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ABSTRACT  

In the context of high energy use and greenhouse gas emissions from road passenger 

transport, the prospects of market diffusion of new car technologies is at present time 

uncertain. For instance, the impact of current oil prices on the market uptake of electric 

vehicles is yet to be seen. Systems thinking and scenario analysis are useful to explore 

possible future outcomes. This paper focuses on car technologies scenarios for the 

Chinese, German and US markets until 2030. The technologies investigated are: 

gasoline, diesel, flexi-fuel, liquefied petroleum gas, natural gas, hybrid, plug-in hybrid, 

battery electric and fuel cell vehicles. Based on the System Dynamics approach, a 

model integrating discrete choice and accounting frameworks is developed. The 

developed System Dynamics model is applied to examine alternative policies and to 

estimate energy use and emissions in each of the markets under various scenarios. The 

model results illustrate the importance of taking indirect emissions into account. In 

conclusion, simulated policies sensibly alter car technology uptake and have an impact 

on the environment. Finally, the ideas of feedback process and expansion of model 

boundaries are considered to be crucial in modeling such a complex and uncertain 

system. 

 

Keywords: electric vehicles, System Dynamics, market scenarios, environmental 

impacts 
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1. INTRODUCTION 

 

Problem Context 

According to the fifth assessment report by the Intergovernmental Panel on Climate 

Change (IPCC), transport generated directly 7.0 gigatons of CO2eq in 2010 (IPCC, 

2015). This results from transport activities that involve fuel combustion. Transport-

related energy use and emissions are expected to increase if current projections of 

global vehicle stock growth (Gomez et al., 2013) materialize. Goals have been set by 

national governments to reduce energy use and greenhouse gas (GHG) emissions from 

the transport sector (EVI, 2013). With regard to passenger travel by car, technological 

progress is expected to contribute toward these goals. In particular, technological 

improvements in internal combustion engine vehicles (ICEVs) and technology 

substitution of conventional for advanced technologies such as electric vehicles (EVs) 

are being internationally promoted. In 2014, there were over 665,000 EVs worldwide 

(EVI, 2015). Despite these plans, the successful market penetration of these 

technologies is highly uncertain to date. Sustained relatively low oil prices
1
 do not favor 

the market penetration of new, cleaner car technologies. Policy analysis is required to 

better understand the implications of differing development pathways for alternative car 

technologies. 

Objectives, Scope and Structure 

The main objective of this paper is to explore possible future energy and emissions 

impacts corresponding to different configurations of the car stock
2
 in a specific market. 

For this, estimation of levels of car ownership and investigations of policies that may 

affect car technology choices are required. With this goal in mind, we generate market 

scenarios by means of a System Dynamics (SD) model that incorporates feedback 

processes. The purpose of the model is to enable the model user (ideally, policy-makers) 

to experiment with the consequences of policy measures implemented in the model. 

The following 9 car technologies
3
 are included in the model: Gasoline (G), Diesel (D), 

Flexi-Fuel or Biofuel (FF), Liquefied Petroleum Gas (LPG), Natural Gas (NG)
4
, Hybrid 

(HEV), Plug-in Hybrid (PHEV), Battery Electric Vehicles (BEV) and Fuel Cell or 

Hydrogen (FC). The model simulates from the year 2000 until 2030. A calibration 

period from 2000 until approximately 2010, depending on data availability, is 

considered. In its current version, the model represents (using subscripts) the following 

3 key car markets: China, Germany and the US. These countries share the common 

                                                           
1
 At the time of writing (2 March 2015), crude oil prices are at $62.58 per barrel of Brent and $49.76 for 

the West Texas Intermediate (Oil-price.net, 2015).  
2
 We use the term ‘car stock’ throughout to refer to the number of cars operating in a given country in a 

particular year. Other terms are often used: see e.g. footnote 1 on (Struben and Sterman, 2008). 
3
 Throughout this paper, the term “technology” refers to car powertrain technology. 

4
 Represented by Compressed Natural Gas (CNG) cars. 
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criteria of having a high level of car stock and having declared interest in the market 

uptake of EVs.  

The remainder of the paper is structured as follows: section 2 contains an overview of 

the literature and introduces the research approach. In section 3, the model is described. 

Section 4 presents the model results. In Section 5, conclusions are drawn and further 

research needs are sketched.  

 

2. SURVEY OF STUDIES AND RESEARCH APPROACH 

Survey of Studies 

Due to the wealth of available studies on the subject, this survey is selective and we 

restrict ourselves to research questions involving: (i) car ownership forecasting, (ii) 

choice of the type (e.g. technology) of car, and (iii) estimation of energy and emissions 

impacts.  

