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Abstract: System Dynamic models describe physical, technical, economical, or social systems using dif-
ferential and algebraic equations. In their purest form, these models are intended to describe the evolution
of a system from a given initial state. In many applications, it is possible to intervene with the system in
order to obtain a desired dynamic or a certain outcome in the end. On the mathematical side, this leads
to control problems, where aside from the simulation one has to find optimal intervention functions over
time that maximize a specific objective function. Using a dynamical model for the utilization of a natural
nonrenewable resource of Behrens as a demonstrator example, we present two main mathematical solution
strategies. They are distinguished by the quality certificate on their respective solution: one leads to
proven local optimal solution, and the other technique yields proven global optimal solutions. We present
implementational and numerical issues, and a comparison of both methods.
Keywords:
System Dynamics; Optimal Control; Nonlinear Optimization; Bounds Strengthening.

1 Introduction
The French writer Gustave Flaubert wrote already in 1841 [11]: “Si la Société continue à aller de ce train
il n’y aura plus dans deux mille ans ni un brin d’herbe ni un arbre; ils auront mangé la nature.1” Being
then very much ahead of his time, his foreboding has become certainty in our days, as the World Model of
Forrester [13] and Limits to Growth studies of Meadows et al. [21] showed, and which corrected Flaubert
only in the sense that society will probably have much less than the proclaimed “deux mille ans”.

The goal of our work is to take System Dynamics models as a basis, and try to move their dynamic
behavior into a desired direction by introducing one or several control functions that interact with the
model’s structure. Furthermore, we introduce an objective function that measure success by assigning a
single score value to the outcome of the controlled System Dynamics model. It is natural to ask for the best
possible or optimal control that maximizes (or minimizes, depending on the purpose of the model) this
score value. A System Dynamics model together with control functions and a real-valued objective function
is called a System Dynamics Optimization (SDO) problem in the sequel. The need for an integration of
optimization methods into the SD framework has been recognized already in the past, see [6,9,10,14,16–20].
We intend to use methods that give a certain quality certificate for the computed solutions, which is either
a proven local optimal solution or a proven global optimal solution.

We formulate an SDO problem as nonlinear program (NLP). Solving optimization problems from this
class is theoretically intractable and also known to be computationally difficult in general. By “solving”
we mean to compute a feasible solution for a given instance of the problem together with a computational
proof of its (local or global) optimality. For local optimal solutions, there are numerical nonlinear solvers,
such as IPOPT [27] or CONOPT [8], which we briefly present below. For global optimal solutions, we apply
the general framework of a branch-and-bound approach, where the bounds are obtained from relaxations
of the original model. To this end, we first reformulate the nonlinear problem with non-smooth functions
as a mixed-integer nonlinear program (MINLP). We then relax the MINLP first to a mixed-integer linear
program (MILP) and then further to a linear program (LP), which is solved efficiently using Dantzig’s
simplex algorithm [7]. The so obtained solution value defines a (lower) bound on the optimal value of the
original NLP problem. In case this solution is NLP feasible, it would be a proven global optimal NLP
solution. However, this rarely happens in practice. Hence we either add cutting planes to strengthen

1If society continues to proceed in its current pace, then there will be nothing left in two thousand years, not a blade of
grass, not a single tree; they will have eaten the nature.
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the relaxation, or we decide to branch on a variable. For more details on cutting planes and branch-and-
bound for MILP we refer to Nemhauser and Wolsey [22], and for an application of this framework to global
mixed-integer nonlinear programming to Smith and Pantelides [23], and Tawarmalani and Sahinidis [24,25].
Information on the MINLP framework SCIP which we apply is given in Achterberg [2], and in particular
on nonlinear aspects of SCIP in Berthold, Heinz, and Vigerske [5].

2 Demonstrator: Natural Resource Utilization
In 1972, Behrens [4] formulated a System Dynamics model to describe the dynamics of natural resource
utilization. It is based on the observation that the earth’s minerals are a finite source, hence their future
availability needs to be carefully planned. Three main interacting feedback loops were identified to describe
the long-term behavior over time. All three are negative or goal-seeking loops.

