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Abstract:	One	billion	people	lack	access	to	electricity,	most	of	whom	live	in	rural	areas	in	
developing	countries.	A	solution	to	improve	their	situation	is	small	independent	grids,	so	
called	minigrids.	One	of	the	major	challenges	for	minigrids	is	to	become	economically	
reliable.	As	electricity	usage	is	a	major	source	of	income	for	a	utility,	it	is	important	to	
consider	how	its	fluctuations	impacts	a	utility.	This	work	presents	an	integration	of	a	
previously	developed	system	dynamics	model	with	a	comparably	detailed	bottom-up	load	
model	developed	in	MATLAB.	The	simulations	show	that	while	using	a	more	detailed	load	
model	results	in	an	increase	in	generation	capacity	expansion	frequency	and	that	the	
investments	are	made	in	smaller	sizes.	Due	to	the	different	approach	to	integrating	
electricity	usage	growth,	the	bottom-up	load	model	shows	a	faster	increase	in	electricity	
usage	than	the	system	dynamics	load	model.	With	a	modeled	difference	on	net	income,	
power	utilization	rate	and	electricity	usage	the	results	indicate	that	it	is	important	to	
consider	improved	load	model	detail	when	modeling	income	and	expenditures	of	an	electric	
utility.	
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Introduction	
As	of	today	one	billion	people	lack	access	to	electricity	around	the	world.	Roughly	half	of	
these	people	live	in	sub-Saharan	Africa,	and	a	large	majority	of	them	live	in	rural	inaccessible	
areas	(IEA,	2013).	Improving	electricity	access	for	these	people	is	considered	an	important	
step	towards	combating	poverty	and	improve	their	social	and	economical	conditions.	As	a	
service,	access	to	electricity	is	considered	to	be	a	necessary	but	not	sufficient	condition	for	
economic	and	social	development	(Barnes,	2007;	Bhattacharyya,	2013;	Goldemberg,	
Johansson,	Reddy,	&	Williams,	1985).	In	many	cases,	using	traditional	methods	such	as	grid-
extension	is	not	enough	and	if	rural	communities	are	to	gain	the	full	benefits	of	electricity	
access	within	the	foreseeable	future,	reliable	and	well	managed	off-grid	solutions	are	
needed.	(Ahlborg	&	Hammar,	2014;	Díaz,	Arias,	Peña,	&	Sandoval,	2010;	IEA,	2013;	
Tenenbaum,	Greacen,	Siyambalapitya,	&	Knuckles,	2014;	Urpelainen,	2014)	
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The	size	of	off-grid	solutions	varies	from	tens	of	W	for	small	Solar	Home	Systems	(SHS)	to	
large	minigrids	with	generation	capacity	of	several	MW.	The	low	costs	of	SHS	makes	them	
affordable	for	single	households	but	their	capacity	is	limited	to	supply	a	few	low	consuming	
appliances	such	as:	lights	and	radios.	Thereby	limiting	the	benefits	that	can	be	obtained	from	
SHS	(Azimoh,	Klintenberg,	Wallin,	Karlsson,	&	Mbohwa,	2016).	Minigrids	can	on	the	other	
hand	supply	enough	power	and	energy	to	be	used	for	productive	activities	such	as	milling,	
workshops,	irrigation	pumps,	welding	and	shops/bars.	But	needs	a	managing	organization	
and	the	funneling	of	resources.	Minigrids	have	been	used	in	rural	electrification	with	various	
levels	of	success,	with	one	of	the	major	challenges	being	their	poor	economic	performance,	
leading	to	an	inability	to	reach	cost-recovery	(Barnes	&	Foley,	2004;	Kirubi,	Jacobson,	
Kammen,	&	Mills,	2009;	Levin	&	Thomas,	2014;	Schnitzer	et	al.,	2014).	Their	ability	to	reach	
cost-recovery	has	been	related	to	the	systems	utilization	factor	(Kirubi	et	al.,	2009;	Sarangi	
et	al.,	2014).	A	systems	utilization	factor	is	the	fraction	of	actual	to	maximum	electricity	
generation.	In	order	to	improve	the	utilization	factor,	generation	should	be	matched	with	
current	demand	and	be	appropriately	adapted	to	future	demands.		
Electric	load	modeling	is	a	common	tool	in	order	to	analyze	current	and	future	electricity	
demand.	It	can	be	divided	into	two	types:	top-down	and	bottom-up	modeling.	Top-down	
load	modeling	is	based	on	large	aggregated	data	sets	and	use	mathematical	methods	to	
analyze	and	predict	demand	changes	for	large	groups.	Bottom-up	load	modeling,	on	the	
other	hand,	is	based	on	modeling	of	the	single	loads,	such	as	lights	and	TVs,	which	are	then	
aggregated	to	obtain	a	total	user	and	system	load.	
One	advantage	of	top-down	methods	is	that	they	require	less	consumer	data	than	bottom-
up	methods.	Bucher	and	Andersson	(2012)	developed	a	top-down	approach	to	load	profile	
generation	for	household	load	profiles.	By	using	a	top-down	approach	their	method	could	be	
applied	in	cases	where	little	or	no	consumer	information	is	available.	However,	in	general,	
top-down	approaches	used	for	residential	loads	are	less	frequent	than	bottom	up	methods.	
Alternatively,	they	are	more	often	used	to	aggregated	load	analyses	since	their	accuracy	
