
1

Measuring Eigenvalues’ Sensitivities via Kernel Canonical

Correlation Analysis

Ahmed F. Yehia a, Mohamed Saleh a, Ayman Taha b and Hisham El-Shishiny c

a Operations Research & Decision Support Department, Faculty of Computers and Information,

Cairo University

b Information System Department, Faculty of Computers and Information, Cairo University

c Advanced Technology and Center for Advanced Studies, IBM Cairo Technology Development

Center, Cairo – Egypt.

Abstract:

This paper is a continuation to our previous work [Yehia, Saleh et al., System Dynamics Conf.

(2014)], where we developed a many to one statistical sensitivity analysis method based on the

multivariate maximal information coefficient (MMIC). The two main critiques to this method

(which we previously developed), were that the complexity of the algorithm increases

exponentially with the number of input variables, and that it cannot handle many (inputs) to many

(outputs) relations. To overcome these two critiques, in this paper, we propose a statistical

sensitivity analysis based on the Kernel Canonical Correlation method. This kernel-based method

is designed to handle many to many relations, and the complexity of the algorithm depends only

on the number of samples – whatever the number of input variables is. We postulate that this kernel

based sensitivity analysis represents a solid foundation to study the multivariate complex

nonlinear non-monotonic relationships between behavior modes – expressed by eigenvalues – and

the model parameters. The experiments conducted corroborate our postulation.

Keywords: Sensitivity Analysis, Eigenvalue Analysis, Canonical Correlation and Kernel

2

1. Introduction and Theoretical Background:

Eigenvalue analysis studies the sensitivity of behavior modes (eigenvalues) – or their associated

weights – to the gains of feedback loops. In general, the gains of feedback loops are functions of

the gains of links; which in turn are functions of parameters, in the model. Hence one can link

parameters (input variables) to certain eigenvalues (output variables). Eigenvalues are computed

from the Jacobian matrix J. Moreover, for each eigenvalue, λi, there is a distinct sensitivity matrix,

Si, which is equal to the product of the left-eigenvector and the transpose of the right-eigenvector.

The majority of previous works in this area (Forrester 1983, Güneralp 2006, Kampmann and Oliva

2008, Gonçalves 2009, Saleh, Oliva et al. 2010) utilized the traditional univariate sensitivity (or

elasticity) measure, which is based on the first order partial derivative of the eigenvalue with

respect to an independent variable. This univariate measure represents only the marginal

contribution of the independent variable – assuming that all other independent variables are

constants. However, as Sterman put it: "In nonlinear systems, the sensitivity of a system to

variations in multiple parameters is not a simple combination of the response to the parameters

varied alone" (Sterman 2000).

Some scholars adopted multivariate linear regression analysis (Hekimoğlu and Barlas 2010,

Tøndel, Vik et al. 2013). Regression analysis is under the umbrella of multivariate analysis; i.e.

can study simultaneous changes in more than one parameter (Esbensen, Guyot et al. 2002). Linear

regression analysis aims to find a linear relationship between the dependent variable and

independent variables. The core algorithm of linear regression is the least squares errors algorithm,

which is used in data fitting (Rencher and Christensen 2012). Yet, the main limitation here is the

assumption of linear relationship between the dependent variable and independent variables.

Nonlinear regression analysis can be used when linear regression fails. However, the analyst must

try different functions; e.g. exponential, logarithmic, etc. In addition initial values for the

coefficients are needed; and in general, the solution changes according to initial settings (Draper,

Smith et al. 1966, Hair, Black et al. 2006). That is, there is no guarantee to reach the global

minimum (least squares errors); as there might be several local minima. Moreover the solution

of complex nonlinear regression equations might not converge. Finally, nonlinear multivariate

regression is not well suited to handle non-monotonic functions (Rencher and Christensen 2012).

),(
..

)1,(

....

....

),1(
..

