusion:   

Attenuation of growth due to light      Summer-stratified (cm2 s-1)                                      0.13 

Attenuation of growth due to 

phosphorous 
     Winter-stratified (cm2 s-1)                                         

13 

Light extinction due to factors 

other than phytoplankton (m-1) 
 0.2 

Start of summer stratification 

(d) 
 100 

Phosphorous half-saturation 

constant (µgP L-1)  2 
Time of establish stratification 

(d) 
 58 

Photoperiod (sunlight fraction of 

day) 
 

Time 

Series 

Onset of end of stratification 

(d)  
315 
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Extinction coefficient   End of stratification (d) 
 

20 

Variable load (mg d-1) W  Epilimnion thickness (m)  20 

Concentration of NSRP (mgP m-3) nsrpc   Hypolimnion thickness (m) 
 

82 

NSRP settling velocity (m d-1)  0.2 
The stoichiometric coefficient 

for the conversion of 

phosphorous to phytoplankton 

(mgP/mg Chl-1) 

 
1 

Decomposition rate for NSRP (d-

1) 
 0.1 

 

Equations 1 and 2 are mass balances for the epilimnion and hypolimnion (Chapra, 1997). The 

subscripts e and h designate epilimnion and hypolimnion for state variables of the phosphorus 

cycle model.  

(1) ( )e
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dc
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3.1. Lake volume 

The volumes of the epilimnion and hypolimnion were calculated based on the thermal 

stratification of the lake. In the model, a state variable was used to simulate the lake volume. 

 

3.2. Phosphorus cycle 

3.2.1. Phytoplankton 

The growth of phytoplankton is a function of temperature, light, nutrients, and algae. The 

concentration of algae was represented by the concentration of chlorophyll a (Asmala, 2011; 

Flynn, 2010). 

Equation 3 describes the model of phytoplankton growth. The concentration of phytoplankton 

in the hypolimnion was calculated based on the settling process from the epilimnion and the 

effective diffusion between the two layers (Chapra, 1997). 
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The Michaelis-Menten equation was used to account for nutrient limitations, as follows: 
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The following equation considers the effect of light limitation on the phytoplankton 

growth rate. 
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(7) 

Figure 2 shows the stock and flow diagram for phytoplankton in phosphorus cycle model. 

 

 

Fig. 2. Stock and flow diagram for phytoplankton. 
 

3.2.3. Non-soluble reactive phosphorous (particulate phosphorus) 

Phosphorous is classified into two groups of reactive and non-soluble reactive phosphorous. 

This classification is due to the method of measuring the phosphorous concentration in the field. 

In most cases, the phosphorous concentration is measured as reactive soluble phosphorous and 

total phosphorous. The concentration of non-soluble reactive phosphorous is equal to the 

difference between these stocks. The particulate phosphorus increases through the 

decomposition of the phytoplankton, and its concentration is controlled through the 

decomposition, settling, and decay processes. Eventually, the particulate phosphorus transforms 

into reactive soluble phosphorous. Equations 9 and 10 describe the non-soluble reactive 

phosphorous model. 
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3.2.3. Soluble reactive phosphorus  

Soluble reactive phosphorus is one of the main limiting factors that affect the food chain. 

Organic phosphorus is converted into soluble reactive phosphorus, which is used by 



phytoplankton (Chapra, 1997). Figure 3 shows the stock and flow diagram for soluble and non- 

soluble reactive phosphorus in the model. 
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Fig. 3. Stock and flow diagram for phosphorus. 

 

4. Study site 

Lake Ontario is one of the five Great Lakes of North America and it is the 14th largest lake in 

the world. It is bounded on the north and southwest by the Canadian province of Ontario and 

on the south by the American state of New York. The Great Lakes watershed is a region of high 

biodiversity and Lake Ontario is important because of its diversity of birds, fish, reptiles, 

amphibians, and plants. The lake's primary source is the Niagara River, which drains Lake 

Erie, while the St Lawrence River serves as the outlet. The drainage basin covers 64,030 km2 

and 49% of it is forested, 39% is agricultural, while the remaining 13% is urban (Agency 

USEPA, 1998). The lake has an important freshwater fishery, although it has been negatively 

affected by water pollution (Christie, 1974). Figure 4 shows Lake Ontario. 
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Fig. 4. Lake Ontario. 

 

5. Calibration and validation 

To analyze the model behavior and characterize the impact of the parameters on the model’s 

output, a sensitivity analysis of the model was conducted. In this regard, in each model run, the 

effect of each parameter’s changes was quantified, while keeping the other parameters constant. 