decrease	further	down	in	the	system,	partly	due	to	lack	of	integration	with	human	behavior	
and	specific	appliance	usage.	
Bottom-up	methods	have	the	benefit	that	they	either	directly	or	indirectly	incorporate	
human	behavior	(Stokes,	2005).	This	can	be	done	by	defining	activities,	and	then	generating	
load	profiles	from	these	activities	(Widén	et	al.,	2009).	In	the	case	of	Widén	et	al,	they	
addressed	e.g.	vacuum	cleaning	but	in	developing	countries	it	could	include	activities	such	as	
milling,	welding	or	studying.	The	challenge	with	bottom-up	load	modeling	methods	is	that	
they	are	relying	on	large	amounts	of	information	about	each	specific	load;	data	which	is	
often	protected	by	integrity	issues	or	by	privacy	laws.	
Regardless	of	the	choice	of	method,	if	the	model	simulates	current	electricity	consumption	
they	do	not	likely	need	to	take	into	account	changing	socio-economic	conditions	like	
electricity	price,	access	to	new	appliances,	income	or	population.	However,	if	the	purpose	is	
to	model	future	consumption	with	a	sufficiently	long	time	scale,	local	conditions	change	
which	needs	to	be	incorporated	into	the	modeling	process.	Recently,	artificial	neural	
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networks	(Carpinteiro,	Leme,	de	Souza,	Pinheiro,	&	Moreira,	2007),	particle-swarm-
optimization	(Niu,	Li,	Li,	&	Liu,	2009)	and	other	artificial	intelligence	methods	have	been	
employed	to	predict	the	long	term	impact	of	changing	conditions	on	load	changes	in	the	
western	world.		
In	rural	communities	in	developing	countries,	where	electricity	has	recently	been	
introduced,	it	is	likely	to	believe	that	the	time	scales	for	local	conditions	to	change	are	
shorter.	Introduction	of	new	electrical	appliances	can	have	a	substantial	impact	on	electricity	
provision	and	livelihoods.	E.g.	low	energy	lightbulbs	that	can	reduce	electricity	consumption	
and	introduction	of	fridges	and	freezers,	which	both	have	a	large	impact	on	electricity	
consumption	patterns	and	on	life	style	(Madubansi	&	Shackleton,	2006).	Therefore,	it	is	
important	to	consider	changing	local	conditions	in	electricity	load	modeling	in	rural	
electrification.		
System	dynamics	has	been	explained	as	a	tool	to	map	system	structures	to	system	behavior	
(Davidsen,	1992).	As	such	it	has	been	used	to	describe	problems	related	to	aggregated	socio-
economic	indicators,	such	as	income,	energy	usage	and	environmental	impact	(Hjorth	&	
Bagheri,	2006;	Marzouk	&	Azab,	2014;	Qudrat-Ullah	&	Davidsen,	2001).	In	the	case	of	energy	
modeling	in	general	and	electricity	modelling	in	particular,	there	have	been	several	
applications	of	system	dynamics,	see	Teufel	et	al.	(2013)	for	a	review.	However,	modeling	
the	elements	of	aggregated	variables	falls	outside	the	scope	of	system	dynamics.	In	the	case	
of	electricity	usage,	system	dynamics	can	be	an	efficient	tool	to	analyze	growth	in	
aggregated	electricity	consumption	but	is	not	suited	to	model	daily	load	profiles.	
A	system	dynamics	model	of	a	utility	operating	a	rural	minigrid	in	a	developed	country	
(Tanzania)	was	presented	in	(Hartvigsson,	2016).	The	model	focus	on	the	income	and	
expenses	of	a	utility,	which	is	directly	linked	to	electricity	usage	and	generation	capacity.	
However,	the	model	assumes	a	fixed,	linear	relationship	between	electricity	consumption	
and	peak	load.	In	reality,	the	fast	daily	variations	of	different	user	groups	are	much	more	
complex.	Inclusion	of	these	fast	variations	is	likely	to	result	in	higher	peak	loads	and,	
thereby,	a	higher	peak	power	demand	for	a	given	electricity	usage.	To	the	knowledge	of	the	
authors,	no	link	between	a	system	dynamics	electric	utility	load	model	and	a	load	model	has	
previously	been	presented	in	the	literature.	Despite	the	self-evident	difference	between	the	
two	load	modeling	approaches,	the	impact	and	its	extent	is	not	known.	Therefore,	the	
purpose	of	this	paper	is	to	investigate	to	which	extent	improved	load	modeling	impacts	a	
system	dynamics	utility	model.	Specifically,	does	improved	load	modeling	detail	impacts	a	
modeled	utility’s	economic	performance?	Economic	performance	is	defined	as	the	utility’s	
weekly	net	income	during	the	simulated	time	period,	e.g.	differences	between	income	and	
expenses.	
The	paper	is	divided	into	five	sections.	First	the	method	of	integrating	the	load	model	with	
the	system	dynamics	model	is	presented.	Second,	the	load	model	is	explained	in	detail	
together	with	input	data	and	assumptions.	Based	on	the	two	model	approaches,	a	number	
of	runs	are	shown	both	with	and	without	an	external	load	model	in	the	Result	section.	The	
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results	and	their	possible	impacts	are	discussed	before	conclusions	and	future	work	are	
presented.	
	