Given the topic of this paper, two main bodies of literature were identified: global 

simulation models and national SD models. The former group of models includes three 

large-scale models that provide relevant scenarios or roadmaps: IEA Mobility Model 

(MoMo), ICCT Energy Roadmap and UNECE ForFITS. Table 1 shows their main 

features. 

Table 1 – Overview of global simulation models 

Model Editor Country 
Time 

Horizon 

Vehicle 

Technologies 

Key Model 

Ouput 

Mobility 

Model 

(MoMo) 

IEA 

Global (29 

world 

regions)  

2050 

G / D / LPG / 

CNG / HEV / 

PHEV / BEV 

/ FC 

 Market shares 

 Energy use 

 Emissions 

Energy 

Roadmap 
ICCT 

7 world 

regions & 9 

individual 

countries 

2050 

G / D / FF / 

LPG / CNG / 

HEV / PHEV 

/ BEV / FC 

 Energy use 

 Emissions 

(GHG & local 

pollutants) 

ForFITS UNECE Global 2040 
31 

powertrains 

 Transport 

activity 

 Energy use 

 CO2 emissions 

Source: own representation based on (IEA, 2009), (ICCT, 2012) and (UNECE, 2015) 
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Strictly speaking, none of these models can qualify as an SD model if feedback 

processes
5
 are not explicitly incorporated, which seems to be the case at present time. In 

our view, ForFITS has the potential to become a truly SD model in a future version, as 

it has already been implemented in the Vensim® platform. 

The second group contains models that are more consistent with the SD philosophy. For 

the choice of technology, most of the available studies make use of some logit 

framework. Discrete choice modeling is a common method to estimate the market 

penetration of new vehicle technologies (Al-Alawi and Bradley, 2013). We distinguish 

between “estimation” and “application” studies. By “estimation” studies we mean those 

that are the result of designing and conducting a survey
6
 and statistically estimating 

discrete choice model parameters. The resulting output of primary interest is a set of 

(utility) coefficients. Within this group, we highlight the papers listed in Table 2. 

Table 2: Selected “estimation” studies 

Author(s) Country 
Vehicle  

Technologies 

Model 

Type***  

[# Attributes] 

(Bunch et al., 

1993) 
US (CA*) Gasoline / Alternative** / Electric 

NMNL 

[5] 

(Brownstone and 

Train, 1998) 
US (CA) 

Gasoline / CNG / Methanol / 

Electric 

Mixed MNL 

[10-12] 

(McFadden and 

Train, 2000) 
US (CA) 

Gasoline / CNG / Methanol / 

Electric 

Mixed MNL 

[10] 

(Brownstone et 

al., 2000) 
US (CA) 

Gasoline / CNG / Methanol / 

Electric 

MNL / Mixed 

logit [>10] 

(Achtnicht, 

2011) 
Germany 

Gasoline / Diesel / Hybrid / 

LPG/CNG / Biofuel / Hydrogen / 

Electric 

Standard / 

Mixed logit  

[6] 

(Ziegler, 2012) Germany 
Gasoline / Diesel / Hybrid / Gas / 

Biofuel / Hydrogen / Electric 

MNP  

[5] 

(Hackbarth and 

Madlener, 2013) 
Germany 

Gasoline / Diesel / CNG / LPG / 

HEV / PHEV / BEV / Biofuel / 

Hydrogen 

MNL /  

Mixed logit  

[8] 

*CA = State of California. **Methanol, ethanol, CNG (see page 6). ***MNL = Multinomial Logit / 

NMNL = Nested-MNL / MNP = Multinomial Probit. 

Source: own representation based on the original references 

                                                           
5
 Feedback loops can be seen as the result of “the endogenous point of view” (Richardson, 2011). 

6
 Usually based on stated preferences (SP). Fortunately, revealed preference (RP) data is becoming 

increasingly available (cf. e.g. (Schühle, 2014)). See (Brownstone et al., 2000) for some critical issues 

related to SP-RP data. 
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By “application” studies we mean here those that develop a discrete choice modeling 

framework capable of deriving market shares based on selected information from 

“estimation” studies. In our view, “application” studies represent a pragmatic 

application of the results derived from “estimation” studies. A selection
7
 of 

“application” studies based on SD modeling is shown in Table 3.  

