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Online Appendix to Accompany the Paper: 

 MAKING THE NUMBERS? 

“SHORT TERMISM” & THE PUZZLE OF ONLY OCCASIONAL DISASTER  

 

S1- The finite horizon optimal allocation 

The optimal control problem for maximizing expected revenue in our problem can be written as 

maximizing the expected revenue subject to the dynamics of the system and the budget constraint: 

𝑀𝑎𝑥 ∫ 𝐸(𝑅)
𝑡=𝑇

𝑡=0

𝑑𝑡 

Subject to: 

𝑑𝐶

𝑑𝑡
= 𝑒𝐶𝜌 −

𝐶

𝜏
 

𝐶(0) = 𝐶0 

𝛼 + 𝛽 = 1 

0 ≤ 𝑢 ≤ 1 

To solve this problem we can set up the present value Hamiltonian with the co-state variable λ 

which represents the shadow price of the capability at any point in time. Noting that environmental 

shock to the revenue, S, has a mean of zero and is not correlated with the other component of 

revenue and is zero-mean, we have 𝐸(𝑅) = 𝐶𝛼𝑒𝑅
𝛽

, and thus we find a rather simple Hamiltonian 

function: 

𝐻(𝐶, 𝑢, 𝑡) = 𝐶𝛼𝑒𝑅
𝛽
+ 𝜆 (𝑒𝐶𝜌 −

𝐶

𝜏
) 

The necessary conditions for finding the optimal allocation policy, u, is: 

𝜕𝐻

𝜕𝑢
= 0 
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𝜕𝐻

𝜕𝐶
= −

𝑑𝜆

𝑑𝑡
 

𝜆(𝑇)𝐶(𝑇) = 0 

These conditions are also sufficient because the Hamiltonian is concave with respect to u and C for 

feasible values of C and u. Solving the first constraint we find the following optimal allocation 

fraction: 

𝑢𝐷𝑦𝑛 = 𝑀𝑖𝑛(1, (
𝛽

𝜆ℎ𝜌
)

1
1−𝛽

𝐶) 

After replacing the optimum allocation in the second condition, the dynamics of co-state variable is 

described by the following differential equation: 

𝑑𝜆

𝑑𝑡
=
𝜆

𝜏
− (1 − 𝛽) (

𝛽

𝜆ℎ𝜌
)

𝛽
1−𝛽

 

Solving this differential equation (using Bernoulli method) we get the following time trajectory for 

the shadow price of capability, λ:  

      𝜆(𝑡) = (
𝜏(1−𝛽)

(
ℎ𝜌

𝛽
)

𝛽
1−𝛽

+ 𝐾𝑒
𝑡

𝜏(1−𝛽))

1−𝛽

 

Using the end state condition (λ(T)=0) we can solve for the constant K which gives the analytical 

expression for the time trajectory of λ for any time horizon and combination of parameters.  

𝐾 =
−𝜏(1 − 𝛽)

(
ℎ𝜌
𝛽
)

𝛽
1−𝛽

𝑒
𝑇

𝜏(1−𝛽)

 

 

Inspecting the results, we note that this constant term is negative, and very small as long as T>τ(1-

β), that is, the time to end of horizon is appreciably smaller than the time constant for the erosion of 

capability. Therefore λ is almost constant until we get fairly close (relative to τ) to the end of 
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investment horizon (T), at which time the shadow price starts to decline precipitously (note the 

exponential term in equation for λ), leading to increasing allocation of resources to revenue 

generation and a decline of capability, until at exactly time T the shadow price and capability stocks 

both become zero. 

Therefore, assuming T>τ(1-β), we can find a constant shadow price of capability that applies for a 

large section of our time horizon: 

 

𝑑𝜆

𝑑𝑡
= 0 ⇒ 𝜆 =

(

 
 𝜏(1 − 𝛽)

(
ℎ𝜌
𝛽
)

𝛽
1−𝛽

)

 
 

1−𝛽

 

Replacing λ with this steady state value in equation for uDyn and simplifying the equations we get the 

following expression for the approximate optimal control allocation: 

𝑢 = 𝑀𝑖𝑛 (1, 𝑢∗
𝐶

𝐶∗
) 

This simple expression suggests that optimal allocation in the dynamics case is 1) consistent with 

the steady state allocation, that is, if capability is at the steady-state optimal level, the allocation will 

be the same as steady state. 2) Variations of the optimal path in capability are compensated for by 

linear shifts in the allocation fraction: when capability falls short of the optimal steady state value, 

the allocation favors capability investment, while too much capability (relative to steady state) will 

lead to more effort (than steady state optimal) being allocated to revenue generation. Note that the 

heuristic used in our paper simplifies to this function when γ =0. 