Method	
This	work	is	based	on	the	system	dynamics	model	presented	in	(Hartvigsson,	2016).	The	
model	employs	an	aggregated	and	simplified	approach	to	load	modeling	(from	here	on	
referred	to	as	the	Vensim	load	model),	where	peak	demand	is	scaled	from	electricity	usage	

according	to	peak	demand	=	 electricity	usage
3

,	where	𝑑	is	the	number	of	hours	of	electricity	

consumption	per	week.	In	order	to	investigate	the	impact	of	increased	load	modeling	detail	
has	on	the	modelled	utility’s	economy,	a	stand-alone	load	model	was	developed	in	MATLAB	
(from	here	on	referred	to	as	the	MATLAB	load	model).	The	results	on	the	modelled	utility’s	
economy	and	overall	electricity	usage	are	then	compared	between	the	simplified	system	
dynamics	load	model	and	the	MATLAB	stand-alone	load	model.	
The	system	dynamics	model	was	developed	in	Vensim,	making	it	possible	to	utilize	the	
VenDLL	library	for	handling	external	calls.	The	VenDLL	library	allows	external	calls	to	change	
selected	variables	during	a	Vensim	gaming	simulation.	This	allows	VenDLL	to	retrieve	data	
from	the	Vensim	simulation,	send	the	data	to	the	load	model	in	MATLAB,	run	the	load	model	
and	retrieve	its	output	and	then	write	the	changes	to	Vensim.	The	communication	between	
Vensim	and	MATLAB	is	conducted	at	each	time	step,	allowing	for	real	time	integration	of	the	
MATLAB	load	model	into	the	system	dynamics	model.	Figure	1	shows	a	conceptual	diagram	
of	the	modeling	process.	

	
Figure	1	A	conceptual	diagram	of	the	integration	of	Vensim	with	the	load	model	in	MATLAB.	