Table 3 –Selected “application” studies 

Author 
Main 

Purpose* 
Country 

Time 

Horizon 

Vehicle 

Technologies 

Applied 

Logit Values 

(Ford, 1995) 

(BenDor and 

Ford, 2006) 

PP US (CA)  2020 
G / AL** / CNG / 

HEV / BEV 

(Bunch et al., 

1993) 

(Schade, 

2005) 
PP EU 2050 

G / D / FF / LPG / 

CNG / HEV / 

BEV / FC 

- 

(Meyer, 

2009) 
AI 

Japan / 

Germany 
2035 

G / D / HEV / 

BEV / FC 

(BenDor and 

Ford, 2006) 

(Walther et 

al., 2010) 
AI / PP US (CA) 2021 

G / D / HEV / 

PHEV / BEV 

(Brownstone 

and Train, 

1998) 

(Weikl, 2010) AI Germany 2030 
G / D / LPG / 

CNG / HEV / EV 
- 

(Wansart, 

2012) 
AI / PP US (CA) 2030 

ICE / HEV-G / 

HEV-D / PHEV / 

BEV / FC 

(Brownstone 

and Train, 

1998) 

(Keith, 2012) AI / PP US 2050 
G / HEV / PHEV 

/ BEV 

(Brownstone 

et al., 2000) 

*Main purpose: Public Policy (PP) and/or Automotive Industry (AI). **AL = Alcohol. 

Source: own representation based on the original references 

 

The application of a logit framework to derive market shares for each vehicle 

technology allows the calculation of sales by type of technology. Relying only on this 

method, disregarding the importance of feedback loops and path dependency (Sterman, 

2000), is however a severe limitation (Gomez et al., 2014). 

Invariably, the studies mentioned in Table 3 need to make assumptions concerning car 

ownership levels and the resulting total number of cars operating in the area of analysis. 

In mature markets, the assumption of a constant car stock is usually adopted. 

                                                           
7
 Other models of interest are (Keles et al., 2008), (Struben and Sterman, 2008), (Krail, 2009), (Armenia 

et al., 2010), (Park et al., 2011), (Kühn and Glöser, 2012), (Shepherd et al., 2012) and (Kieckhäfer, 2013). 



6 
 

Research Method 

In dealing with complex social systems, Meadows identified four common research 

methods: optimization, input-output, System Dynamics and econometrics (Meadows in 

(Randers, 1980)). 

In order to successfully deal with the uncertainties of an inherently complex system, an 

adequately holistic perspective is required. The benefits of systems thinking have been 

highlighted by, among others, (Senge, 2006) and (Meadows and Wright, 2008). In cases 

of policy-making in a context of high uncertainty, the scenarios method is suitable for 

exploring alternative options (Grunwald in (Möst et al., 2009)) (Dieckhoff et al., 2011) 

(Dieckhoff et al., 2014). 

Furthermore, the use of computer-based numerical simulation models can contribute to 

an increase in understanding on the quantitative impacts of different policy options, 

thereby improving the effectiveness through which they act. 

Consistent with the ideas of systems thinking, scenarios analysis, and feedback thought 

and policy analysis, we choose to develop an SD model in an attempt to meet the 

research objective stated in section 1. Note that some of the studies listed on Table 3 

have a main focus on the automotive industry and some on public policy. This can be 

understood as a reflection of the fact that SD, although initially conceptualized for 

industrial and corporate problems, later found successful applications in a wide range of 

areas dealing with public policy. In any case, our main interest is in studying problems 

relevant for public policy. In addition to the models we have mentioned in this section, 

the SD approach has been applied to many other transport problems
8
.  

Pioneered by (Forrester, 1958) (Forrester, 1961) (Forrester, 1968), SD stands today as 

“a computer-aided approach to policy analysis and design”, applicable to dynamic 

problems that require feedback thinking (SDS, 2014). (Richardson, 1991) traces the 

origins of SD to the thread of “engineering - servomechanism” research in the social 

sciences. 

 

 

                                                           
8
 A special issue was devoted to transport on the SD Review (Shepherd and Emberger, 2010) and a more 

recent review of SD applications on transport is given by (Shepherd, 2014). 
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3. THE DEVELOPED MODEL 

Following (Bossel, 2007), the modularization approach is adopted and the model is 

conveniently split into 9 views
9
, each of them representing a particular module. The 

linkages among the different model modules are represented schematically in Figure 1. 

 

Figure 1 – Representation of the module linkages 

Source: own work using Vensim® 

 

Since Figure 1 represents modules and not individual variables, no link polarity is 

shown for some of the arrows connecting modules, as these in fact entail various 

linkages (from which an ambiguous relationship between modules arises). For those 

arrows with a single polarity, the sign of the polarity is shown. It has to be 

acknowledged that representing the sign of the feedback loop in this type of graph is not 

straightforward. Further details about the specific relationships and feedback loops 

(including polarity sign when relevant) are shown for each of the model modules in the 

following sections. The description of each of the modules below is rather concise: the 

documentation of the values of assumptions and equations can be found at the end of 

the paper (see Appendix). 