)1,1(

nnJnJ

nJJ

S

ii

ii

i

3

Applying the Multivariate Maximal Information Coefficient (MMIC) to Eigenvalue Analysis

outperforms the traditional sensitivity analysis methods (Yehia, Saleh et al. 2014). MMIC has

several advantages; as it can capture any non-linear relationship between a set of inputs and a

single output variable; moreover it measures the total contribution of each input – rather than its

marginal contribution (Reshef, Reshef et al. 2011, Yehia, Saleh et al. 2014). On the other hand,

there are limitations to using MMIC. The computational time of MMIC increases exponentially

with the number of input variables. Moreover, it cannot handle multiple output variables.

The solution proposed in this paper is a “many to many” kernel-based sensitivity analysis method,

which preserves all MMIC advantages; in addition to overcoming its limitations. This solution is

illustrated in the next section.

The rest of this paper is organized as follows: In section 2, we explain the proposed solution. In

section 3, we illustrate the experiments conducted to test the proposed solution. Finally, we

conclude, in section 4.

2. Proposed Solution

This section is divided into three subsections: Description of Inputs and Outputs, Linear Canonical

Correlation Analysis, and Kernel Canonical Correlation Analysis.

2.1 Description of Inputs and Outputs

The goal of our study is to link parameters in the model (input variables) to the most dominant

eigenvalues (output variables). Recall that the eigenvalues are computed via the Jacobian matrix

(which can be considered a condensed representation of the model structure).

Let matrix X represents the data associated with the multiple input variables. X is a data matrix of

n-by-d1 size; with d1 variables in columns, and n data points (samples) in rows. Then the d1-by-

d1 covariance matrix is given by XTX 1 (multiplied by a scalar value). At the same time, one can

compute the standard Gram matrix XXT of the n-by-n size.

Let matrix Y represents the data associated with the multiple output variables -- i.e. the most

dominant eigenvalues. Y is a data matrix of n-by-d2 size; with d2 variables in columns, and n data

points (samples) in rows. Then the d2-by-d2 covariance matrix is given by YTY (multiplied by a

1 Superscript T refers to the transpose operation

4

scalar value). At the same time, one can compute the standard Gram matrix YYT of the n-by-n

size.

Note that for mathematical clarity, we assume that all data (X &Y) are centered (i.e. zero mean).

In general, one can easily remove the mean by shifting the data. Remark that, in this paper, matrices

are labeled by bold and upper-case letters; while vectors are labeled by bold and lower-case letters.

2.2 Linear Canonical Correlation Analysis

Linear Canonical Correlation analysis (LCCA) measures the linear relationship between two sets

of variables (X set & Y set). One can consider the LCCA as an extension to the standard Pearson

correlation coefficient (r). Recall that the standard correlation coefficient r measures the extent to

which two variables are linearly related. The core of LCCA is based on the standard correlation

coefficient r; In fact, LCCA maximizes the standard correlation coefficient r between two vectors

(as shown in the figure below). The first vector is the canonical variate of the X – denoted by the

u vector. This vector represents the best linear combinations of the multiple independent variables.

The second vector is the canonical variate of the Y – denoted by the v vector. This vector represents

the best linear combinations of the multiple dependent variables (Johnson and Wichern 1992, Bach

and Jordan 2005).

Fig 1: Linear Canonical Correlation Analysis (Clark 2009).

In other words, LCCA finds linear combinations of the columns of X and columns of Y, which

have maximum correlation with each other. Specifically, the objective is to maximize the standard

correlation coefficient r, specified as follows:

𝑟 =
𝐮T𝐯

‖𝐮‖ ‖𝐯‖

Assuming that all data are centered (i.e. zero mean).

u
Canonical

Variate for Xs

x1

x2

xd1

v
Canonical
Variate for

Ys

y1

y2

yd2

.

.

.

.

.

.

5

Where the u vector (size n) is the Canonical Variate of the X (data matrix of n-by-d1 size); i.e.

𝐮 = 𝐗𝐚

And the v vector (size n) is the Canonical Variate of the Y (data matrix of n-by-d2 size); i.e.