The	system	dynamics	model	consists	of	five	sectors:	user	diffusion,	utility	economics,	local	
market,	population	and	electricity	generation.	By	including	the	different	sectors,	the	model	
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can	give	a	simplified	representation	of	local	socio-economic	conditions	that	directly	and	
indirectly	affect	electricity	usage.	It	is	assumed	that	the	main	driver	for	increase	in	electricity	
consumption	is	income.	Income	is	sent	from	the	system	dynamics	model	in	Vensim	to	the	
MATLAB	load	model,	which	use	it	to	generate	individual	user	load	profiles	(see	the	below	
load	model	description).	The	user’s	load	profiles	are	then	scaled	with	the	number	of	users	to	
obtain	the	total	system	load	profile.		
Both	load	modeling	approaches	assumes	that	if	there	is	an	initial	generation	capacity	
installed	and	that	the	this	can	continuously	produce	at	its	rated	power.	Depending	on	the	
energy	source	this	might	not	always	hold	true.	Specifically,	renewable	energy	sources	are	
often	characterized	by	having	a	relative	large	intermittency.	However,	modeling	individual	
energy	sources	characteristics	is	outside	the	scope	of	this	work.	
	
Load	Model	
The	implemented	load	model	is	a	linear	bottom-up	appliance	diffusion	model	using	income	
and	power	utilization	rate	as	variables.	As	a	bottom-up	load	model	it	models	each	appliance	
separately	and	then	aggregates	them	to	generate	the	system’s	total	load	profile.	In	order	to	
determine	the	load	growth	for	each	appliance,	they	are	assigned	two	variables:	a	diffusion	
rate	and	a	saturation	level.	The	diffusion	rate	determines	how	sensitive	appliance	load	
growth	is	to	variations	in	income	and	the	saturation	limit	marks	the	maximum	occurrence	of	
each	appliance.	Equation	1	describe	the	load	profile	for	appliance	i.	
	

Γ6 = 𝐼 ∙ 𝛿 ∙ 𝑆𝑡𝑑𝐿𝑃6 ∙ 𝑁 𝜇, 𝜑 	 	 	 (1)	
	

Where	𝐼	is	average	income,	𝛿	is	diffusion	rate,	𝑆𝑡𝑑𝐿𝑃6 	is	the	standard	load	profile	for	
appliance	i	and	𝑁 𝜇, 𝜑 	is	a	normal	distribution	with	mean	𝜇	and	standard	deviation	𝜑.	By	
selecting	mean	and	standard	deviation	to	be	1	and	0.1,	the	model	allows	for	some	
uncertainty	of	each	appliance	power	output	at	a	specific	time	interval.	This	reflects	part	of	
the	uncertainty	in	when	a	specific	appliance	is	turned	on.	In	order	to	obtain	the	systems	
total	load,	the	appliance	load	profiles	are	aggregated	first	per	user	and	then	for	all	users.	
Equation	2	then	describes	a	generic	expression	for	the	total	load	profile.	
	

UC∙Γ6 ∙ 𝑓 Power_AvailbilityL
6MN

O
CMN 	 	 (2)	

	

Where	𝑚	is	the	number	of	user	groups,	𝑛	the	number	of	appliances	in	each	user	group	and	
UC	the	number	of	users	in	user	group	𝑘.	Due	to	differences	in	consumption	patterns,	
sensitivity	to	power	outages	and	power	demand,	users	where	separated	into	two	groups:	
households	and	Small	and	Medium	Enterprises	(SMEs).	Users	are	also	assumed	to	respond	
negatively	to	disruptions	in	the	electricity	provision,	which	is	expressed	by	the	function	𝑓	
with	power	utilization	rate	as	only	variable.	Power	utilization	rate	is	defined	as	the	ratio	
between	peak	power	and	maximum	generation	capacity.	If	this	ratio	becomes	larger	than	
one,	implying	that	temporary	blackouts	occur,	users	are	assumed	to	respond	by	reducing	
their	electricity	consumption.	The	function	f	is	expressed	as	a	cotangents	function,	assuming	
a	slow	initial	reaction	that	increase	as	power	utilization	rate	deteriorates.		
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Load	model	data	and	assumptions	
The	standard	load	profile	for	each	appliance	was	identified	via	a	case	study	in	a	minigrid	in	
Tanzania	(Hartvigsson,	Ehnberg,	Ahlgren,	&	Molander,	2015)	and	rely	on	both	interviews	and	
measurements.	The	interviews	identified	four	appliances	in	households:	lights,	stereo,	TVs	
and	DVDs.	Some	other	appliances	such	as	computers	and	iron	where	also	identified	but	
where	concluded	to	have	no	impact	on	average	daily	load	profiles.	Figure	2	shows	the	
standard	load	profiles	for	each	of	the	appliances	using	a	30	min	time	resolution.	

