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Estimating System Dynamics Models Using Indirect Inference

Abstract

System Dynamics research has not reached its potential to impact many social science fields,
partly because it is difficult to estimate SD models using common datasets which include few
data points over time for many units under analysis. Here, we introduce indirect inference, a
simulation-based estimation method which can be applied to common data structures and is
applicable to SD models which often include intractable likelihood functions. In this method, the
parameters of the model are estimated in a way that simulated data and empirical data produce
similar statistics. We also present a case study in the context of depression research where we
apply the method, estimate the unknown parameters and their confidence intervals, and assess
the model’s fit to an empirical dataset. The overall results suggest that indirect inference can
extend the application of SD models to new application areas and leverage common panel
datasets to provide unique insights.

Keywords: indirect inference; simulation-based estimation methods; system dynamics;
Depression

Background

Most system dynamics (SD) models use a single case study and apply traditional

estimation methods (e.g., mean squared error, mean absolute percentage error, etc.) to time series

data for that case to specify unknown parameter values. However, more flexible methods of

estimation are needed in both theoretical and practical applications to leverage data structures

beyond single case time series. With increasing availability of datasets on various research

subjects, from individual level to firm and country level phenomena, formal model calibration

has become a requisite step in producing credible model-based analyses that is trusted by various

academic audiences. However, there are three major challenges in estimating SD models. First,

SD models are often complex and nonlinear and the likelihood functions are intractable. Thus
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many conventional statistical methods do not directly apply. Second, due to the structure of

many datasets, even heuristic calibration methods common in the SD practice that minimize the

differences between empirical time series and simulated counterparts may not apply. For

example, many “panel” datasets include data at only a few points in time, but for many units

under analysis (e.g., many individuals, organizations, or countries), complicating the matching of

the simulations to data using traditional methods that require many data points over time for each

unit. For the same reason, other methods such as kalman filtering (Kalman, 1960) or extended

kalman filtering (G. L. Smith, Schmidt, McGee, Aeronautics, & Administration, 1962) which

adjust state variables based on measured system behaviors cannot be used effectively when very

few data points are available over time. Third, in many applications, randomness which is

exogenous to the model boundaries has a significant role in the behavior of the system; therefore,

noise should be considered explicitly in the estimation of the model. These complications call for

the introduction of more rigorous simulation-based estimation methods to the SD literature.

The simulation-based estimation methods were introduced with the increasing

computational power of computers that made it possible to run many numerical simulations of

large datasets in short periods of time. The basic idea behind these methods is to match

properties of the simulated data to those of the empirical data. These methods include method of

simulated moments (Duffie & Singleton, 1993; Jalali, Rahmandad, & Ghoddusi, 2013;

Mcfadden, 1989; Pakes & Pollard, 1989), efficient method of moments (Durlauf & Blume,

2008), and indirect inference (Gourieroux, Monfort, & Renault, 1993; Gouriéroux, Phillips, &

Yu, 2010; A. A. Smith, 1993) to name a few. These methods are mostly useful for models with

intractable likelihood function such as nonlinear dynamic models and models with missing or

incomplete data.
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In this article, we provide an introduction to one of the most flexible methods available in

this space, and present how it can be applied in SD modeling. First, we introduce the indirect

inference method and explain the steps to estimate unknown parameters of a model. We then

present an SD model that relates depression, rumination and stressful life events to demonstrate

the estimation of this model using indirect inference. Finally, we conclude and discuss under

what conditions SD studies can benefit from the indirect inference.

Indirect Inference Method

General properties and historical background. The main idea behind the indirect inference

method is to match properties of empirical and simulated data in order to estimate the unknown

parameters of the model of interest. This method was developed to overcome the challenges of

estimating parameters of complex models for which the likelihood function is intractable. In

indirect inference method, the simulated data is generated by simulating the model of interest,

then an “auxiliary model”, typically consisting of simple regression (s), is selected and

parameters of the auxiliary model are estimated by using both the empirical and the simulated

data. The difference between these two sets of parameters of the auxiliary model is minimized to

estimate the parameters of the model of interest.