 

S2-The infinite horizon optimal allocation 

The infinite horizon optimal control problem with discounted revenue can be written as: 
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𝑀𝑎𝑥 ∫ 𝑒−𝑟𝑡𝐸(𝑅)
𝑡=∞

𝑡=0

𝑑𝑡 

Subject to: 

𝑑𝐶

𝑑𝑡
= 𝑒𝐶𝜌 −

𝐶

𝜏
 

𝐶(0) = 𝐶0 

𝛼 + 𝛽 = 1 

0 ≤ 𝑢 ≤ 1 

Here r is the continuous time discount rate. To solve this problem we set up the current value 

Hamiltonian with the transformed co-state variable 𝜓 and follow the regular steps: 

𝐻(𝐶, 𝑢, 𝑡) = 𝐶𝛼𝑒𝑅
𝛽
+ 𝜓(𝑒𝐶𝜌 −

𝐶

𝜏
) 

To find the optimal allocation policy, u, we solve the following equations: 

𝜕𝐻

𝜕𝑢
= 0 

𝜕𝐻

𝜕𝐶
= −

𝑑𝜓

𝑑𝑡
+ 𝑟𝜓 

lim
𝑇→∞

𝑒−𝑟𝑡𝜆(𝑇) ≥ 0, lim
𝑇→∞

𝑒−𝑟𝑡𝜓(𝑇)𝐶(𝑇) = 0  

Solving the first constraint, we find the following optimal allocation fraction which is similar to the 

finite horizon case: 

𝑢𝐷𝑦𝑛 = 𝑀𝑖𝑛(1, (
𝛽

𝜓ℎ𝜌
)

1
1−𝛽

𝐶) 

After replacing the optimum allocation in the second condition, the dynamics of co-state variable is 

described by the following equation: 

𝑑𝜓

𝑑𝑡
= 𝜓(𝑟 +

1

𝜏
) − (1 − 𝛽) (

𝛽

𝜓ℎ𝜌
)

𝛽
1−𝛽
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In this case, we observe that the equilibrium 𝜓 value satisfies the terminal conditions, and thus 

provides the following solutions for the optimal co-state trajectory and allocation: 

𝑑𝜓

𝑑𝑡
= 0 ⇒ 𝜓 =

(

 
 𝜏(1 − 𝛽)

(1 + 𝑟𝜏) (
ℎ𝜌
𝛽
)

𝛽
1−𝛽

)

 
 

1−𝛽

 

𝑢 = 𝑀𝑖𝑛 (1, 𝑢∗
𝐶

𝐶∗
(1 + 𝑟𝜏)) 

In the infinite horizon discounted case the optimal allocation differs from the finite horizon, undiscounted, 

case with a factor of (1+rτ): if capabilities are slow to erode (large τ) and if discount rate is high, the 

baseline allocation favors revenue generation beyond the steady state optimal allocation. Moreover, the 

infinite horizon case does not include the precipitous decline in the value of capability at the end of time 

horizon (because there is no end to the time horizon). 

 

 

S3- The effort allocation function and characteristic of the resulting phase diagram 

Variables and model definition (reproduced from the paper)  

Revenue Function:      𝑅 = 𝐶𝛼𝑒𝑅
𝛽(1 + 𝑆) 

Allocated effort to revenue     𝑒𝑅 = 𝑢ℎ 

Allocated effort to capability     𝑒𝐶 = (1 − 𝑢)ℎ 

System’s dynamics      
𝑑𝐶

𝑑𝑡
= 𝑒𝐶𝜌 −

𝐶

𝜏
 

Optimal steady state allocation policy   𝑢∗ =
𝛽

𝛼+𝛽
 

Allocation heuristic used in this study   𝑢 = 𝑀𝑖𝑛 (1, 𝑢∗ (
𝑅𝑇

𝑅𝑢∗
)
𝛾

(
𝐶

𝐶∗
)
1−𝛾𝛽

) 

Target revenue      𝑅𝑇 = 𝐶∗𝛼𝑒𝑅
∗𝛽 
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Expected revenue using optimal steady state policy  𝑅𝑢∗ = 𝐶
𝛼𝑒𝑅

∗𝛽(1 + 𝑆) 

Effort to revenue under optimal steady state policy 𝑒𝑅
∗ = 𝑢∗ℎ 

Capability using optimal steady state policy   𝐶∗ = (1 − 𝑢∗)ℎ𝜌𝜏 

Throughout the rest of the document it is assumed that we are using a constant return to scale 

production function (α+β=1). 