	
Figure	2	showing	standard	load	profiles	for	each	of	the	household	appliances.	

For	SMEs	a	wider	range	of	appliances	where	identified.	Due	to	their	similarity	in	terms	of	
average	electricity	consumption	some	of	them	where	grouped	together.	This	includes	the	
groups	“Machines”	and	“Others”	seen	below	in	Figure	3.	Machines	is	a	combined	load	group	
of	high	power	electric	equipment	such	as	electric	machines,	power	tools	and	electric	welding	
equipment.	The	group	“Others”	mainly	include	low	load	appliances	(such	as	hair	trimmers)	
or	appliances	that	are	very	rare	(computers	and	printers).	In	Figure	3	shows	the	standard	
SME	load	profiles	for	each	appliance.	
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Figure	3	shows	standard	load	profile	for	each	of	the	SMEs	appliances.	

As	shown	in	Equation	1,	the	load	profile	expression	is	a	linear	function	of	average	income.	
Assuming	that	no	income	results	in	no	appliance	ownership	one	data	point	is	required	for	
determine	diffusion	rate.	The	diffusion	rate	for	each	appliance	could	therefore	be	
determined	using	data	on	income	of	29	households	and	19	SMEs	from	a	minigrid	in	rural	
Tanzania.		
The	saturation	level,	which	is	defined	as	the	maximum	occurrence	of	a	specific	appliance,	
e.g.	a	saturation	limit	of	14	implies	14	is	the	maximum	amount	of	appliances	per	user	
regardless	of	income.	In	some	cases	data	on	saturation	levels	where	found.	In	cases	where	
data	was	lacking,	values	were	estimated	based	on	observations	on	appliance	occurence	and	
income	levels.	Diffusion	rates	and	saturation	levels	for	all	appliances	can	be	seen	in	table	1.	
Table	1	Showing	diffusion	rates	and	saturation	limits	for	appliances	for	each	appliance.	

Appliances	
Diffusion	rate	

[appliances/USD]	
Saturation	Limit		
[#	appliances]	

Lights	(household)	 0.39	 141	
Stereo	(households)	 0.02	 2	
TV	(households)	 0.004	 22	
DVD	(households)	 0.03	 1	
Lights	(SME)	 0.03	 4	
Stereo	(SME)	 0.013	 1	
Electric	Machines	(SME)	 0.002	 0.5	
Other	(SME)	 0.008	 1	
	
	

																																																								
1	Data	taken	on	saturation	limits	for	lights	in	Argentina	and	Sri	Lanka	(McNeil,	2008).	
2	Estimated	using	data	from	(McNeil,	2008).	
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Results	
The	results	of	running	the	Vensim	and	MATLAB	load	models	are	presented	in	Figure	4-7	in	
the	following	order.	Figure	4	shows	the	MATLAB	and	Vensim	generated	load	profiles	at	
initial	and	final	stages.	Figure	5	presents	the	utility’s	balance	sheet	and	Figure	6	the	power	
utilization	rate.	Finally,	total	electricity	usage	is	shown	in	Figure	7.	
Figure	4	shows	initial	and	final	load	profiles.	The	dark	and	light	orange	load	profiles	are	
generated	using	the	MATLAB	load	model	as	described	in	this	paper.	The	dark	and	light	blue	
lines	are	generated	from	Vensim’s	peak	load	model,	as	described	in	the	Method	section.	
Since	the	load	implementation	in	Vensim	is	a	constant	scale	between	electricity	usage	and	
peak	load,	the	Vensim	generated	peak	loads	are	constant.	The	solid	dark	blue	line	represents	
the	initial	Vensim	load	and	the	dotted	light	blue	line	represents	the	final	Vensim	load.	The	
orange	load	profile	was	generated	by	the	MATLAB	load	model.	The	dark	orange	graph	is	the	
initial	load	profile	and	the	light	orange	graph	is	the	final	load	profile.	As	seen	there	is	a	
distinct	growth	in	peak	power	and	electricity	usage	for	the	two	models,	but	with	a	
considerable	higher	peak	power	shown	by	the	MATLAB	load	model.	