1. If the Actual Cost rise, then the Demand decreases. The Demand lowers the amount of Natural
Resources, and the Actual Grade of the resource will decrease, hence the Actual Cost of excavating
the resource will rise more.

2. If the Actual Cost increases, then Sales Revenue will go up, hence the Investment in R&D rises,
which leads to a Technology Change, so that more new Technology reduces the Actual Cost.

3. If the Actual Cost go up, then the Potential Substitution Fraction also increases, and with a delay
the actual Substitution Fraction rises. Hence the Demand lowers, and so does the Actual Cost.

Behrens analyses this system’s behavior. In a standard run, it is assumed that the annual growth rate of
the resource consumption is a fixed value of 3%, which is said to be a conservative assumption for most
resources. Hence the consumption grows exponentially over time, which leads to a fast decline in the still
available amount of the nonrenewable resource. From its initial value at the beginning of the simulated
time horizon in 1970, it only takes 150 years until the natural resource is fully consumed. The actual
cost stays almost constant for the first 50 years (until 2020) (attributed to a change in technology), but
afterwards the technology change cannot compensate the ever growing usage rate. Thus, the actual cost
increases between 2020 and 2070 to a maximum, and, after reaching a peak in 2040, the usage rate steeply
declines, until it reaches zero around 2120. At that time, all further demand must be satisfied from recycled
products.

Behrens evaluates several strategies or scenarios in order to find out, whether this collapse of the natural
resource is avoidable. For example, if one doubles the amount of resources (better excavation technology
might be able to do so), then the collapse is shifted into the future by some 50 years only. Also a subsidy
of research and development investment does not lead to a significantly different outcome, compared to
the standard run. According to Behrens, the only chance is a significant reduction of the yearly demand
growth rate from 3% to just 1%, so that the resource can be used for about 75 years longer (in comparison
with the standard run).

We use this model as a demonstrator for our System Dynamics Optimization techniques. To this end,
we introduce control functions (or controls, for short) that represent some interventions to the system, in
order to move its dynamical behavior into a desired direction. Here, our goal is to move the decline of
the usage rate as far as possible into the future. Equivalently, we aim to minimize the actual cost for the
resource. As controls, we introduce a tax that artificially increases the actual cost. This revenue is used
as R&D investment. The question is, what amount of tax should be charged in which year, in order to
achieve this goal? This problem is solved by our optimization techniques.

3 Formulating System Dynamics Optimization Problems

3.1 System Dynamics Models as DAEs
From a mathematical point of view, any Sytem Dynamics model is a set of differential and algebraic
equations. The differential equations correspond to the stocks integration statements, while the al-
gebraic equations correspond to the models auxiliary equations. We denote the states (or stocks) by
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x1(t), x2(t), . . . , xp(t) and summarize them using the state vector x(t). Analogously, we define the vector
of all auxiliary variables (including rates) as y(t) = (y1(t), y2(t), . . . , yq(t)) and the set of (non time de-
pendent) simulation parameters by p = (p1, p2, . . . , pr). We consider simulations with a fixed time horizon
t ∈ [0, T ].

Simulating one run of a system dynamics model is then equivalent to finding x(t), y(t) that satisfy the
following system of differential algebraic equations (DAE) for given parameters p:

ẋ(t) = f(x(t), y(t), p) (1a)
y(t) = g(x(t), y(t), p) (1b)

3.2 Discretization

In system dynamics, this problem is usually solved numerically with an explicit discretization scheme
like the Euler Method. The variables x, y are no longer defined continuously on t, but only on certain
equidistiant time intervals. We denote discrete times as bracketed superscript and rewrite the system (1)
as

ẋ(i) = f
(
x(i), y(i), p

)
, (2a)

y(i) = g
(
x(i), y(i), p

)
, (2b)

n =
T

∆t
(2c)

i ∈ {0, 1, 2, . . . , n} , (2d)
t(i) = i∆t. (2e)

Using the euler step x(i+1) = x(i) + ∆tẋ(i), the model is then solved by succesively evaluating the explicit
equations y(0), x(0), y(1), x(1), . . . , y(n), x(n).