The indirect inference method has several advantages. First, there are few limitations to

the types of models to which it can be applied. The only requirement is that the model of interest

can be simulated for different values of its parameters. Second, although this method is a

simulation-based technique, it can be relatively inexpensive to compute when the auxiliary

model uses a maximum likelihood estimator, and thus the auxiliary model parameters have small

variance and could be matched reliability with few simulations (Gourieroux et al. 2010). Third,
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the indirect inference method inherits the beneficial properties of the estimation method used for

the auxiliary model (Gourieroux et al. 2010). For instance, if the maximum likelihood is used to

find the parameters of the auxiliary model, the estimated parameters resulting from indirect

inference would also have small variance. Forth, it can be used for both estimating and validating

a model. The validation step allows the modeler to decide if the model’s outputs are

indistinguishable from empirical data, or notable differences exist after estimation which could

inform further model refinement. In this article, we discuss one such validation test as well. We

also investigate the method’s validity using a separate approach where indirect inference is

applied to a synthetic dataset generated by simulation of the calibrated model, and method’s

ability to recover correct parameters (from a structurally precise model) is evaluated.

The method of simulated moments (MSM) proposed by Mcfadden (1989) is one of the

first rigorous simulation-based estimation methods, which is the workhorse of modern

econometrics, and motivates the idea of indirect inference. In this method, parameters of a model

are estimated by minimizing the difference between selected moments (e.g., mean and variance)

of empirical data and corresponding moments of model-generated simulated data. There are only

a few studies that have implemented MSM to calibrate SD models. Rahmandad and Sabounchi

(2011) calibrate a dynamic model of obesity at both individual and population levels by using

MSM and Jalali et al. (2013) discuss the application of MSM to SD models. The indirect

inference method, proposed independently by Gourieroux et al. (1993) and A. A. Smith (1993),

is very similar to MSM in matching some functions of empirical data against the same function

calculated on simulated data. However, it is more general because rather than only the statistical

moments, a wider set of functions of the empirical and simulated data can be matched to estimate

the unknown parameters. These functions are created using auxiliary models. The auxiliary
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model is typically a separate estimation, but does not need to capture the true data generating

process. The auxiliary model only serves as a lens through which we view the empirical data and

calculate functions which we will then match against their simulated counterparts. The

parameters of the model are set in a way that both empirical and simulated data produce very

similar images as they pass through this lens.

There are other methods that follow a similar logic. Structural equation modeling (SEM)

is based on matching the observed covariance matrix and model-generated covariance matrix

(Anderson & Gerbing, 1988). In actor-based network models, the statistical properties (such as

degree distribution, centrality, and clustering) of empirical networks are compared with those of

the simulated networks to estimate the parameters of a model (Snijders, 2001). Overall, indirect

inference and its derivatives are among the most flexible econometric methods for estimating

complex models using various data structures. Given its moderate computational costs, the

method could be applied easily to models of modest size and when a handful of model

parameters are to be estimated. However, estimating a large number of parameters (e.g. in the

hundreds) could be much more challenging because the underlying optimization problem is

nonconvex. There is currently no study in the literature that applies the indirect inference method

to SD models. In the next section, we introduce the method formally and present a step-by-step

guide for applying it.

The Description of the Method. Consider a general dynamic model with stock (state) variables

z, dynamics of which are described as = ( , , , ԑ ) and a set of exogenous variables, u,

and observable variables, x, which are a function of z:= ( , , , ԑ ) (1)
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Here function f describes the dynamics of the system and function g the measurement

process and structure of both of these functions are assumed to be known. A vector of random

errors with a known distribution1 ( = ⋃( , )) adds uncertainty to the dynamics and

measurements. Finally, a set of parameters, = ⋃( , ), is unknown and the goal of the

estimation process is to find these parameters. Note that the model and measurement functions

may apply to a single case or multiple units of the phenomenon of interest. For example a panel

dataset includes measures on dynamics of several parallel units (e.g., people, firms, or countries)

over time. Figure 1 summarizes the steps to estimate the model parameters (θ) by using the

indirect inference method.