𝐯 = 𝐘𝐛

The elements of 𝐚 and 𝐛 vectors are the decisions variables that we want to optimize, in order to

maximize r. Note that the size of vector 𝐚 is d1; and the size of vector 𝐛 is d2.

The above fractional programming problem can be transformed to the bi-objective optimization

problem of simultaneously maximizing the numerator (𝐮T𝐯), and minimizing the dominator

(‖𝐮‖ ‖𝐯‖). An efficient solution of this bi-objective optimization problem can be obtained via

maximizing the numerator subject to an inequality constraint that forces the dominator to less than

or equal to a certain fixed value. In our case, one can decompose the dominator inequality

constraint into the following two inequality constraints:

‖𝐮‖ ≤ 1

‖𝐯‖ ≤ 1

I.e. the Euclidean length of both the u vector and the v vector must be less than or equal to unity.

In other words, we want both the u and v vectors to be just direction vectors.

The above two constraints are equivalent to the following two constraints:

𝐮T𝐮 ≤ 1

𝐯T𝐯 ≤ 1

Hence, the optimization can be summarized as follows:

Max. 𝐮T𝐯
Subject to:

𝐮T𝐮 ≤ 1

𝐯T𝐯 ≤ 1

Substituting the equations of u and v into the optimization problem yields:

Max. 𝐚T𝐗T𝐘𝐛

Subject to:

𝐚T𝐗T𝐗𝐚 ≤ 1

6

𝐛T𝐘T𝐘𝐛 ≤ 1

In our research, we used the “canoncorr” MATLAB function (in the MATLAB Statistics Toolbox)

to solve the above optimization problem. The inputs to the function are the X and Y matrices, and

the output is the optimal value for r. Note that, in the case of a single output variable, the optimal

value for r is equal to the square root of the coefficient of determination, R2, for the corresponding

linear multiple regression model (Everitt 2002).

2.3 Kernel Canonical Correlation Analysis

The Kernel Canonical Correlation Analysis (KCCA) is an extension to the LCCA. KCCA

measures the non-linear relationship between two sets of variables (i.e. the X set and the Y set). In

the kernel approach, we consider a transfer function that maps each data point to a higher

dimension space. The idea of KCCA is to perform the standard linear canonical correlation in this

new space; i.e. the mapping into this new space transforms the non-linear relationship (between

the two sets of variables) into a linear one. The dimensionality of this new space is usually very

large (infinite in some cases). Nevertheless, we can always compute the so-called kernel Gram

matrix. Elements of this kernel Gram matrix are computed via a kernel function, which is based

on the inner product of the transfer function. In practice, one does not need to compute the transfer

function, but only the associated kernel function. This is called the kernel trick (Hardoon, Szedmak

et al. 2004, Drineas and Mahoney 2005, Huang, Lee et al. 2006, Welling 2011). Moreover, in

practice, one can construct a kernel Gram matrix, without even knowing the dimensionality of the

new space (or anything about the new space). The size of the kernel Gram matrix will always be

n-by-n. In general the kernel Gram matrix is valid and useful, if it satisfies certain conditions – e.g.

must be symmetric (i.e. the matrix is equal to its transpose).

In an analogy to the linear case, the kernel optimization problem can be formulated as follows

(Hardoon, Szedmak et al. 2004).

Max. 𝛂T𝐊𝑥𝐊𝑦𝛃

Subject to:

𝛂T𝐊𝑥
2𝛂 ≤ 1

𝛃T𝐊𝑦
2𝛃 ≤ 1

The elements of 𝛂 and 𝛃 vectors are the new decisions variables that we want to optimize. Note

that, in the kernel case, both 𝛂 and 𝛃 vectors are of size n. As Welling put it: “…𝛂 is a vector in a

different N-dimensional space than e.g. a which lives in a D-dimensional space…” (Welling 2011,

p.71).

7

Similar to the linear case, we can use the “canoncorr” MATLAB function; yet, in this non-linear

case, the inputs to the Matlab function are the Kx and Ky matrices (instead of the X and Y matrices).