To determine the most important parameters, a relative sensitivity factor was calculated using 

equation 13 (Shirmohammadi et al., 2006). 

 
(13) 

In this equation, “O” is the model’s output, and “P” is the model input parameter. The model’s 

parameters were calibrated manually making use of a trial and error method. Table 2 indicates 

the model’s sensitivity analysis for an average concentration of phytoplankton. The sensitivity 

coefficient reveals that the factors most affecting the lake’s phytoplankton concentration were 

the algae growth rate, phytoplankton decay rate, light extinction, and the decomposition rate of 

non- soluble reactive phosphorus (NSRP). The range of parameters changes on account of the 

trial and error, and the closeness of the model’s average output and the observed data. 

 
Table 2. The sensitivity coefficient of the phytoplankton concentration in the lake. 

Parameters Symbol Variation range saF  

Phytoplankton growth rate  0.8 – 1.6 0.623 

Phytoplankton losses due to 

respiration and excretion 
 0.02 – 0.04 -0.572 

Light extinction due to factors 

other than phytoplankton  
 0.1 - .0.4 0.532 

Decomposition rate for NSRP  0.05 – 0.2 0.323 

 

After analyzing the sensitivity, the model’s error was measured using the Nash-Sutcliff 

efficiency coefficient, the Pierson correlation coefficient, and the standard error. Nash-Sutcliff 

efficiency is defined in equation 14: 
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Where Co is observed variable and Cm is simulated variable. Nash–Sutcliffe efficiencies can 

range from −∞ to 1. An efficiency of 1 (E = 1( corresponds to a perfect match of estimated 

outcomes to the observed data. An efficiency of 0 (E = 0) indicates that the model predictions 

are as precise as the mean of the observed data (Nash & Sutcliff, 1970). According to Table 3 

the appropriate accordance of the model’s output with the observed data is indicated by a value 

of the Nash-Sutcliff coefficient (Ens) close to 1, the data correlation coefficient (R), and also a 

low standard error for the model’s calibration and verification periods. The result indicates a 

reliable model definition. Figure 5 shows observed data and simulation results for soluble 

reactive phosphorus in the epilimnion and hypolimnion of Lake Ontario. It can be seen that the 

correlation between estimated and observed data for phosphorus is very close in both layers. 

 
Table 3. The results of Nash-Sutcliff coefficient, correlation coefficient, and the standard error. 

nsE  eS  r  
Layer  

                Criterion 

0.84 1.5 0.966 Epilimnion 

0.68 1.07 0.86 Hypolimnion 

 

 
Fig. 5. The observed and simulated concentrations of the soluble reactive phosphorus. 

 

Specific tests can be utilized to assess the accuracy of a model, based on the system dynamics 

approach, as described below. 

 

5.1. The dimensional analysis test 

The unit consistency of each state variable in the model was analyzed by the Units Check order. 

If there is an inconsistency in units, a unit error will emerge. Although a dimensional error does 



not affect the numerical calculation and the model’s outcomes, it can lead to misunderstanding 

for complex systems. In this study, there is no unit error in the model. 

 

5.2. Extreme conditions test 

Every model must cope with extreme circumstances during the simulation period. For this 

reason, the input load and initial concentration of SRP, NSRP, and phytoplankton load were 

considered as 0. Accordingly, the phytoplankton concentration decreases from the initial 

amount of 1 to 0.4 mg Chla per cubic meter (Figure 6). In addition, the SRP and NSRP 

concentrations increase during the simulation owing to decomposition of the phytoplankton. 

Consequently, the model works accurately under extreme conditions. 

 

 
Fig 6. The results of state variable concentration under extreme Conditions. 

 

6. Results and Discussion 

After developing the model structure for the epilimnion and hypolimnion of the lake based on 

their equations, the concentration of soluble reactive phosphorous, non-soluble reactive 

phosphorous, total phosphorous, and algae (phytoplankton) stocks were analyzed from January 

to December. To assess the simulation results, we first analyze the behavior of the state variables 

separately for each layer. Figure 7, shows the simulation results in the epilimnion. 

 



 
Fig 7. Simulation results for state variables in the epilimnion. 

 

According to Fig. 7, the phytoplankton growth rate increases slightly during the first two months 

of the year. This might be due to the gradual increase in light and the photoperiodic ratio. These 

factors approximately neutralize and control the growth of phytoplankton. 