First, suitable statistics of empirical data, x, are generated. Suitable statistics include

coefficients of an auxiliary model (e.g., a regression that estimates some elements of x based on

other elements or lagged values) or they can be any statistics of a dataset such as mean and

standard deviation (Wood, 2010). We call them empirical-auxiliary statistics (SEmpAux). Second,

the corresponding simulated statistics, simulated-auxiliary statistics (SSimAux), are calculated and

estimated. For a given value of θ, the model of interest (SD model) is simulated H times by using

H different streams of noise over time, ԑt (=ԑ ,…, ԑ ), h=1,…H.  As a result, H number of x are

generated. Then, SSimAux is estimated for each x. Third, the average of these estimators are found

( S ) and θ is changed to minimize the difference between the empirical-

auxiliary statistics and the average of simulated-auxiliary statistics (Gourieroux et al., 1993).

Each step is explained in more details in the following sections.

1 The distribution of the ԑ does not need to be known. ԑ can be a function of a white noise with a known distribution
and an unknown parameter of the model of interest (θ) (Gourieroux et al. 1993). Moreover, if there is uncertainty in
the initial conditions of stock variables, that uncertainty could be incorporated into the ԑ.
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Figure 1. Required steps for estimating parameters of a dynamic model

1. Define and estimate a set of empirical-auxiliary statistics. The first step is to select a

set of empirical-auxiliary statistics, which when matched in simulation, allow us to find

the model parameters. There is substantial flexibility in terms of defining these statistics.

Common empirical statistics include mean, standard deviation, autocorrelation, and

correlation matrixes of observed variables. These statistics are typically calculated across

different units of analysis (for cross sectional and panel data, e.g. mean weight in a group

of subjects), but could also be calculated over time for a single case, if we can assume the

observations are coming from a stationary system (i.e., a system in stochastic

equilibrium). Besides simple statistics, more complex auxiliary models could be defined

that relate some of the observed variables to the other ones, or to the lagged values of the

same variable. The coefficients of these models (i.e., regression coefficients) could be

then appropriate statistics to include in our empirical-auxiliary statistics vector. Note that

Simulated Data

Model of interest
(SD model)

Empirical Data

S EmpAux S SimAux

Optimization

θ

Conversion of data to statistics
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auxiliary models do not need to be accurate (i.e., the density function may not accurately

describe the conditional distribution of x for the element of x being estimated (Durlauf &

Blume, 2008)). It is an approximate model which, unlike the model of interest, can be

easily estimated with limited computational costs (e.g., using a simple linear regression).

However, the estimation would be more efficient if the auxiliary model were defined as

precisely as possible, i.e. the auxiliary model is a good approximation of some aspects of

f and g functions which are reflected in the estimated relationship (Guvenen & Smith,

2010). A more precise model reduces the variance of estimated regression coefficients

(elements of SEmpAux) and thus enables a reliable estimation with a smaller number of

simulations, H.

A couple of examples help to illustrate the idea of auxiliary models. Consider a

dynamic, stochastic, general equilibrium (DSGE) model of the macroeconomy which

describes the trend of a macroeconomic variable such as consumption (xt). This model

could be quite complex and hard to estimate directly. An auxiliary model for estimating

the more complex DSGE can be a vector autoregression for the variable of interest: =+ , (A. A. Smith, 1993). Another example is a two-level logistic model, =( ) + , in which ( ) = + + and is the

observation in the group. This model has intractable likelihood function and

conventional estimation methods cannot estimate it. An auxiliary model for

implementing indirect inference can be ∗ = + 1 + + ∗ , (Mealli &

Rampichini, 1999).

A good empirical-auxiliary statistic has four key characteristics. First, it should be

relatively stable, that is, its value should not be very sensitive to the process and
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measurement noise streams ( ). The empirical value of a noise-sensitive statistic is not

reliable and as such does not have much information to guide the identification of model

parameters. Second, good statistics are sensitive to changes in at least one of the

parameters in . In the extreme, if a statistic does not change with changes in any of the

model parameters, there is no way to backtrack the value of any parameter based on the

information in that statistic. Both of these conditions could be partially tested using

simulations. One can simulate the model in the range of parameters being considered and

measure the sensitivity of the simulated statistics with respect to model parameters

( ) and their sensitivity to different noise streams. Third, empirical statistics

should be inexpensive to calculate, or otherwise the multiple iterations needed to solve

the optimization problem may become infeasible. Therefore simple linear regressions are

preferred over regression models that require non-convex optimizations. Forth, the

number of statistics should be equal or more than the number of the parameters that need

to be estimated. In other words, ≥ where p and q are the number of elements in the

vector θ and the statistics vector SEmpAux, respectively. After choosing appropriate

statistics, including the auxiliary model(s), the empirical-auxiliary statistics (SEmpAux) are

estimated or calculated using the empirical data x.