Phase diagram 

The phase diagram for the system reflects the changes in capability (dC/dt) as a function of 

capability. Specifically, replacing the equation for allocation into the system’s dynamics, we get: 

𝑑𝐶

𝑑𝑡
= (1 − 𝑢)ℎ𝜌 −

𝐶

𝜏
= (1 −𝑀𝑖𝑛 (1, 𝑢∗ (

𝑅𝑇

𝑅𝑢∗
)

𝛾

(
𝐶

𝐶∗
)
1−𝛾𝛽

))ℎ𝜌 −
𝐶

𝜏
 

after replacement and simplification, we get: 

𝐶̇ =
𝑑𝐶

𝑑𝑡
= ℎ𝜌(1 −𝑀𝑖𝑛 (1, 𝑢∗ (

𝐶

𝐶∗
)
1−𝛾 1

(1 + 𝑆)𝛾
)) −

𝐶

𝜏
 

The allocation function thus has one adjustment factor that responds to the capability level, and 

another that responds to environmental shocks. The latter component reduces variability in 

response to the environmental shocks and the former either smoothes revenue (γ>1) or fixes 

capability shortfalls (γ<1) in response to deviations of capability. The response to capability level is 

thus the result of two competing forces, one which attempts to align the capability level with the 

optimal trajectory based on the optimal control policy, and another which compensates for falling 

capability by increasing allocation to revenue generation, thus smoothing the revenue trajectory. 

These forces are at balance when γ=1, capability renewal tendencies win for smaller γ and revenue 

smoothing dominates for 𝛾 ≥ 1. 

For simplifying the analysis of the system, we focus on the deterministic version of the equation, 

where the impact of environmental noise is excluded from calculations of capability change: 
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𝐶̇ = ℎ𝜌(1 −𝑀𝑖𝑛 (1, 𝑢∗ (
𝐶

𝐶∗
)
1−𝛾

)) −
𝐶

𝜏
 

 By equating this equation to zero, we find that it always has a fixed point at 𝐶∗ where capability 

equals the optimal steady state capability. The existence and number of other fixed points depends 

on γ.  

1) 𝛾 ≤ 1:  

For 0 ≤ 𝐶 ≤ 𝐶∗ we have: 

𝐶̇ = ℎ𝜌 (1 − 𝑢∗ (
𝐶

𝐶∗
)
1−𝛾

) −
𝐶

𝜏
≥ ℎ𝜌(1 − 𝑢∗) −

𝐶∗

𝜏
 

Yet the right hand side of inequality is by definition zero, so 𝐶̇ ≥ 0.  

Using a similar argument, it is easy to see that for 𝐶 ≥ 𝐶∗ the net rate of change in capability is 

always negative. Therefore for 𝛾 ≤ 1 the phase diagram includes a single equilibrium at 𝐶∗ and no 

other fixed points, the system will always move back towards this equilibrium. 

2) 𝛾 > 1: 

Calling 𝐶∗ (
1

𝑢∗
)

1

1−𝛾
= 𝐶𝑠, the net flow equation has two ranges: 

 

𝐶̇ = −
𝐶

𝜏
  𝑖𝑓   𝐶 < 𝐶𝑠

𝐶̇ = ℎ𝜌 (1 − 𝑢∗ (
𝐶

𝐶∗
)
1−𝛾

) −
𝐶

𝜏
   𝑖𝑓   𝐶 ≥ 𝐶𝑠

 

Therefore at least one additional fixed point exists at C=0. We now focus on the behavior of 𝐶̇ when 

𝐶 ≥ 𝐶𝑠.  

First, we observe that 𝐶̇ is a continuous function in C that at 𝐶𝑠 takes the −
𝐶

𝜏
 value and at 𝐶∗ is zero. The 

extremum for 𝐶̇ can be found by equating its derivative with respect to C to zero which provides the 

following unique solution: 
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𝜕𝐶̇

𝜕𝐶
= 0 ⇒ 𝐶 = ((𝛾 − 1)ℎ𝜌𝜏𝐶∗𝛾−1)

1
𝛾
 

On the other hand: 

𝜕2𝐶̇

𝜕𝐶2
= −(𝛾 − 1)𝛾𝑟𝑢∗𝐶∗𝛾−1𝐶−𝛾−1 

 

All the terms in the equation are positive, except for the one negative sign, therefore the second derivative 

of capability flow with respect to capability is always negative in this region. As a result, the extremum 

found above is the only maximum for the net capability flow function which should be above zero (given 

that 𝐶̇ = 0 at 𝐶∗) and thus there is a single other point at which  𝐶̇ = 0. This point can be found 

numerically
1
 by solving the rate-level equation for zero capability change rate. Given the positive first 

derivative of 𝐶̇ with respect to C at this point, it is also the only tipping point for the system.  

To recap, when 𝛾 ≤ 1, the system includes a single unique equilibrium at 𝐶 = 𝐶∗. For 𝛾 > 1 the system 

includes exactly three fixed points: two are stable equilibria at 𝐶 = 0, 𝐶 = 𝐶∗ and one is a tipping point 

located in between. 

 

 

                                                      
1
 No general analytical solution exists for the location of tipping point. 