For simplicity, in this paper, we will use the polynomial kernel function, which is defined as

follows (Chang, Hsieh et al. 2010).

𝐊𝒙 = (𝐗𝐗𝐓 + c)
.^p

Where the operator “.^” donates an element by element power, p is the degree of the polynomial,

and c is a constant that scales the influence of higher-order terms (in the polynomial) relative to

the lower-order terms. Note that the same function form is applicable to Ky.

In the next section, we will apply the polynomial KCCA on a simple model, in order to compute

the optimal nonlinear correlation coefficient between any set of parameters (in the model) and any

set of (dominant) eigenvalues. This will enable us to rank parameters according to their influences

on any set of eigenvalues.

3. Experiments

This section shows the experiments conducted in order to illustrate the application of LCCA and

KCCA to eigenvalue analysis. The dynamic model used in the experiments is the simple

hypothetical dynamic model presented in our last year’s paper (Yehia, Saleh et al. 2014). The stock

and flow diagram of the model is shown in the following figure. The model consists of two stocks:

S1 and S2. R1 and R2 are the inflows of S1 and S2 respectively. Moreover, there are three auxiliary

variables: g11, g12, g21. The equations of the model are as follows:

 X1, X2 & X3 are uniform random variables [0,1] . These are the input variables (parameters)

 g11 = X1 * X2 * X3

 g12 = X1 * X2

 g21 = X1 * X3

 R1 = g11*S1 + g12*S2 + 1

 R2 = S1*g21

8

Fig 2: The Stock & Flow Diagram of the Model used in the Eigenvalue Experiments.

The results of the experiments are shown in tables 1 and 2. Table 1 shows the results associated

with a single output variable, which is the most dominant eigenvalue. While, table 2 shows the

results associated with two output variables, which are the two eigenvalues, in the model. Note

that since there are two stocks, in the model, then there are only two eigenvalues. Recall that the

eigenvalues are computed via the Jacobian matrix (which can be considered a condensed

representation of the model structure). Note that the eigenvalues of this model are always real

numbers (i.e. not complex numbers) -- whatever the values of the parameters.

To facilitate the replications of the results, the Matlab code used to conduct the experiments is

shown in Appendix A. In the LCCA case (i.e. the first row in both tables), the Matlab code

computes the optimal linear correlation coefficient (i.e. the association level) between any set of

parameters (in the model) and any set of (dominant) eigenvalues. While, in the KCCA case (i.e.

the remaining rows in both tables), the Matlab code computes the optimal nonlinear correlation

coefficient (i.e. the association level) between any set of parameters and any set of (dominant)

eigenvalues. In both tables, the second row shows the results associated with applying polynomial

KCCA of degree 1 (for various sets of inputs); and the third row shows the results associated with

applying polynomial KCCA of degree 2. We stopped at the second degree, because for this degree,

we reached full association; i.e. approximately the value of “1” for the nonlinear correlation

coefficient relating all input variables to the output variables(s). In more complex models, we will

need to increase further the degree of the polynomial, until we reach the full association.

9

Note that, for the results shown below, we had set the number of samples “n” to 5000, and we had

set “c” (the coefficient in the polynomial kernel equation) to 1. After conducting many

experiments, we reached the conclusion that 5000 is more than enough for the sample size (i.e.

there are no significant changes, in the results, when we increase the sample size above 5000; or

when we change the seed for the random number generator). We also tried several values for ‘c’,

and the results did not change significantly; except when we set c equal to zero (as in this case, we

totally ignore the linear term in the polynomial).