                                                           
9
Figure 1 shows 8 modules, because the “Car Attributes” and the “Ownership and Driving Costs” 

modules are merged in that figure. In the model, the “Car Attributes” module also contains an 

“Infrastructure” component. The dotted arrows indicate feedback assumptions that are implicit in the 

current version of the model. 

POPULATION
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CAR STOCK
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TECHNOLOGY
CHOICE BY
CONSUMER
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POLICY
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OWNERSHIP &
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+

+

+ -

-

+ -
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Population – GDP Module 

Key socio-economic assumptions drive the model. These include population and gross 

domestic product (GDP). Concerning population, although the model can be 

exogenously fed by available data (UN, 2012), it was deemed more insightful to use 

that data to approximately determine the reference values of the fractional birth rate. In 

this way, the model user can still easily vary the population assumptions. A more 

elaborate population model using cohorts, although feasible to implement, is not 

developed in this version of the model. With regard to GDP, growth is assumed in all 

the countries, partially based on (WB, 2014). In the case of China, the rate of growth 

decreases as the year 2030 is approached. 

 
Figure 2 – Structure of the module “Population - GDP” 

Source: own work using Vensim® 

The output of this module is “GDP per capita”, which enters the “Car Stock” model as 

an input. 

 
Figure 3 – Behavior of “GDP per capita”: historical and simulated 

Source: own work using Vensim® 
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Travel Demand by Car Module 

The main assumption in this module
10

 is average annual car mileage. For simplicity and 

scenario comparability issues, we assume a constant “annual VKT by car” (vehicle-km 

traveled) of 13,000 km for all the countries. Although satisfactory data for these 

variables is available for Germany and the US, in the case of China no access to reliable 

data could be gained.  

The key outputs of this module are: (i) VKT, used as an input by the “Energy” module; 

and (ii) “PKM by car” (passenger-km), which is affected by VKT and can be influenced 

by policies targeted at average car occupancy rates. 

There is a potential of making this module more sophisticated and realistic by linking 

travel demand by car to income (e.g. using elasticity values). 

Car Stock Module 

This module contains two sub-sections: the projection of the aggregate car stock and the 

simulation of the car stock disaggregated by technology. The latter contains a set of 

subscripts with 9 car technologies. 

With regard to the projection of the aggregate car stock, a nonlinear growth model 

formulation has been chosen. Although different functional forms are available in the 

literature, we adopt a Gompertz function following (Dargay et al., 2007) and fit 

coefficients using the calibration optimization tool provided by Vensim®. Key 

parameters affecting the car ownership ratio
11

 are GDP per capita and the level of car 

saturation.  

(Sterman, 2000) warns against over relying on curve fitting exercises. In the second 

sub-section, we create a stock-and-flow formulation with two levels representing the 

stock of new cars (≤1 year) and the stock of older cars (>1 year), disaggregated into 9 

possible car technologies. The sales rate is the result of “the demand for replacement” 

and “the demand for first purchase”, a distinction recognized long time ago by (Wolff, 

1938). It is initially assumed that 50% of the scrappaged cars turn into replacement sales 

for the same technology, creating a reinforcing feedback loop. For this, a constant
12

 

named “share of technology switching” has been created. Concerning “the demand for 

first purchase”, the simulated choice of technology is determined by the output of a 

discrete choice modeling framework (see the “Technology Choice” module).  

                                                           
10

 Since this basic module does not contain feedback processes, its structure is not shown here. Refer to 

the Appendix for further details.  
11

 Other common terms are “car ownership rate” or, more generally, “motorization rate” (usually 

measured as the number of cars per thousand people). In order to avoid the use of the word “rate”, which 

is in this module reserved for the inflows and outflows from the car stock, we choose to use “ratio” 

instead.  
12

 In the model, constants are written using capital letters. 
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Figure 4 – Structure of the module “Car Stock” 

Source: own work using Vensim® 

 
Figure 5 –Behavior of “aggregate car stock”: projected and simulated 

Source: own work using Vensim® 
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The link between both sub-sections is provided by the dummy variable “divergence 

between projected and simulated aggregate total car stock”. The resulting simulation 

behavior is a rough approximation of the projection trend, as can be seen in Figure 5. 

Car Attributes and Infrastructure Module 

This module is divided into two sub-sections: car technical attributes and infrastructure 

availability. The former contains the representation of car fuel efficiency improvements. 