3.3 System Dynamics Optimization Problem

In this paper, we will consider a system dynamics optimization problem. This means, that we will equip
the original model with an objective function, and a set of control parameters, which can be constant or
change over time. In particular, we choose one or more parameters from the vector p, and consider them
time dependent (p → p(t)). The time dependence is either on the same scale as t, or on a coarser scale
with a switching step s∆t, s ∈ Z+. With the above definitions, an arbitrary, discretized SDO using an
explicit one-step integration scheme can be written as follows:

max c(x, y, p), (3a)

s.t. x(i+i) = f
(
x(i), y(i), p(i)

)
, i ∈ {0, 1, . . . , n− 1}, (3b)

y(i) = g
(
x(i), y(i), z(i)

)
, ∈ {0, 1, . . . , n}, (3c)

x(i) ∈ Rp, i ∈ {0, 1, . . . , n}, (3d)

y(i) ∈ Rq, i ∈ {0, 1, . . . , n}, (3e)

p
(i)
j ∈ Rr, i ∈

{
0, 1, . . . ,

n

s j

}
. (3f)

The system of equations (3) has the form of a nonlinear program (NLP) and is theoretically accessible with
standard optimization software. The instance we consider in this paper however, has a number of features
that are typical elements of system dynamics simulations, but are not understood by standard optimization
solvers. In the following sections, we describe how we modified the problem to make it accessible with
standard solvers.
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3.4 Handling Vensim Functions
The originam model considered in this paper contains two Vensim smoothing functions, SMOOTHI and
DELAY3. As described in the Vansim manual, both of these functions can be rewritten by replacing the
axuiliary variable with one (in the case of SMOOTHI) or three (in the case of DELAY3) stock variables.

The remaining non-standard functions that appear in the model are eight table functions. We will
describe two approaches to the reformulation of table functions, one aimed at local and one at global
optimization. As described in more detail in Section 4.2, the local solution approach we propose for this
model relies heavily on derivative information. Since the derivative of a piecewise linear function is not
defined everywhere, we interpolate the tabled data with smooth functions. The global approach on the
other hand, allows the use of integer variables and special ordered sets, making it possible to reproduce
the model exactly.

Smooth Interpolation of Tabled Data

For the local approach, we used an interpolation of the tabled data using cubic splines. The splines are
then supplied to the modeling language GAMS [15] as external functions. The process of reading an .mdl
file as input and creating a .gms file containing the lookup data was automated with the tool mdlconv. The
mdlconv as well as the tool lookuplib, which is used to interpolate the data and evaluate the resulting
splines for GAMS during the solution process are scheduled for release in source in July 2015. The
interpolation is calculated, by fitting a cubic spline to the original piecewise linear functions. The number
of sampling points is increased until the interpolation does not exceed a maximum deviation between the
original function and the interpolation. More information on the interpolation can be found in [26]. As
an example, the interpolation of the demandtable is shown in Figure 1b. Deviations between the original
and the smooth interpolation are not visible by eye, even at the data points. The goal in calculating these
interpolations, was to find a smooth function that reproduces the original model behavior as accurately
as possible. A second approach, would be to allow for more deviations in order to find a more natural
function. However, since we consider a literature model in this paper, the former approach was selected.

Piecewise Linear Functions using Special Ordered Sets

To demonstarte how to formulate table functions in terms of a MINLP, we consider an arbitrary table
function u = f(v) with np data points (u0, v0), (u1, v1), . . . , (unp , vnp−1).

We now use a set of constraints and introduce at each time new sets of positive variables λn,k where
k ∈ {0, 1, . . . , np} that are each part of a special ordered set of type two (SOS2), introduced by Beale and
Forrest [3]. Out of a set of SOS2-Variables, at least two can be non-zero, and the two need to be adjacent.

