APPENDICES

APPENDIX A - Stock and Flow Diagram

APPENDIX B - Model Parameters

Initial Death: 0 people
Initial Exposed: 1 people
Initial Fully Recovered: 0 people
Initial Infected: 0 people
Initial Recovered but Contagious: 0 people
Current Healthcare Spending: 22,360,000
death rate: 0.55
duration of illness: 14 days
emigration rate: $0.00926 / 365$ people /days
number of contact infected person makes per day: 4 contacts
number of contact recovered but contagious person makes per day: 0.2 contacts
number of days to death: 14 days
number of days to full recovery: 49 days
percentage of national budget for healthcare spending: 4\%
probability of transfer upon contact: 0.2
recovery rate: 0.45
total population: 4,400,000 people

APPENDIX C - Model Equations

$\operatorname{Death}(\mathrm{t})=\operatorname{Death}(\mathrm{t}-\mathrm{dt})+($ death_per_day $) * \mathrm{dt}$
INIT Death $=0$

INFLOWS:

death_per_day =
Infected*death_rate*effect_of_healthcare_spending_on_death_rate/number_of_days_to_death
$\operatorname{Exposed}(\mathrm{t})=\operatorname{Exposed}(\mathrm{t}-\mathrm{dt})+($ Number_of_new_exposed_per_day + immigration_of_the_exposed - number_of_people_showing_symptoms_-̄er_day - emigration_of the_exposed) ${ }^{*} \mathrm{dt}$

INIT Exposed $=1$

INFLOWS:

Number_of_new_exposed__per_day = number_of_contacts_with_susceptible*probability_of_transfer_upon_contact*effect_of_healthcare_s pending_on_probability_of_transfer immigration_of_the_exposed = immigration_rate__of_the_exposed*(1-travel_ban)

OUTFLOWS:
number_of_people_showing_symptoms_per_day = Exposed/illness_duration_without_symptoms emigration_of_the_exposed = exposed_to_total_population_ratio*emigration_rate*Exposed*(1travel_ban)

Fully_Recovered(t) = Fully_Recovered(t - dt) + (number_of_people_fully_recovering_per_day) * dt

INIT Fully_Recovered = 0

INFLOWS:

number of people fully recovering_per_day $=$ Recovered_but_Contagious/number_of_days_to_full_recovery
$\operatorname{Infected}(\mathrm{t})=\operatorname{Infected}(\mathrm{t}-\mathrm{dt})+($ number_of_people_showing_symptoms_per_day -
number_of_people__recovering_per_day - death_per_day) * dt

INIT Infected = 0

INFLOWS:
number_of_people_showing_symptoms_per_day = Exposed/illness_duration_without_symptoms
OUTFLOWS:
number_of_people_recovering_per_day =
Infected*Recovery_rate*effect_of_healthcare_spending_on_recovery_rate/duration_of_illness
death_per_day =
Infected*death_rate*effect_of_healthcare_spending_on_death_rate/number_of_days_to_death
Recovered_but __Contagious $(\mathrm{t})=$ Recovered_but __Contagious $(\mathrm{t}-\mathrm{dt})+$
(number_of_people__recovering_per_day - number_of_people_fully_recovering_per_day) $* \mathrm{dt}$

INIT Recovered_but_Contagious $=0$
INFLOWS:
number_of_people__recovering_per_day =
Infected*Recovery_rate*effect_of_healthcare_spending_on_recovery_rate/duration_of_illness
OUTFLOWS:
number_of_people_fully_recovering_per_day $=$
Recovered_but_Contagious/number_of_days_to_full_recovery
Susceptible $(\mathrm{t})=$ Susceptible $(\mathrm{t}-\mathrm{dt})+$ (immigration_of_the_susceptible -
Number_of_new_exposed__per_day - emigration_of__the_susceptible) * dt
INIT Susceptible = total_population-Exposed-Infected-Recovered_but__Contagious-
Fully_Recovered-Death
INFLOWS:

OUTFLOWS:
Number_of_new_exposed__per_day =
number_of_contacts_with_susceptible*probability_of_transfer_upon_contact*effect_of_healthcare_s
pending_on_probability_of_transfer
emigration_of_the_susceptible $=$
Susceptible*emigration_rate*susceptible_to_total_population_ratio*(1-travel_ban)
change_in__healthcare_spending $=$
(national_budget*percentage_of_national_budget_for_healthcare_spending*effect_of_number_of_inf ected_to_Healthcare_Spending)/current__healthcare_-_-spending
current __healthcare_spending $=22360000$
death_rate $=0.55$
duration_of_illness = 14
emigration_rate $=0.00926 / 365$
exposed_to_total_population_ratio = Exposed/total_population
illness_duration_without_symptoms $=14$
immigration_rate_of_the_susceptible $=0.00356 / 365$
national_budget $=559000000^{*}\left(1-\operatorname{travel}\right.$ ban* $\left(1-i m p a c t _o f\right.$ international_trade_on_national_budget $\left.)\right)$
number_of_contacts_with_susceptible =
probability_of_meeting_a_susceptible_person*total_number_of_contacts_that_contagious_makes_pe r_day
number_of_contact_infected_person_makes_per_day $=4$
number_of_contact_recovered_but_contagious_person_makes_per_day $=0.2$
number_of_days__to_death $=14$
number_of_days_to_full_recovery $=49$
percentage_of_national_budget_for_healthcare_spending $=0.04$
probability_of_meeting_a_susceptible_person = Susceptible/(total_population-1)
probability_of_transfer_upon_contact $=0.2$
Recovery_rate $=0.45$
susceptible_to_total_population_ratio $=$ Susceptible/total_population
total_number_of_contacts_that_contagious_makes_per_day =
(Infected*effect_of_healthcare_spending_on_contacts_infected_makes*number_of_contact_infected_ person_makes_per_day)+(Recovered_but_Contagious*number_of_contact_recovered_but_contagio us_person_makes_per_day)
total_number_of_EVD_cases = Death+Fully_Recovered+Infected+Recovered_but_Contagious
total $_$population $=4400000$
effect_of_healthcare_spending_on_contacts_infected_makes =
GRAPH(DELAY(change_in _healthcare_spending,14))
$(0.00,1.60),(0.25,1.56),(0.5,1.38),(0.75,0.9),(1.00,0.5),(1.25,0.31),(1.50,0.18),(1.75,0.1)$,
(2.00, 0.02), (2.25, 0.00), (2.50, 0.00)
effect_of_healthcare_spending_on_death_rate = $\operatorname{GRAPH}(\mathrm{DELAY}($ change_in_healthcare_spending, 14))
$(0.00,1.20),(0.25,1.14), \overline{(0.5,1.09)},(0.7 \overline{5}, 1.04),(1.00,1.00),(1.25,0.95),(1.50,0.9),(1.75,0.87)$, (2.00, 0.84), (2.25, 0.81), (2.50, 0.8)
effect_of healthcare_spending_on_probability_of_transfer =
GRAPH(DELAY(change_in_healthcare_spending,14))
($0.00,1.00$), ($0.25,0.94),(0.5,0.885),(0.75,0.815),(1.00,0.74),(1.25,0.675),(1.50,0.63),(1.75$, $0.57),(2.00,0.52),(2.25,0.46),(2.50,0.4)$
effect_of_healthcare_spending_on_recovery_rate =
$\operatorname{GRAPH}(\overline{\mathrm{DELAY}}(\mathrm{change}$ in _healthcare_spending, 14))
$(0.00,0.8),(0.25,0.85),(\overline{0} .5, \overline{0} .9),(0.75, \overline{0} .95),(1.00,1.00),(1.25,1.05),(1.50,1.09),(1.75,1.13)$, (2.00, 1.16), (2.25, 1.18), (2.50, 1.20)
effect_of_number_of_infected_to_Healthcare_Spending =
GRAPH(ratio_of_number_of_EVD_cases_to_total_population)
$(0.00,1.00),(0.0333,1.91),(0.0667,2.25),(0.1,2.43),(0.133,2.49),(0.167,2.50),(0.2,2.50),(0.233$, $2.50),(0.267,2.50),(0.3,2.50),(0.333,2.50),(0.367,2.50),(0.4,2.50),(0.433,2.50),(0.467,2.50)$,
$(0.5,2.50),(0.533,2.50),(0.567,2.50),(0.6,2.50),(0.633,2.50),(0.667,2.50),(0.7,2.50),(0.733$,
$2.50),(0.767,2.50),(0.8,2.50),(0.833,2.50),(0.867,2.50),(0.9,2.50),(0.933,2.50),(0.967,2.50)$, $(1,2.50)$
immigration_rate_of_the_exposed = GRAPH(TIME)
$(1.00,2.97), \overline{(37.4,1.21), ~(73.8, ~ 0.42), ~(110, ~ 0.15), ~(147, ~ 0.1), ~(183, ~ 0.1), ~(219, ~ 0.1), ~(256, ~ 0.1), ~(292, ~}$ $0.1),(329,0.1),(365,0.1)$
impact_of_international_trade_on_national_budget = GRAPH(TIME)
$(1.00,1.00),(73.9,0.94),(147,0.88),(220,0.83),(293,0.78),(366,0.735),(438,0.69),(511,0.655)$, (584, 0.63), (657, 0.61), (730, 0.6)
ratio_of_number_of_EVD_cases_to_total_population = GRAPH(total_number_of_EVD_cases/total_population)
$(0.00,0.00),(\overline{10.0}, 0.0 \overline{0}), \overline{(20.0}, \overline{0} .00),(30.0,0.00),(40.0,0.00),(50.0,0.00),(60.0,0.00),(70.0$, $0.00),(80.0,0.00),(90.0,0.00),(100,0.00)$
travel_ban = GRAPH(ratio_of_number_of_EVD_cases_to_total_population)
$(0.00,1.00),(0.1,1.00),(0.2,1.00),(0.3,1.00),(0.4,1.00),(0.5,1.00),(0.6,1.00),(0.7,1.00),(0.8$, $1.00),(0.9,1.00),(1,1.00)$

APPENDIX D - Model Validation

APPENDIX E - Model Verification: Integration Method

Euler's Method

Runge-Kutta 2

Runge-Kutta 4

APPENDIX F - Model Verification: Delta Time

DT: 0.0625

DT: 0.125

DT: 0.250

DT: 0.500

APPENDIX G - Sensitivity Analysis

Number of contacts infected makes
$\$$ Death: 1-2-3-4-5-6-7-8-9-10-

Number of contacts recovered but contagious makes
$\$$ Death: 1-2-3-4-5-6-7-8-9-10-
1:

Page 2
$\nabla \mathbf{6}$ 刍 ?
Contacts Recovered but Contagious makes

Probability of transfer

© Death: 1-2-3-4-5-6-7-8-9-10-
(1)
1:
Page $200000 ~$