2. Generate the simulated data using the SD model. First, H independent drawings of ԑt

(ԑ ,…, ԑ ) are generated. These streams of random numbers are generated only once and

kept constant in the rest of the process. Then for a given θ, the SD model is simulated H

times (H replications using the independent drawings above). This process creates the

simulated data which contains H paths (x , … , x ) where h=1,…,H. The number of

observations in each path should be equal to the number of observations in the empirical
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data. It should also be noted that the same ԑt (= ԑ ,…, ԑ ) are used for each value of θ

simulated during optimization (i.e., we use the same noise seed values for each iteration

of the optimization).

3. Estimate the simulated-auxiliary statistics using the auxiliary model and simulated

data. For each of the H paths, the simulated-auxiliary statistics are estimated in the same

fashion they were calculated for the empirical-auxiliary statistics. The only difference is

that instead of using empirical data, simulated data are used to estimate those statistics.

The key point is to generate the same statistics using the empirical and simulated data

(they are both < × 1 > vectors). After finding the simulated statistics for each path, the

average of these H simulated-auxiliary parameters is found as:

( S ) (2)

Typical values of H could range between a handful and hundreds, depending on

the variance of the simulated auxiliary statistics. If that variance is high, a larger H is

recommended to reduce error that is due to simulation of statistics. However, note that

computational costs scale linearly with H and incremental value of increasing H is

limited, because for the empirical statistics we only have a single path available, and thus

the total sampling error approximately scales with (1+1/H).

4. Minimize the difference between the auxiliary-empirical statistics and the auxiliary-

simulated statistics. The unknown parameters (θ) are estimated by minimizing the

weighted differences between the empirical-auxiliary statistics (SEmpAux) and the average

of the simulated-auxiliary statistics ( S ). In other words, the parameters

of the model of interest are estimated as:
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= S − S S − S
(3)

Weighting matrix (W) can be any positive definite matrix in theory, but good

choices of W are critical for getting reliable parameter estimates. Therefore, the

calibration of the indirect inference is usually performed in a two-step procedure with

two different values of W. In the first step, W can be chosen to be a diagonal matrix in

which the diagonal element i of the matrix is the inverse of square of the ith empirical

statistic (1/SEmpAux_i
2) and the non-diagonal elements are zero (let us call this matrix W1).

W1 ensures that some statistics do not dominate the optimization if their magnitude is

much larger than the others. However, W1 is not theoretically optimal in the sense that it

does not provide the lowest standard deviation for the estimated parameters. After

performing optimization using the initial W1 and getting estimates of the model

parameters ( ), we switch to another W, the inverse of the variance-covariance matrix of

the simulated statistics (using to estimate this matrix) and repeat the estimation

process. It is important to note that in calculating the variance-covariance matrix a large

number of simulations, using distinct noise streams, will be needed (in thousands).

However this step is done only once and not repeated during optimizations, so

computational costs are not a concern. The intuition behind using the inverse of variance-

covariance matrix is that those statistics which have large variance (i.e., they are sensitive

to the choice of random noise) should get lower weights. Although in many applications

stopping after the second estimation gives reliable results, W can be re-estimated (based

on achieved in the second step) to estimate a new set of parameters. This process can

be iterated through until the estimated parameters converge across successive iterations.
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The initial assumed values for θ can impact the speed of convergence in the

optimization process or trap the optimization in a local optimum. If the coefficients of the

auxiliary model and the unknown parameters in the main model are similar in their

meaning, the initial values for model parameters could be chosen to equal the

corresponding empirical-auxiliary statistics. If they are not similar, qualitative

information on the appropriate range of those parameters or rough initial estimates using

a relevant estimation method can help initialize the model from a more promising point in

the parameter space. Even with good initial points however, the optimization may get

stuck in a local optimum, so the optimization algorithm should include multiple start

points to increase the chances of finding the global optimum.