We define two vectors lu and lv containing the ordered list of u and v values respectively:

lu = (u0, u1, . . . , unp) (4a)
lv = (v0, v1, . . . , vnp) (4b)

The set of constraints that we need to implement at each point in time then reads for n(a) :

u =
∑
k

lu,kλn,k (5a)

v =
∑
k

lv,kλn,k (5b)

1 =
∑
k

λn,k (5c)

In system dynamics, it is not uncommon to query a table function with an argument that is outside of the
defined argument interval [u0, unp

]. In this case, the first or last function value is supplied. To reproduce
this behavior, we added additional points at the beginning and end of the table, to create an interval with
slope 0. The width of this interval was in this instance chosen manually, based on the expected maximal
range of the parameter. Figure 1b shows a comparison of an original piecewise linear table function with
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a smooth interpolation, as described in the next Section. The interval of the original table function was
[0, 10]. The intervals [−5, 0] as well as [10, 15] were added to the model to allow for requests outside of the
defined range.
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(b) Relative difference between linear and smooth inter-
polation of Cost of Technology Advance Table data

4 Local and Global Optimal Control

Optimization approaches can be roughly divided into local and global approaches. While the former are
in many cases much faster, only the second yield proven quality indicators for the found solution. In this
paper, we will attempt to solve the model with one global and one local method.

4.1 Global Optimal Control

After performing the reformulations described above, we can now attempt a solution of our problem using
a standard branch and bound solver. However to our knowledge, there is currently no MINLP solver
available, that exploits the special problem structure of a discretized control problem. However, taking
this structure into account appears to be key in order to find feasible solutions as well as dual bounds to
our test instance. We have implemented two methods tailored methods for MINLP formulations of SDOs:

Primal Heuristic

Finding feasible solutions is a requirement for an efficient branch-and-cut approach. To quickly produce
feasible solutions, we implemented a simple heuristic, that reduces the control problem to a simulation
problem, by fixing the control variables to their lower (or in a second run upper) bound. For our system,
this will always yield a feasible solution, since there are not state bounds given.

Bound propagation

In a branch-and-cut algorithm, bound propagation describes the derivation of bounds from one variable
to another. This is done usually along a single constraint.

Our tailored bound propagation is executed only once as part of presolving. Its goal is to determine,
which values of the state and algebraic variables at each time are reachable with the given initial conditions
and allowed control. In this context, the bound propagation can be considered a reachability analysis of
the dynamic system.

In order to find the reachable values, we formulate subproblems si,h that contain all constraints and
variables of the times t ∈ i− h, i− h+ 1, . . . , i. Within this subproblem we consider finding the maximal
and minimal values for all states and algebraic variables again as optimization problems.
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In more detail, our bound propagation method iterates the following steps for each discretized time i
except i = T , starting at i = 0:

1. Formulate the subproblem si,h.

2. For each algebraic variable vi at time i:

(a) Solve the maximization problem max vi subject to the constraints of si,h to optimality and set
the upper bound of the variable v̄i to the solution value.

(b) Solve the minimization problem min vi subject to the constraints of si,h to optimality and set
the lower bound of the variable v̄i to the solution value.

3. For each differential variable wi+1 at time i+ 1:

(a) Solve the maximization problem maxwi+1 subject to the constraints of si,h to optimality and
set the upper bound of the variable w̄i+1 to the solution value.

(b) Solve the minimization problem minwi+1 subject to the constraints of si,h to optimality and
set the lower bound of the variable w̄i+1 to the solution value.

The subproblems are solved with a preset node limit. If the time limit is reached before the problem
is solved to optimality, the considered bound is set to the best dual bound.