The latter shows the assumptions concerning the deployment of fuelling/charging 

infrastructure. Both sections can be heavily influenced by policy inputs. In the case of 

car fuel efficiency, emission standards define the rate of technological improvement for 

ICEVs. Approved policy is already incorporated by default into the model (e.g. EU 

emission standards for gasoline and diesel cars until 2021). Thus the model user can, in 

this example, set new emission standards for the period 2022-2030. 

 
Figure 6 – Partial view of the module “Car Attributes and Infrastructure”  

Source: own work using Vensim® 

 
Figure 7 – Partial view of the module “Car Attributes and Infrastructure”  

Source: own work using Vensim® 
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The key outputs of this module, namely car fuel intensities, relative range and relative 

fuelling, are used as inputs to the “Technology Choice” and “Energy” modules. 

Ownership and Driving Costs Module 

This module is divided into two sub-sections: “ownership costs” and “driving
13

 costs”. 

For the initial assumptions, the information shown on Table 4 has, to a large extent, 

been followed. 

Table 4 – Real-world information by selected car technology 

Make  

(version) 
Technology 

Battery capacity [kWh]  

(range [km]) 

Consumption 

(per 100 km) 

Car price 

(US dollar)*** 

Toyota Auris 

(Comfort) 

Gasoline 0 5.4 l 21,761 

Diesel 0 4.2 l 24,000 

HEV (gas.) - 3.6 l 25,741 

Nis. Leaf (Visia) BEV 24 (199) 15.0 kWh 32,337 

VW Golf 

(Comfort-line) 

Gasoline 0 5.0 l 26,058 

Diesel 0 4.5 l 28,535 

CNG (gas.) 0 3.5 kg 27,664 

BEV 24,2 (130-190) 12.7 kWh 38,010 

Ford Focus 

(Trend) 

Gasoline 0 5.0 l 22,349 

Diesel 0 4.5 l 24,199 

FF 0 8.3 l 23,981 

LPG 0 7.6 l 25,125 

BEV 23 (162) 15.4 kWh 43,558 

Opel Ampera EREV** 16 (40-80) 1.2 l  / 16.9 kWh 42,066 

Toyota Prius 

(Comfort)* 

HEV (gas.) - 4.0 l 30,448 

PHEV (gas.) 4.4 (23) 2.1 l (combined) 39,881 

Toyota Mirai* FC NA NA 57,500 

* Segment D (the rest of the cars belong to segment C). ** EREV = Extended Range EV (gas.). *** 

Original prices in Euros (conversion at 1 EUR = 1.088583 US dollars) 

Source: own work using information on the carmaker’s European website 

 

The assumption concerning battery costs is taken exogenously from (EVI, 2013). For 

gasoline, diesel and EVs, the final purchase price can be affected by national taxation 

and subsidization.  

The structure of this module can be seen in Figure 8. The module outputs are purchase 

cost and driving cost (dollar per km) by car technology. These are primarily used as 

inputs to the “Technology Choice” module.  

 

 

 

                                                           
13

 This is a proxy of total operating costs (insurance, maintenance, etc.) perceived by the car owner. 
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Figure 8 – Partial view of the module “Ownership and Driving Costs”  

Source: own work using Vensim® 
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technology can be derived. Thus the outcomes of this module are fed back to the “Car 

Stock” module.  

 
Figure 9 – Structure of the module “Technology Choice” 

Source: own work using Vensim® 
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14

 of fuels to 

the different car technologies is illustrated by Figure 10. 
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(ethanol 85 (E85)
15

, autogas, CNG, electricity and hydrogen (H2)) are assumed to 

remain constant during the simulations. 

Figure 10 – Conceptual linkages between car technologies and fuels 

 

 

 

 

 

 

Source: own work 

                                                           
14

 This is admittedly a model simplification, since physical processes already today enable additional 

linkages between some fuels and technologies. 
15

 Blend of 85% bioethanol and 15% gasoline. 
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The key results of this module are: aggregate gasoline use and electricity use resulting 

from the different configurations of the car stock by technology (“car-mix”). 

Emissions Module 

The model covers three main long-lived GHG emissions: CO2, N2O and CH4. The key 

emission output, using Global Warming Potential (GWP)-100 year values based on 

(IPCC, 2006), is expressed in grams of CO2eq. 

The emissions-related accounting method
16

 employed, based on (IPCC, 2006) emission 

factors, includes: 

 Calculation of CO2/km for new cars by technology. This values are used as an 

input in the “Technology Choice” module; 

 Well-to-tank (WTT)
17

 GHG emissions; 

 Tank-to-wheel (TTW)
18

 GHG emissions; 

 Well-to-wheel (WTW) GHG emissions (which equals WTT plus TTW); 

 Manufacturing and Scrappage (M&S) emissions; 

 Lifecycle
19

 GHG emissions (which results from adding WTW and M&S). 