	
Figure	4	The	graph	shows	initial	and	final	load	profiles	using	the	external	load	model	developed	in	MATLAB	and	the	internal	
Vensim	load	model.	

Figure	5	shows	the	utility’s	net	income	plotted	as	a	function	of	time.	The	blue	graph,	which	
represents	the	Vensim	load	model	shows	fewer	but	larger	dips.	The	dips	are	explained	by	
sudden	large	expenses,	and	is	in	this	case	related	to	the	acquisition	of	new	generation	
capacity.	As	investments	in	new	capacity	depend	on	power	utilization	rate,	the	expenses	
follow	power	utilization	rate	with	a	delay.	As	seen	in	the	case	with	the	MATLAB	load	model,	
there	are	more	but	smaller	dips,	indicating	that	expansion	is	taken	place	more	often	but	and	
in	smaller	sizes.		
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Figure	5	The	graph	shows	the	utility's	financial	balance	using	the	external	load	model	developed	in	MATLAB	(blue	graph)	
and	the	internal	Vensim	load	model	(orange).	

Figure	6	shows	the	power	utilization	rate	plotted	over	time	for	the	Vensim	load	model	(blue	
graph)	and	the	MATLAB	load	model	(orange	graph).	The	figure	clearly	shows	a	higher	overall	
power	utilization	rate	when	using	the	MATLAB	load	model.	The	MATLAB	load	model	is	also	
seen	to	be	showing	less	fluctuations	than	the	Vensim	load	model.	

	
Figure	6	The	graph	shows	power	utilization	rate,	defined	as	fraction	between	peak	power	demand	and	installed	generation	
capacity,	for	the	external	load	model	developed	in	MATLAB	(orange	graph)	and	the	internal	Vensim	load	model	(blue	graph).	

Figure	7	shows	total	electricity	usage	for	the	two	models.	The	blue	graph	shows	total	
electricity	usage	using	the	Vensim	load	model	and	the	orange	graph	using	the	MATLAB	load	
model.	The	total	electricity	usage	is	very	similar	initially	and	it	is	not	until	after	about	300	
weeks	that	they	start	to	diverge	with	a	final	difference	of	about	25%.	Even	though	number	of	
users	are	not	presented	in	detail	in	the	paper,	the	number	of	users	are	the	same	for	both	
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cases,	indicating	that	it	is	electricity	usage	per	person	that	grows	faster	when	using	the	
MATLAB	load	model.		

	
Figure	7	The	graph	shows	total	electricity	usage	in	the	minigrid	for	the	external	load	model	developed	in	MATLAB	(orange	
graph)	and	the	internal	Vensim	load	model	(blue	graph).	