Linear Programming based Spatial-Branch-and-Cut

We relax the nonlinear constraints, and embed them in linear convex hull. The resulting linear program
(LP), is solved efficiently using Dantzig’s simplex algorithm [7]. The so obtained solution value defines a
(lower) bound on the optimal value of the original NLP problem. In case this solution is NLP feasible,
it would be a proven global optimal NLP solution. However, this rarely happens in practice. Hence
we either add cutting planes to strengthen the relaxation, or we decide to branch on a variable (spatial
branching). For more details on cutting planes and branch-and-bound for MILP we refer to Nemhauser and
Wolsey [22], and for an application of this framework to global mixed-integer nonlinear programming to
Smith and Pantelides [23], and Tawarmalani and Sahinidis [24,25]. Information on the MINLP framework
SCIP which we apply is given in Achterberg [2], and in particular on nonlinear aspects of SCIP in Berthold,
Heinz, and Vigerske [5].

4.2 Local Methods

In the most abstract setting, we aim to solve a nonlinear optimization problem (NLP) of the general form

min
x∈Rn

c(z), (6)

subject to a(z) = 0, (7)
z ≥ 0. (8)

Here the constraint function a(z) = 0 subsumes all constraints from (2a) and (2b), and z is the vector of
all variables from (2c)–(2e).

IPOPT

As one of two options for the solution of the NLP (6), we use the solver IPOPT of Wächter and Biegler [27].
It implements a barrier method, that solves a sequence of barrier problems

min
x∈Rn

ϕµ(z) := c(z)− µ
N∑
i=1

ln(zi), (9)

subject to a(z) = 0, (10)
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where µ is converging to zero. For µ close to zero one obtains a Karush-Kuhn-Tucker (KKT) point as
solution, which comes with a certificate of local optimality, if certain constraint qualification conditions are
fulfilled. The solution of each barrier problem (9) is carried out by a variant of Newton’s method, applied
to the primal-dual equations

∇f(z) +∇a(z)λ− w = 0, (11)
a(z) = 0, (12)

ZWe− µe = 0, (13)

where Z := diag(z),W := diag(w), e := (1, 1, . . . , 1). In order to ensure global convergence of Newton’s
method, a line-search variant of Fletcher and Leyffer’s filter method [12] is applied. For further details, we
refer to [27].

CONOPT

Our second option for the solution of the NLP (6) is the solver CONOPT of Drud [8]. This solver is
particularly suitable for NLP having a periodic structure due to the dynamic constraints.

CONOPT is based on a clever implementation (i.e., choice of data structures and a careful implemen-
tation of the algorithm’s components) of the generalized reduced gradient (GRG) algorithm of Abadie
and Carpentier [1]. A generic GRG algorithm starts from a feasible solution of (6). Then the Jacobian
matrix J =

(
∂ai
∂zj

)
i,j

is computed. A basis is selected, which is a square non-singular submatrix of J , such

that the basic variables are away from the bounds and the submatrix is well-conditioned. Multipliers and
reduced gradients are computed. If the current solution is already a Karush-Kuhn-Tucker (KKT) point,
the algorithm stops. Otherwise, a search direction is computed, and from the current solution one moves
along this search direction for a certain step length. Hereto, a nonlinear subproblem is solved by Newton’s
method. This procedure is repeated, until it converges to a KKT point.

5 Computational Results

5.1 Definition of Control Parameters

Behrens [4] considered the possibility of introducing a subsidy into the model, i.e., doubling the investment
in research and development. However, he concluded, that this measure does not succeed at keeping the
variable actualcost lower then in the standard run. We examine, if there are other possibilities to invest
money into research and development in a way that achieves a lower total actual cost then the standard
run. We therefore choose the variable percent invested in RD as our single time dependent control
variable:

p0(t) = percent invested in RD(t) ∈ [0, 5] (14)

For all other parameters we retain the values as set in the original model. Finding the optimal investment
strategy to keep the actualcost down, is a nontrivial problem. A consistently high amount of investment
will keep costs low for a longer period than in the base run, but the increase towards the end of the model
will be stronger, leading to a higher accumulated actualcost. A consistently low investment will make
the actualcost increase sooner, again leading to a higher accumulated value than in the base run.

5.2 Presolving and Analysis of the Global Optimization Problem

For the global approach, we implemented our tailored methods for global optimization as plug-ins to the
branch-and-cut framework and solver SCIP [2,5]. For the solution of the subproblems in bound propagation
and for the branch-and-cut process that follows presolving, we rely entirely on SCIP using the nonlinear
solver IPOPT [27] and the linear solver CPLEX.