5. Model assessment test. When q>p, the optimal value of the objective function can be

used to test how well the model has been specified. The following statistic ( ) is

distributed asymptotically as a chi-square with − degrees of freedom. The null

hypothesis is that the model of interest (our SD model) is not different from the true data

generating process. If the test statistic is larger than the threshold for chi-square

distribution with the desired precision, then we reject the null hypothesis, inferring that

the model’s structure could be improved further.

= S − S S − S (4)

An Applied Example

Here we demonstrate the use of indirect inference for estimating an SD model using a

panel dataset, one of the more common scenarios in which this method can prove beneficial.

Major depressive disorder (MDD) is a disabling illness that causes feeling of sadness and loss of
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interest. Different mechanisms including genetics, cognitive, environmental, and biological

factors contribute to the disorder. To keep the applied example simple, we only focus on the

impact of rumination (a cognitive factor) and stressful life events (an environmental factor) on

MDD. In the following sections, we explain the data, develop our model, and show how the

unknown parameters can be estimated using the indirect inference method.

Data. The dataset includes 1,065 adolescents from two middle schools in Connecticut (Michl,

McLaughlin, Shepherd, & Nolen-Hoeksema, 2013). The tendency to ruminate was assessed at

three points in time (T1, T2, and T3) while the questionnaires related to MDD (The Children’s

Depression Inventory) and stressful life events (The Life Events Scale for Children) were

completed only at T1 and T3. The time between the first and second assessments and the second

and third assessments are four and three months, respectively. Table 1 summarizes the variables

and the time of data collection.

The Life Events Scale for Children (Coddington, 1972) contains 25 instances of stressful

life events and asks participants to indicate whether they have experienced any of the events in

the past 6 months (e.g., “Your parents got divorced” and “You got suspended from school”). The

Children’s Response Style Questionnaire (Abela, Brozina, & Haigh, 2002) is composed of 25

items which measures the extent to which participants ruminate when they experience sad

feelings. The Children’s Depression Inventory is composed of 27 items and measures depressive

symptoms in children and adolescents (Kovacs, 1992). After dropping missing values, the

sample includes 661 observations. Table 1 summarizes the means of variables and the time of

data collection. Fifty three percent of our subjects are female. As we have only a few data points

over time, it is not feasible to estimate the unknown parameters with the conventional time series

estimation methods in the SD literature.
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Table 1: Means and standard deviations of variables
Variable Time 1, T1 Time 2, T2 Time 3, T3

MDD symptoms 9.48 (6.28) - 9.78 (7.64)

Rumination 11.59 (7.52) 10.85 (7.62) 9.95 (7.95)

Stressful life events 4.96 (3.32) - 4.20 (3.70)
Standard deviations are in parentheses.

The Depression-Rumination Model. Figure 2 depicts the proposed model, an individual-level

model of MDD, which is based on the response style theory. This model is the result of multiple

iterations of model building, estimation, and model refinement; however, due to limited space we

only report the final model and its structure. The response style theory defines rumination as

repetitive thinking about the causes and consequences of a stressor without focusing on coping

strategies or engaging in problem solving (Nolen-Hoeksema, 2004). Engaging in rumination

increases the duration of recalling a stressor (i.e., memory time constant) and thus increases the

accumulation of stressor memory, causing an even higher level of rumination (loop R1). Current

rumination is formulated as a stock adjusting with a time constant towards indicated rumination

which is a linear function of stressor memory (Michl et al., 2013), current MDD symptoms

(Nolen-Hoeksema, Stice, Wade, & Bohon, 2007), and gender (Nolen-Hoeksema, Larson, &

Grayson, 1999). Only those stressors that are perceived negatively cause rumination and are

tracked in our formulation; stressor memory is multiplied by a fraction to calculate the stressors

contributing to rumination. In addition, higher level of rumination predicts more MDD symptoms

and longer duration of depression (Nolen-Hoeksema, 1991) (loop R2). The MDD symptoms is

the smooth of indicated MDD which is a function of rumination. Moreover, the random events

outside the model boundaries affect rumination and MDD. The randomness recognizes that

indicated MDD and indicated rumination are not deterministic and they vary by factors outside

the model boundary based on a probability distribution; however, there is some autocorrelation

in how those chance events unfold. Therefore, normally distributed pink noises are added to the
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indicated rumination and indicated MDD, ~ (0, ) and ~ (0, ) with

correlation time , respectively. All equations are presented in the online Appendix.