Table 1: The association level between any set of input variables and the dominant eigenvalue

 X1 X2 X3 X1 & X2 X1 & X3 X2 & X3 X1, X2 & X3

LCCA 0.63 0.46 0.46 0.77 0.77 0.65 0.90

KCCA degree: 1 0.63 0.46 0.46 0.77 0.77 0.65 0.90

KCCA degree: 2 0.69 0.47 0.46 0.83 0.84 0.69 0.99

Table 2: The association level between any set of input variables and the two eigenvalues

 X1 X2 X3 X1 & X2 X1 & X3 X2 & X3 X1, X2 & X3

LCCA 0.88 0.52 0.52 0.89 0.89 0.74 0.93

KCCA degree: 1 0.88 0.52 0.52 0.89 0.89 0.74 0.93

KCCA degree: 2 0.92 0.60 0.59 0.94 0.94 0.94 0.99

From the above two tables we can conclude the following:

1. LCCA is equivalent to polynomial KCCA of the first degree (i.e. in both tables, any result

shown in the first row is equal to the corresponding result in the second row).

2. The association level increases as we increase the degree of the polynomial in the KCCA.

3. The association level increases as we include more input variables.

4. The eigenvalues are sensitive to all input parameters. However, X1 has the highest impact

on the eigenvalues. This is consistent with the equations of the model.

Remark that, in the case of a single output variable the optimal value of r associated with LCCA -

- i.e. any result shown in the first row (or the second row) of table 1 -- must equal to the square

root of the coefficient of determination, R2, for the corresponding linear multiple regression model.

I.e. conceptually (in this case), the linear multiple regression process is equivalent to the LCCA,

which in turn is equivalent to the polynomial KCCA of degree 1. In our experiments, we

empirically verified the above fact.

10

Our final remark, in this section, is that computing the association measure via the KCCA analysis

only takes few seconds (for n=5000). This is because the computational time of KCCA depends

on the number of samples “n”, rather than the number of input or output variables. In fact, KCCA

has a polynomial time complexity of O(n3) (Rasiwasia, Mahajan et al. 2014); unlike the

exponential time complexity of the MMIC method.

5. Conclusion

In this paper, we presented a many to many nonlinear sensitivity method for eigenvalues, which is

based on Kernel Canonical Correlation analysis. This sensitivity method overcomes the research

gaps associated with rival methods. Specifically, the proposed method not only preserves the

advantages of the multivariate maximal information coefficient method, but also has polynomial

time complexity. Moreover, there is no need to simulate the underline model. The proposed

solution only interacts with a condensed matrix representation of the model; i.e. the Jacobian

matrix. In each run, the process, which takes time, is the computation of eigenvalues from the

Jacobian matrix; and there are algorithms that compute eigenvalues very fast. Via this method,

decision-makers can rank policy parameters according to their impacts on the dominant

eigenvalues.

In the near future, we will continue the experimental work, and test the method on complex models.

In addition, we plan to develop a wrapper based parameter selection method to facilitate the

automatic ranking of parameters. Finally, in many nonlinear dynamic models, eigenvalues depend

on the current state of the model. For these cases, we plan to devise an innovative framework that

links the time trajectory of the dominant eigenvalues with parameters.

ACKNOWLEDGEMENT

This work is part of an R&D project funded by an IBM Faculty Award.

11

References

Bach, F. R. and M. I. Jordan (2005). A probabilistic interpretation of canonical correlation analysis.

Department of Statistics, University of California, Berkeley.

Chang, Y.-W., C.-J. Hsieh, K.-W. Chang, M. Ringgaard and C.-J. Lin (2010). "Training and testing

low-degree polynomial data mappings via linear SVM." The Journal of Machine Learning

Research 11: 1471-1490.

Clark, M. (2009). "Canonical Correlation." from www.unt.edu/rss/class/mike/6810/Cancorr.pdf.

Draper, N. R., H. Smith and E. Pownell (1966). Applied regression analysis, Wiley New York.

Drineas, P. and M. W. Mahoney (2005). "On the Nyström method for approximating a Gram

matrix for improved kernel-based learning." The Journal of Machine Learning Research 6: 2153-

2175.

Esbensen, K. H., D. Guyot, F. Westad and L. P. Houmoller (2002). Multivariate data analysis: in

practice: an introduction to multivariate data analysis and experimental design, Multivariate Data

Analysis.