We run each of our calculations on one core of an HP machine, equipped with Intel Xeon E5-2690
2.90GHz processors and a total of 384 GB of memory.
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Time [s] Primal Bound Dual Bound Gap [%]

0 300.9 97.9 207.35%
500 300.9 101.9 195.33%
1000 300.9 102.2 194.35%

Table 1: Computational results for the global solution approach.

As a first step towards the solution of the problem, we applied our presolving bound propagation
method to the exact NLP reformulation of the model. The bound propagation run took 3099 seconds.
Note that the bounds computed in this presolving step do not depend on the definition of the objective
function, but only on the control definition. As result of the presolving, we receive a set of bounds to
the reachable states of the system. In Figure 2 we show the best computed bounds for actualcost and
naturalresources. These bounds are outer approximations, i.e., not every point within the shown bounds
is reachable. However, no point outside of the bounds is reachable with control values within the defined
region. From the calculated bounds, we see that the behavior of the system during the first 20 years is
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Figure 2: Bounds for the state variables Natural Resources and Actual Cost computed as part of presolving
in the global solution approach.

independent of our control decision. This is consistent with the delay contained in the model. Starting
between year 20 and 30, it is clear that investment in R&D only has limited capabilities to change the
system’s behavior. The natural resource remaining will in any scenario have declined to less then 37 %
after 100 years.

5.3 Global Solution Approach

We now attempted to solve the preprocessed problem with SCIP using the tailored primal heuristic. The
results of the solution process are summarized in Table 1.

With the precomputed bounds, we immediately find a lower bound to accumulated actualcost of 97.9.
This bound can be improved slightly to 102.2 within 1000 seconds of branch and bound. However, this
still leaves a gap of roughly 200%.

5.4 Local Solution Approach

For comparison, we now attempted to solve the optimization problem with interpolated table functions with
the local solver CONOPT [8]. CONOPT converges towards a locally optimal solution with an objective
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value of 260.2 within four seconds. To compare the local solution, we conducted a base run. For this
base run, we chose as our control the values that the variable percent invested in RD takes in the base
run of the original model. We then introduced the tax formulation and conducted one simulation run. In
Figure 3, we show the locally optimal control over the selected time frame of the model. Through the first
30 years, there is no investment in research at all. Following this period, there are two periods of roughly
10 years duration, during which an increasing absolute part of the sales revenues is invested into research
and development. Note, that the investment into RD is significantly higher in the optimal solution, than
it is in the base run. As can be seen in panel b), this leads to a significantly better development of the
subsitution technology, compared to the base run. When comparing the values of the variable actualcost,
we see that the cost remain lower for a few years longer, but then increase more abruptly, reaching their
maximum slightly before the base run. The objective value in the base run has a value of 282.0. The
locally optimal solution has improved this value to 260.2.
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Figure 3: Comparison between the base run after introducing a tax with the optimal solution: a) absolute
investment in RD, b) value of stock technology, c) comparison of actualcost.

6 Summary and Conclusions

In this paper, we outlined a global and a local solution approach to a system dynamics optimization
problem. The global approach has the advantages of allowing an exact representation of the model, and
of providing a proven performance indicator. However, for this very complex nonlinear model with a high
number of non-smooth table functions, the gap that remains between primal and dual bound is still very
large. A more extensive presolving of the problem, as well as special branching rules are currently being
investigated, in order to close the gap further. However, the global approach yields state bounds as a side
product, that allow for a first analysis of the effectiveness of chosen controls. The local approach, required
the elimination of all non-smooth functions from the model. The resulting qualitatively equivalent model,
can be solved to local optimality within a few seconds. The solution shows an interesting investment
strategy with the overall goal of keeping the accumulated actual cost of the resource as low as possible.
As is inherent to all local approaches, we can however not be sure how much better a globally optimal
solution might be. This is currently our ongoing research.
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