In terms of total GHG emissions generated by the total car stock, we deliberately choose 

to show the module output for two types of analysis: TTW and lifecycle. 

Policy Module 

In practice, the model view named “Policy-maker’s Lab” can be regarded as the 

“Policy” module. It allows the model user to explore the consequences of varying 

testing assumptions. (S)He can “shock” the modeled system with policy inputs. Several 

policy variables specifically target conventional vehicles (CV): gasoline and diesel cars. 

Furthermore, this module shows key intermediate and final model output and provides 

access to more detailed country-specific charts.  

The listing of the policy measures available in the current version of the model, 

illustrated by three exemplary scenarios, is shown in the “Scenarios and Policy 

Analysis” section. 

 

 

                                                           
16

 This module is basically an accounting module based on an adaptation of the A-S-I-F framework 

(Schipper et al., 2000). Since it contains no feedback loops, the structure of this module is not shown 

here. See the Appendix for further details. 
17

 Also known as ‘upstream’ or ‘indirect’ emissions. 
18

 Also known as ‘on-road’ or ‘direct’ emissions. 
19

 It is necessary to remark that no complete lifecycle analysis (LCA) has been undertaken as part of this 

study. 
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Model Validation 

Given the fact that all models are wrong (Sterman, 2002), it follows that models cannot 

be verified (Sterman, 2000). System Dynamicists propose validity tests: (Barlas, 1996) 

indicates three major stages of model validation: structural tests, structure-oriented 

behavior tests and behavior pattern tests. (Bossel, 2007) recommends that model 

validity be demonstrated according to structure, behavior, empirical validity and 

application. 

The proposed model is, to a large extent, validated through coherent model purpose and 

output, careful investigation of causal structures, collection and observation of relevant 

data and general matching of behavior patterns over the relevant time horizon. In 

addition, the model is fully formulated and the dimensional analysis indicates that all 

the units of the equations are consistent. 

Scenarios and Policy Analysis 

The model is run
20

 for three slightly different scenarios. The scenarios considered in this 

modeling exercise can be briefly described as: 

 Scenario 1 (S1) “Reference”: Implementation of approved policies (e.g. EU 

emission standards until 2021). No additional policies to promote a certain 

technology. 

 Scenario 2 (S2) “Fossil focus”: Policies mainly targeting at ICE efficiency 

improvements are introduced. No strong attempt is made at improving the 

carbon intensity of the electricity grid. 

 Scenario 3 (S3) “EV breakthrough”: Additional policies aiming at facilitating 

EV market update are promoted. The measures include EV subsidies and 

investment plans for the deployment of public charging infrastructure. 

Each of the three scenarios is applied to the three countries examined in this study. An 

overview of the set of policies considered is given in Table 5. 

Table 5 – Policy inputs under different scenarios 

Policy  

Measures [units] 

S1 S2 S3 

C* G U C G U C G U 

Regula-

tory 

New gasoline car emission 

standard [1/year] 
0% 3% 1% 2% 3% 1% 2% 

New diesel car emission 

standard [1/year] 
0% 3% 1% 2% 3% 1% 2% 

Target carbon intensity 

electric grid [1/year] 
0% 0.5% 3% 

                                                           
20

 Vensim® supports Euler and Runge-Kutta integration for mathematically solving the equations. 

Although Runge-Kutta (fourth order) is “probably the most reliable workhorse of numerical integration” 

(Bossel, 2007) (p. 81), Euler is adequate for our purpose (Sterman, 2000) (Bossel, 2007) and hence it is 

the one we use. 
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Car occupancy rate 

[passenger] 
1.2 1.2 1.2 

Econo-

mic 

CV purchase tax [dollar] 1,000 1,000 3,000 
EV purchase subsidy 

[dollar] 
0 0 2,000 

Gasoline tax [dollar/liter] 0.2 0.6 0.2 0.2 0.6 0.2 0.5 0.7 0.5 
Diesel tax [dollar/liter] 0.3 0.6 0.2 0.3 0.6 0.2 0.5 0.7 0.5 
Target electricity price 

[dollar/kWh] 
0.2 0.2 0.2 

Invest-

ment 

Public EV charging 

infrastructure deployment 

[station/year] 
10 10 10 10 10 10 800 

Public H2 filling station 

deployment [station/year] 
1 1 1 1 1 1 50 

* C = China / G = Germany / U = US. Note that the policies for EV subsidy and infrastructure investment 

have a temporary validity and are written as step functions.  

