Abstract
For Today’s companies innovation becomes the source of strategic differentiation or cost leadership. Within this challenging competition they are facing frequent changes in their environments, which significantly increase complexity in the management of innovation. Therefore, deviations from companies’ innovation objectives, commonly known as innovation risks, are also increasing. Risks arise from complex structures and are modelled in risk nets. Most managers are aware of the fact that risks could interact with each other; nevertheless, the portfolio of innovation risks is managed separately. This separation limits the understanding of the behavior of dynamics and interaction in risk nets.

1. Isolated Perspective on Interconnected Innovation Risks

2. Limitations on Risk Handling of Common Methodological Approaches

3. Modelling Innovation Risks with Standard Structures

References

Potential Standard Structures & Selected Structures (bold)

Feedback Loops Industry Risk Factors

3. Limitations on Risk Handling of Common Methodological Approaches

<table>
<thead>
<tr>
<th>Approach</th>
<th>Dynamic</th>
<th>Complicity</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ishikawa Diagramm</td>
<td>Statically</td>
<td>Comprehensive amount of man-</td>
<td>Average</td>
</tr>
<tr>
<td>Risk: Check Lists</td>
<td>Statically</td>
<td>Comprehensive amount of risks</td>
<td>Average</td>
</tr>
<tr>
<td>Scenario Analyses (Worst-Case, Best-Case)</td>
<td>At this stage</td>
<td>Limited amount of scenarios</td>
<td>Low</td>
</tr>
<tr>
<td>Scenario Analyses (Sensitivity Analyses)</td>
<td>No cause effect connections</td>
<td>Comprehensive amount of risks</td>
<td>Average</td>
</tr>
<tr>
<td>Gaussian bell curve</td>
<td>Gaussian distribution</td>
<td>Comprehensive amount of man-</td>
<td>Average</td>
</tr>
<tr>
<td>Portfolio Analysis</td>
<td>Limited Dynamic and "at this stage view"</td>
<td>cause effect connections</td>
<td>Feedback</td>
</tr>
<tr>
<td>Stochastic</td>
<td>Limited data analysis</td>
<td>Comprehensive amount of manifestations</td>
<td>Average</td>
</tr>
<tr>
<td>Monte-Carlo-Simulation</td>
<td>Random walk</td>
<td>Comprehensive amount of manifestations</td>
<td>Average</td>
</tr>
<tr>
<td>System Dynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Modelling Innovation Risks with Standard Structures

- Technology Leadership
- R1.1 R&D Policies
- R1.2 Competition
- R1.3 Market

- 2. Price Competitiveness
- Maier (1998); Bossel (2004); Milling (2002).
- R2.1 Pricing
- Budget Costs of Innovation

- 3. Quality
- Lyneis & Ford (2007); Rahmendada & Weiss (2009); Rahmendada & Hu (2010); Ford & Sterman (1998); Lyneis et al. (2001); Love et al. (2002).
- R3.1 Internal Rework Cycle
- R3.2 External Rework Cycle
- Finished

- 4. Time for Development
- Rodrigues & Williams (1998); Lyneis et al. (2001); Love et al. (2002); Lyneis & Ford (2007); Richardson (2014).
- R4.1 External R&D Placing
- R4.2 External Capacity Expansion

- 5.1 Internal Capacity Expansion
- R5.1 Internal Capacity Expansion

- 5.2 External Capacity Expansion
- R5.2 External Acquisition
- R5.3 External R&D Placing

- 6. Technical Qualification
- R6.1 Internal Acquisition of Knowledge
- R6.2 External Acquisition of Knowledge

- 7. Knowledge Transfer
- Georgantas & Katsamakas (2008); Warren (2008); McGraw & Clark (1999); Luna-Reyes et al. (2008); Rahmendada & Weiss (2009).
- B7.1 Knowledge Drain
- Reverse Engineering
- B7.2 Knowledge Drain
- B7.3 Knowledge Drain

References

- Lyneis et al. (2001); Morecroft (2007); Warren (2008).