The phytoplankton concentration increases abruptly due to the abundance of soluble reactive 

phosphorous and a dramatic rise in temperature and solar radiation. The phytoplankton 

concentration reaches a peak on about Day 160 when the summer stratification develops, and 

afterwards, until the end of the thermal stratification, has a gradual decreasing trend. As pointed 

out in the modeling section, the phytoplankton decay rate parameter (Kr), which includes 

respiration, decomposition and excretion processes, is the most important factor controlling the 

phytoplankton concentration. This parameter increases when the temperature increases based 

on the Michael-Manten equation. Therefore, the reason for the gradual decrease in the 

phytoplankton concentration during the summer could be due to the increase of this parameter. 

Eventually, the interaction of both feedback loops could be recognized as the main reason for 

the maximum phytoplankton concentration at 9 (mg Chla/cubic m) on about Day 160. The 

soluble reactive phosphorous is a primary nutrient for algae growth. Its concentration declines 

rapidly as the algae begins to grow. It reaches the minimum concentration of 2 (mg P/cubic m) 

on about Day 160 when the phytoplankton concentration peaks. The trade-off between 

phytoplankton growth and death causes SRP to gradually reduce in the epilimnion throughout 

the summer up to about Day 315. 

Since the level of non-soluble reactive phosphorous increases with phytoplankton decay, its 

concentration increases slowly because of the slow growth of algae and the continued entry of 

input loads. After Day 160, the non-soluble reactive phosphorous concentration decreases in 

the epilimnion, alongside the reduction in the phytoplankton concentration, and slowly 

continues through Day 315. 

Strong vertical mixing occurs during the late summer when the phytoplankton concentration 

declines and the SRP and NSRP concentrations increase. Figure 8, shows the simulation results 

for state variables in the hypolimnion. 



 

 
Fig 8. The results of phosphorus simulation in the hypolimnion. 

 

The phytoplankton concentration reaches a maximum of 5.5 (mg Chla/cubic m) on about day 

150 in the hypolimnion, and after that, its concentration significantly decreases because of light 

limitation (caused by the algal bloom in the epilimnion) and decomposition and excretion 

processes. During the summer stratification, temperature remains almost unchanged in this 

layer. As a result, the phytoplankton concentration in the hypolimnion is smaller than in the 

epilimnion. Soluble reactive phosphorous increases in the hypolimnion due to the reduction of 

phosphorous consumption, the settling of algae and non-soluble reactive phosphorous from the 

epilimnion, and the decomposition process. The other important point is the fluctuation in the 

phosphorous concentration in the epilimnion and hypolimnion on Day 315. As the water is 

getting cold in the upper layer in the late summer, it will be denser which causes destratification 

of the lake. 

The non-soluble reactive phosphorous concentration in the hypolimnion is higher than the 

epilimnion owing to settling of the non-soluble reactive phosphorous from the epilimnion, and 

phytoplankton decay in the hypolimnion. The non-soluble reactive phosphorous concentration 

gradually decreases during the stratification period based upon the reduction in phytoplankton 

concentration, and eventually on Day 315 it equals the non-soluble reactive phosphorous 

concentration in the epilimnion at around 9 (mg P/cubic m). 

The total phosphorous concentration in the epilimnion (accumulation of the soluble and non-

soluble reactive phosphorous) decreases during the thermal stratification period due to the 

phytoplankton consumption (Fig. 7). Moreover, it declines in the hypolimnion in two time 

periods (Fig. 8). The first of these is the time of establishing stratification in the lake between 

Day 100 and Day158, and the second period is the time of turning over between Day 315 and 

Day335. 

 

7. Conclusion 



In this study, the phosphorous cycle in a lake was simulated using a system dynamics approach. 

The results show that the model has the capability to simulate the behavior of the phosphorous 

cycle. In this model, the overall trends and fluctuations of the phytoplankton (productive 

organisms), non-soluble reactive phosphorus (dead organisms), and soluble reactive 

phosphorus (inorganic phosphorous) were studied. Despite the similar overall behavior of the 

variables in the upper and lower layer, the results revealed that the peak concentration of the 

phytoplankton was smaller in the hypolimnion. It was also shown that the concentration of state 

variables were affected by the stratification and the complete mixing condition. 

The model could be used to demonstrate the interactions and feedbacks of components of the 

phosphorous cycle. It also can provide students, decision-makers and operators with an 

interactive learning environment to evaluate the effectiveness of management policies. Finally, 

adding a more comprehensive carbon cycle and including the release of phosphorous from the 

sediments would improve the model reliability, although this will increase the model complexity 

and the need for more accurate data. 
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