Source: own illustration of possible scenarios. 

 

4. DISCUSSION OF RESULTS 

Key Results 

An important intermediate result is provided by the simulated variable “total car stock 

by tech”, which includes new and older cars disaggregated by technology. An 

illustrative example for the US is shown in Figure 11. 

 
Figure 11 – Behavior of “total car stock by technology” 

Source: own work using Vensim® 

 

In addition, the two main results of interest shown in this section are: aggregate gasoline 

use and GHG emissions. Whereas the former is shown in Figure 12 for each country 

under the three constructed scenarios; Figure 13 illustrates, using the results of Scenario 

1, two different ways of representing corresponding GHG impacts. 
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The decrease in the demand for oil-based fuels results in an increase in the demand for 

electricity. Suitable models need to be developed to assess the practical consequences of 

massive EV charging for the local grid. 

Concerning GHG emissions, as the example of S1 illustrates, accounting for TTW 

emissions only (neglecting WTT and car manufacturing & scrappage emissions) distorts 

the overall picture about the environmental impacts of car travel. With regard to 

lifecycle emissions, the potential to dramatically reduce GHGs from car travel remain, 

for the three markets and under the scenarios examined, untapped. 

 
Figure 12 – Energy impacts: “aggregate gasoline use” 

Source: own work using Vensim® and Excel® 

 

  
*Note the different scale of the Y-axis. 

Figure 13 – GHG impacts: “TTW” and “lifecycle” emissions (S1) 

Source: own work using Vensim® 
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Sensitivity Analysis and Discussion 

In order to investigate the critical assumption reflected by the variable “share of 

technology switching”, a simple sensitivity analysis was undertaken. For this purpose, a 

Monte-Carlo simulation using Vensim® sensitivity setup was conducted. The critical 

parameter was represented using a random uniform distribution [0,1] and, as an 

example, the chosen output variable was the stock of gasoline cars in China. The 

resulting confidence bounds are shown in Figure 14. 

 
Figure 14 – Sensitivity of “car stock (G)” to “share of technology switching” 

Source: own work using Vensim® 

Only three scenarios out of a potentially long list of plausible scenarios have been 

constructed as part of the modeling exercise presented here. Much work remains to be 

done concerning the construction of alternative scenarios, policy analysis and sensitivity 

analysis. Nevertheless, the benefits of designing and conducting experiments on such a 

simulation model can be, at this point, highlighted. 
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distance from car saturation in the Chinese market, the prospects of a more rapid 

penetration of non-conventional cars is more promising than in the mature German and 

US markets. This, however, depends greatly on the assumption concerning the lock-in 

of mature technologies, represented by the proxy variable “share of technology 

switching”. 

Perhaps the most insightful result is the one arising from comparing total gasoline use 

and lifecycle GHG emissions, in particular for China and the US which have a similar 

level of car stock around 2030. This, at first counterintuitive, result can be explained 

upon a second thought by three key aspects: (i) emissions are higher for manufacturing 

than for scrappage and China’s projected number of sales is unmatched by the other two 

mature markets; (ii) manufacturing emissions (but not scrappage) are higher for BEV 

than for conventional cars and the former penetrate the Chinese market more rapidly 

than in Germany and the US; (iii) the larger number of cars operating in China and the 

assumed slow de-carbonization of the electricity grid. This example highlights the need 

to strive for the expansion of model boundaries. By “trespassing” the narrow frontier of 

on-road transport emissions on those commonly located in the energy system (i.e. 

moving from TTW to WTT and overall WTW emissions analysis), we gained valuable 

insights into the far-reaching environmental impacts of a specific market scenario. 

Finally, the modeling exercise illustrates the suitability of the SD approach to 

investigate the dynamic problems inherent in this area of research. With minor 

adaptations, the same model structure could be used to represent systems from different 

countries, from which a variety of behavior patterns can arise. 

Limitations and Further Research 

In our view, this study contains four main limitations. The first one is related to the 

arbitrary definition of the system (model) boundary. Secondly, the critical issue of 

modeling replacement sales by technology. The third one is the need to refine key 

model assumptions and to collect the most recently available data, particularly for 

China. Lastly, the hypothesis that EV deployment worldwide is expected to lead to 

beneficial economies of scale and battery cost reductions is not explicitly covered in the 

current version of the model. 