Everitt, B. S. (2002). The Cambridge Dictionary of Statistics. 2nd edition. . Cambridge, UK. ,

Cambridge University Press.

Forrester, N. (1983). Eigenvalue analysis of dominant feedback loops. Plenary Session Papers

Proceedings of the 1st International System Dynamics Society Conference.

Gonçalves, P. (2009). "Behavior modes, pathways and overall trajectories: eigenvector and

eigenvalue analysis of dynamic systems." System dynamics review 25(1): 35-62.

Güneralp, B. (2006). "Towards coherent loop dominance analysis: progress in eigenvalue elasticity

analysis." System dynamics review 22(3): 263-289.

Hair, J. F., W. C. Black, B. J. Babin, R. E. Anderson and R. L. Tatham (2006). Multivariate data

analysis, Pearson Prentice Hall Upper Saddle River, NJ.

Hardoon, D., S. Szedmak and J. Shawe-Taylor (2004). "Canonical correlation analysis: An

overview with application to learning methods." Neural computation 16(12): 2639-2664.

Hekimoğlu, M. and Y. Barlas (2010). "Sensitivity Analysis of System Dynamics Models by

Behavior Pattern Measures."

Huang, S.-Y., M.-H. Lee and C. K. Hsiao (2006). "Kernel canonical correlation analysis and its

applications to nonlinear measures of association and test of independence." Unpublished

manuscript. http://[www.stat.sinica.edu.tw/syhuang/].

http://www.unt.edu/rss/class/mike/6810/Cancorr.pdf
http://[www/

12

Johnson, R. A. and D. W. Wichern (1992). Applied multivariate statistical analysis, Prentice hall

Englewood Cliffs, NJ.

Kampmann, C. E. and R. Oliva (2008). "Structural dominance analysis and theory building in

system dynamics." Systems Research and Behavioral Science 25(4): 505-519.

Rasiwasia, N., D. Mahajan, V. Mahadevan and G. Aggarwal (2014). Cluster Canonical Correlation

Analysis. Proceedings of the Seventeenth International Conference on Artificial Intelligence and

Statistics.

Rencher, A. C. and W. F. Christensen (2012). Methods of multivariate analysis, John Wiley &

Sons.

Reshef, D. N., Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turnbaugh, E. S.

Lander, M. Mitzenmacher and P. C. Sabeti (2011). "Detecting novel associations in large data

sets." science 334(6062): 1518-1524.

Saleh, M., R. Oliva, C. E. Kampmann and P. I. Davidsen (2010). "A comprehensive analytical

approach for policy analysis of system dynamics models." European Journal of Operational

Research 203(3): 673-683.

Sterman, J. (2000). Business dynamics, Irwin-McGraw-Hill.

Tøndel, K., J. O. Vik, H. Martens, U. G. Indahl, N. Smith and S. W. Omholt (2013). "Hierarchical

multivariate regression-based sensitivity analysis reveals complex parameter interaction patterns

in dynamic models." Chemometrics and Intelligent Laboratory Systems 120: 25-41.

Welling, M. (2011). Kernel Canonical Correlation Analysis. "A first encounter with Machine

Learning." Irvine, CA. University of California (2011): 1-93.

Yehia, A., M. Saleh, A. Taha and H. El-Shishiny (2014). A Novel Sensitivity Analysis for

Dynamic Models. The 32rd International Conference of the System Dynamics Society. Delft,

Netherlands.

13

Appendix A: The Matlab Code of the Experiments

To run our code you need the following two external m files:

1. Kernel.m which can be download from http://is.gd/icofit

2. canoncorr.m which can be found in the Matlab Statistics Toolbox

Our code consists of the folloing two m files:

1. Main.m (which is the main script)

2. ourcanoncorr.m (which is a simple wrapper function for the original canoncorr function)

Main.m

clc; clear all; close all; rng(0);

N = 5000; % Total number of Samples

X1 = rand(N, 1); % N samples for X1
X2 = rand(N, 1); % N samples for X2
X3 = rand(N, 1); % N samples for X3

for i=1:N
 j11 = X1(i)*X2(i)*X3(i);
 j12 = X1(i)*X2(i);
 j21 = X1(i)*X3(i);