	
Discussion	
As	shown	by	the	figures,	the	two	modeling	approaches	generates	different	results	on	the	
modeled	utility’s	net	income,	power	utilization	rate	and	electricity	usage.	As	can	be	seen	in	
Figure	4	and	7	the	MATLAB	generated	load	profiles	results	in	larger	peak	load	for	a	specific	
electricity	usage.	With	the	increase	in	peak	load	the	utility	has	to	match	with	increasing	its	
generation	capacity	in	order	to	avoid	power	utilization	rate	deterioration.	The	external	
MATLAB	load	model	therefore	requires	a	larger	installed	capacity	to	supply	the	same	
electricity	consumption,	which	could	have	negative	impacts	on	net	income.	But	since	total	
electricity	usage	is	higher	in	the	MATLAB	load	model	case	the	utility	also	receives	more	
income.	
As	can	be	seen	in	Figure	7,	the	MATLAB	load	model	results	in	higher	total	electricity	usage	
than	the	Vensim	load	model.	This	might	seem	unintuitive	since	the	MATLAB	load	model	
requires	a	higher	peak	load	compared	to	electricity	usage,	which	therefore	requires	a	larger	
generation	capacity	(increasing	expenses	that	the	utility	could	have	otherwise	used	for	
connecting	users	thereby	obtaining	a	larger	total	electricity	usage)	for	a	given	electricity	
consumption.	However,	use	of	the	bottom-up	appliance	diffusion	approach	increases	
electricity	usage	faster	(as	a	function	of	income)	than	the	Vensim	approach.	In	Vensim	
increase	in	electricity	usage	is	proportional	to	increase	in	income,	e.g.	if	income	increase	
with	10%	electricity	usage	increase	with	10%.	One	issue	with	the	Vensim	approach	is	that	it	
does	not	take	into	account	acquisition	of	new	appliances,	thereby	excluding	a	feedback	loop.	
The	result	of	the	two	approaches	is	a	difference	in	electricity	usage	sensitivity	to	income,	
which	as	income	grows	becomes	apparent	and	can	be	seen	in	Figure	7.	The	increase	in	
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electricity	usage	also	increase	income	for	the	utility	allowing	it	to	make	the	necessary	
investments	in	new	generation.	
When	comparing	the	two	models	it	is	important	to	note	that	the	MATLAB	load	model	is	also	
a	simplified	load	model	and	excludes	certain	processes	that	are	common	in	more	advanced	
load	models.	One	such	processes	is	coincidence.	Coincidence,	or	coincidence	factor,	is	an	
indicator	of	the	probability	that	loads	will	be	turned	on	simultaneously.	With	a	coincidence	
factor	of	0.5,	a	50	kW	capacity	(transmission	and	generation)	is	enough	to	supply	an	installed	
load	of	100	kW.	As	described	in	the	method	sections,	the	standard	load	profiles	used	in	the	
modeling	procedure	are	based	on	interviews	and	measurements.	Since	the	measurements	
where	done	at	household	level	the	model	takes	coincidence	between	appliance	loads	into	
account.	However,	as	the	total	load	profile	is	aggregated	from	the	individual	users,	the	
model	lacks	an	integration	of	coincidence	between	users.	If	a	full	coincidence	would	be	
integrated	it	could	allow	for	more	users	given	the	same	installed	capacity.		
Another	simplification	in	the	integration	between	the	MATLAB	load	model	and	the	system	
dynamics	model	is	through	the	definition	and	implementation	of	power	utilization	rate.	Due	
to	the	definition	of	power	utilization	rate,	it	only	reflects	one	point	in	time.	Even	though	this	
implementation	includes	issues	with	potential	power	outages	it	assumes	all	users	are	equally	
affected.	This	can	be	especially	troublesome	if	the	peak	load	that	deteriorate	power	
utilization	rate	takes	place	during	the	evening,	when	the	load	is	almost	exclusively	based	on	
household’s	electricity	consumption.	With	a	decreased	power	utilization	rate,	it	will	impact	
the	electricity	usage	of	both	households	and	SMEs,	even	though	SMEs	consumption	is	
mostly	during	the	day	and	are	therefore	not	affected	by	the	issues	to	the	same	extent.	These	
issues	could	potentially	be	solved	by	implementing	different	power	utilization	rate	indicators	
for	each	user	group,	e.g.	one	for	households	and	one	for	SMEs.		
	
Conclusions	and	future	work	
By	incorporating	a	comparably	detailed	load	model	into	an	existing	system	dynamics	model,	
this	work	has	compared	the	economic	impact	on	a	minigrid	utility	between	two	different	
load	modeling	methods.	The	results	show	that	the	more	detailed	load	model	requires	the	
utility	to	invest	in	generation	capacity	at	more	frequent	intervals	in	order	to	keep	power	
utilization	rate	from	deteriorating.	The	results	also	show	that	investments	in	new	generation	
capacity	are	more	frequent,	but	that	each	investment	is	smaller,	when	the	MATLAB	load	
model	is	used.	The	bottom-up	approach	to	modeling	load	appliances	(MATLAB	load	model)	
also	shows	a	faster	growth	in	electricity	consumption	
As	presented	in	this	work,	the	improvement	of	load	modeling	detail	impacts	the	modelled	
minigrid	utility’s	balance	sheet	and	its	investments	in	new	capacity.	However,	when	
matching	generation	with	load	it	is	also	important	to	consider	the	specific	characteristics	of	
different	energy	sources,	in	particular	intermittent	energy	sources.	While	this	has	been	
excluded	in	this	work,	future	work	could	include	integration	of	capacity	expansion	choices	
including	renewable	energy	source	characteristics.		
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