Given the aforementioned limitations, we expect to devote additional research effort on 

four main areas: (i) expansion of model boundaries to take into account potential 

feedback processes (e.g. rebound effects); (ii) rethinking the causal structure for the 

demand for car replacement, probably adding a Bass sub-model; (iii) update of the 

model assumptions related to technology choices in view of new available knowledge 

(e.g. data from revealed preference surveys and new discrete choice models); (iv) model 

extension to include other relevant markets (in particular, France, India and Japan) 

leading to the explicit consideration of technological leaps in the global automotive 

market. 
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APPENDIX 

In line with suggestions by (Rahmandad and Sterman, 2012) (Martinez-Moyano, 2012) 

on model transparency and reproducibility, this appendix contains the model 

documentation using SDM-Doc. The version of the model used in this paper is available 

(Vensim® Reader format) from the main author upon request. 

Model Summary 

 

 

 

Model Code 

Note that, due to space constraints, only selected equations are shown below. The list 

contains the code for the following subscripts: Germany and Gasoline (G). The full 

model documentation (including the complete list of equations) can be obtained by 

running the model using the SDM-Doc tool. 
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birth rate[Germany] = FRACTIONAL BIRTH RATE[]*Population[] 

death rate[Germany] = Population[]/LIFETIME EXPECTANCY[] 

FRACTIONAL BIRTH RATE[Germany] = 0.0131196 

FRACTIONAL GDP GROWTH RATE[Germany] = 0.0105939 

GDP[Germany] = ∫GDP growth rate[] dt + [INITIAL GDP[]] 

GDP growth rate[Germany] = FRACTIONAL GDP GROWTH RATE[]*GDP[] 

GDP per capita[Germany] = GDP[]/Population[] 

INITIAL GDP[Germany] = 2.94843e+012 

INITIAL POPULATION[Germany] = 8.35125e+007 

LIFETIME EXPECTANCY[Germany] = 70 

Population[Germany] = ∫birth rate[]-death rate[] dt + [INITIAL POPULATION[]] 

annual VKT by car[Germany] = daily VKT by car[]*365 

AVERAGE TRIP DISTANCE[Germany] = 18.06 

car occupancy rate[Germany] = 1.2 

daily VKT by car[Germany] = TRIPS PER DAY BY CAR[]*AVERAGE TRIP DISTANCE[] 

PKM by car[Germany] = car occupancy rate[]*annual VKT by car[] 

TRIPS PER DAY BY CAR[Germany] = 1.82 

ADJUSTMENT TIME (Year) = 1 

ageing[Germany,G] = New Car Stock[]/AVERAGE AGEING TIME[] 

AVERAGE AGEING TIME[Germany,G] = 1 

AVERAGE LIFETIME[Germany,G] = 14 

BETA COEF[Germany] = -25 

car ownership ratio[Germany] = CAR SATURATION LEVEL[]*EXP(BETA COEF[]*EXP(GAMMA 

COEF[]*coef GDP per cap[])) 

CAR SATURATION LEVEL[Germany] = 557 

coef GDP per cap[Germany] = GDP per capita[]/in thousand[] 

divergence between projected and simulated car stock[Germany] = (projected car stock[]-total car 

stock[])/ADJUSTMENT TIME 

FIRST SALES RATE[Germany] = 0 

GAMMA COEF[Germany] = -0.169167 
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INITIAL CAR[Germany,G] = 3.3e+007 

INITIAL NEW CAR[Germany,G] = 1e+006 

market share first sales[Germany,G] = exp U[]/denominator[Germany] 

New Car Stock[Germany,G] = ∫sales rate[]-ageing[] dt + [INITIAL NEW CAR[]] 

Older Car Stock[Germany,G] = ∫ageing[]-scrappage rate[] dt + [INITIAL CAR[]] 

Population[Germany] = ∫birth rate[]-death rate[] dt + [INITIAL POPULATION[]] 

projected car stock[Germany] = car ownership ratio[]/1000*Population[] 

replacement sales[Germany,G] = scrappage rate[]*SHARE OF TECHNOLOGY 

SWITCHING[Germany] 

sales rate[Germany,G] = (market share first sales[]*FIRST SALES RATE[Germany])+(market share first 

sales[]*divergence between projected and simulated car stock[Germany])+replacement sales[] 

scrappage rate[Germany,G] = Older Car Stock[]/AVERAGE LIFETIME[] 

SHARE OF TECHNOLOGY SWITCHING[Germany] = 0.5 

total car stock[Germany] = total new car stock[]+total older car stock[] 

total car stock by tech[Germany,G] = New Car Stock[]+Older Car Stock[] 

total new car stock[Germany] = ∑(New Car Stock[]) 

total older car stock[Germany] = ∑(Older Car Stock[]) 

total sales[Germany] = ∑(sales rate[]) 

total scrappage[Germany] = ∑(scrappage rate[]) 