 J =[j11 j12;j21 0]; % Jacobian matrix for sample i
 Yboth(i,:) = eig(J)'; % All eigenvalues for sample i
 Ymax(i,1) = max(Yboth(i,:)); % The Dominant eigenvalue for sample i

end

% Setting Y = Ymax produces the results in table# 1 in paper
% Setting Y = Yboth produces the results in table# 2 in paper
Y = Ymax;
% Y = Yboth;

c = 1; % The coefficient in the polynomial kernel function

% Computations of the various polynomial kernels for the input variables
kx1_p1= kernel(X1',X1','polynomial',1,c);
kx1_p2= kernel(X1',X1','polynomial',2,c);

kx2_p1= kernel(X2',X2','polynomial',1,c);
kx2_p2= kernel(X2',X2','polynomial',2,c);

kx3_p1= kernel(X3',X3','polynomial',1,c);

http://is.gd/icofit

14

kx3_p2= kernel(X3',X3','polynomial',2,c);

kx12_p1= kernel([X1,X2]',[X1,X2]','polynomial',1,c);
kx12_p2= kernel([X1,X2]',[X1,X2]','polynomial',2,c);

kx13_p1= kernel([X1,X3]',[X1,X3]','polynomial',1,c);
kx13_p2= kernel([X1,X3]',[X1,X3]','polynomial',2,c);

kx23_p1= kernel([X2,X3]',[X2,X3]','polynomial',1,c);
kx23_p2= kernel([X2,X3]',[X2,X3]','polynomial',2,c);

kx123_p1= kernel([X1,X2,X3]',[X1,X2,X3]','polynomial',1,c);
kx123_p2= kernel([X1,X2,X3]',[X1,X2,X3]','polynomial',2,c);

% Computations of the various polynomial kernels for the output variables
ky_p1= kernel(Y',Y','polynomial',1,c);
ky_p2= kernel(Y',Y','polynomial',2,c);

Table = zeros (3,7); % Stores the results presented in table#1 or table #2

% Line 1 : LCCA
Table(1,1) = ourcanoncorr(X1,Y);
Table(1,2) = ourcanoncorr(X2,Y);
Table(1,3) = ourcanoncorr(X3,Y);
Table(1,4) = ourcanoncorr([X1,X2],Y);
Table(1,5) = ourcanoncorr([X1,X3],Y);
Table(1,6) = ourcanoncorr([X2,X3],Y);
Table(1,7) = ourcanoncorr([X1,X2,X3],Y);

% Line 2 : KCCA -- degree 1
Table(2,1) = ourcanoncorr(kx1_p1,ky_p1);
Table(2,2) = ourcanoncorr(kx2_p1,ky_p1);
Table(2,3) = ourcanoncorr(kx3_p1,ky_p1);
Table(2,4) = ourcanoncorr(kx12_p1,ky_p1);
Table(2,5) = ourcanoncorr(kx13_p1,ky_p1);
Table(2,6) = ourcanoncorr(kx23_p1,ky_p1);
Table(2,7) = ourcanoncorr(kx123_p1,ky_p1);

%Line 3 : KCCA -- degree 2
Table(3,1) = ourcanoncorr(kx1_p2,ky_p2);
Table(3,2) = ourcanoncorr(kx2_p2,ky_p2);
Table(3,3) = ourcanoncorr(kx3_p2,ky_p2);
Table(3,4) = ourcanoncorr(kx12_p2,ky_p2);
Table(3,5) = ourcanoncorr(kx13_p2,ky_p2);
Table(3,6) = ourcanoncorr(kx23_p2,ky_p2);
Table(3,7) = ourcanoncorr(kx123_p2,ky_p2);

% EOF

15

ourcanoncorr.m

function output = ourcanoncorr(X,Y)

[A,B,r] = canoncorr(X,Y);
output = r(1);

end

