MULTI-BIRTH COHORTS: A METHOD FOR MODELING AGING POPULATIONS

Jeremy Sato, Peter Hovmand, Nishesh Chalise, Nancy Zoellner, Andrew brown, & Ken Carson

33rd International Conference of the System Dynamics Society
Cambridge, Massachusetts July 19-23, 2015

The project described was supported by U54 CA155496 from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.
NCI funded 15 Projects Across Four Institutions

Washington University in St. Louis Project 4 Role of Social Determinants in the Link between Obesity and Cancer Across the Lifespan (Project Leads: Peter Hovmand, Ken Carson and Graham Colditz)

Initial Model Used Aging Chains for At-Risk Populations
TRANSDISCIPLINARY RESEARCH ON ENERGETICS AND CANCER (TREC)

NHL and DLBCL Incidence Trend, 1973-2011

- **NHL Incidence**
- **DLBCL Incidence**

Age adjusted per 100,000

- Years: 1973 to 2011
<table>
<thead>
<tr>
<th>Method</th>
<th>Strengths</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging Chain</td>
<td>• Distinguish Between Age Cohorts</td>
<td>• Cohort Blending ((Eberlein \ and \ Thompson,\ 2013))</td>
</tr>
<tr>
<td>Discrete-Time Delay (e.g. Conveyors)</td>
<td>• No Age Distortion</td>
<td>• Continuous-Time Flows (e.g. Immigration and Attribute-based Transitions)</td>
</tr>
<tr>
<td>Annual Cohort Tracking</td>
<td>• No Age Distortion</td>
<td>• One-Year Computation Interval</td>
</tr>
<tr>
<td></td>
<td>• Accommodates Migration, Mortality</td>
<td></td>
</tr>
<tr>
<td>Continuous Cohorting (Eberlein and Thompson, 2013)</td>
<td>• No Age Distortion</td>
<td>• Software-Specific Implementation</td>
</tr>
<tr>
<td></td>
<td>• Accommodates Migration, Mortality</td>
<td>• Moderate Computational Burden</td>
</tr>
<tr>
<td></td>
<td>• Any Computation Interval</td>
<td></td>
</tr>
</tbody>
</table>
ILLUSTRATION OF COHORT BLENDING

Birth Rate
(100 births/year)

Births

Under Target Age
(0-14 yrs)

Aging In
(Under Target Age) / Min Age

Target Age Group
(15-45 yrs)

Aging Out
(Target Age) / (Max Age - Min Age)

Deaths

Mortality FR

Min Age

Max Age

(15 yrs old)

(45 yrs old)
TREC PROJECT CONSIDERATIONS

- Accurate Aging, But Process Is Secondary
- CISNET (Cancer Intervention and Surveillance Modeling Network) Guidance for Cancer Modeling:
 - Multiple Cohorts (e.g. Sex, Race, Age)
 - Time-Varying Factors (e.g. Smoking Prevalence, HIV/AIDS Impact on Non-Hodgkin Lymphoma, Available Cancer Treatments)
- Traditional Aging Methods Time-Invariant
- Switched to Time-Varying Approach

\[
\begin{align*}
\text{Time-invariant models} & : \dot{x} = f(x) \\
\text{Time-varying models} & : \dot{x} = f(x, t)
\end{align*}
\]
Cohorts Defined by Birth Year Instead of Age

Age is Time-Varying

Population Risk Factors are Age- and Time-varying

Age \((\text{cohort } i, \text{year } t) = t – \text{Birth Year } (\text{cohort } i)\).

Cancer incidence fractional rate \((\text{cohort } i, \text{year } t) = f(\text{cohort } i, t)\)
1. Defining Cohorts and Using Arrays
2. Births
3. Deaths
4. Aging Out
IMPLEMENTATION NOTES: ARRAYS

Step 1: Build Model for Representative Cohort

Step 2: Define Cohorts; Convert to Arrays

Step 3: Initialize Stocks and Define Age- and Time-Varying Parameters
IMPLEMENTATION NOTES: BIRTHS

Births \((\text{cohort } i, t)\) = Birth rate \((t)\) * (STEP(1, Cohort Start(\text{cohort } i))) – STEP(1, Cohort End(\text{cohort } i))
Deaths \((\text{cohort } i, t)\) = Cohort_Population \((\text{cohort } i)\) * Data_Mortality_FR \((\text{cohort } i, t)\)
IMPLEMENTATION NOTES: AGING OUT

Aging Out \((Cohort \ i, \ t)\) = Population \((Cohort \ i)\) / (Ending Year \((Cohort \ i) + 45 - t\))

for:

Starting Year \((Cohort \ i) + 45 \leq t < \) Ending Year \((Cohort \ i) + 45\)
SUMMARY

- Continuous Time-Varying Approach Captures Period-Specific Exogenous Factors Such as Smoking and HIV/AIDS
- Model Focuses on Obesity and Cancer Without Sacrificing Age Distribution Accuracy
- Accommodates Multiple Inflows/Outflows (e.g. Immigration and Weight Transitions)
- Straightforward Implementation Using Stocks and Arrays
- Developed a Re-Usable National Population Dynamics Model