Figure 2: The MDD-Rumination model. Green parameters are the unknown parameters to
be estimated.

The Stressful Life Events variable does not completely represent the stock of stressor

memory in the model. An individual may ruminate about a stressor that happened more than or

less than 6 months ago. Stressor memories are not stressful events but they are memories of

those events that may cause stress when a person thinks about them. As painful experiences are

forgotten, he or she reaches a point when remembering those events would not cause stress.

However, our data does not capture this concept; we only observe the stressful events that
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occurred in the prior six months. To address this limitation as much as possible, we estimate the

stressor memory from the Stressful Life Events questionnaire by assuming that both stocks

(Stressor Memory and Stressful Life Events) have the same inflow and the initial value of the

Stressor Memory is proportional to the Stressful Life Events at Time 1 (the ratio is Memory Time

Constant divided by six months). The online appendix shows how we estimate the inflow of

these stocks. The remaining twelve unknown parameters (p=12) to estimate are listed in Table 2.

Table 2: Unknown parameters in the model
Unknown Parameters (θ) Unit
Rumination Constant (θ1) RumScore
Depression Effect Coefficient (θ2) RumScore/DepScore
Gender Coefficient (θ3) RumScore
Perceived Stress Coefficient (θ4) RumScore/Disruption
Rumination Coefficient (θ5) Dmnl*
Depression Constant (θ6) DepScore
Rumination Effect Coefficient (θ7) DepScore/RumScore
Depression Coefficient (θ8) Dmnl
Effect of Rumination on Time Constant (θ9) 1/RumScore
RumNoise Standard Deviation (θ10) Dmnl
DepNoise Standard Deviation (θ11) Dmnl
Correlation Time (θ12) Month
*Dimensionless

Steps to estimate the parameters of the MDD-rumination model

1. Define and estimate a set of empirical-auxiliary statistics. Our auxiliary models

include three regressions. The first regression, presented in equation (5), relates to

rumination. Different measurements of the same concept are distinguished by subscripts.

As mentioned in the previous section, rumination is influenced by gender, stressful life

events, and depression. Besides these variables, we also included the previous values of

rumination. The second regression presented in equation (6) captures the impact of

rumination on depression and the regressors are rumination and previous values of MDD.

The previous values of rumination and depression were included in the first and second
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regressions, respectively, because the predictive power of models improved by adding

them. In addition, incorporating previous values account for the inertia observed in those

variables and encodes information about some of the time constants in our SD model.

The third regression is an approximation of the change in stressor memory per month,

presented in equation (7). The change in stressor memory was divided by seven months

(the time between the two measurements) to get the stressor memory change per month.= + + + + + (5)= + + (6)( − )/7 = − (7)

To estimate the auxiliary-empirical statistics, we ran the three regressions (5-7).

In addition, we included the mean of MDD at T3 and rumination at T2 and T3 as statistics.

The resulting empirical statistics (q=14) are listed in Table 3. Because q>(p=12), we have

enough degrees of freedom to also test the model’s specification quality after estimation.

Table 3: The value of empirical-auxiliary statistics
Regression Statistic Empirical-auxiliary Statistic

Equation (5)

b0 -0.4663
b1 0.2313
b2 1.2021
b3 0.1316
b4 0.4548
b5 0.1749

Equation (6)
a0 2.0012
a1 0.2526
a2 0.5559

Equation (7)
c0 -0.0201
c1 -0.1222

Mean
Mean_MDD at T3 9.7852
Mean_Rum at T2 10.8487
Mean_Rum at T3 9.9546

2. Generate the simulated data using the SD model. For generating a simulated data path,

we first set the value of stocks to the corresponding empirical values (e.g.,
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MDDsymptoms0=MDD at T1). Then, we generate H=200 paths by adding random noise

to the indicated rumination and indicated depression for each individual (the resulting

noise matrix has 200 columns and 661 rows, with two noise values for each cell

corresponding to the MDD and Rumination noise). We repeat this procedure every time

step as we simulate each individuals over the 7 months of simulation.

3. Estimate the simulated-auxiliary statistics using the auxiliary model and simulated

data. After generating the simulated data, for a given θ, the simulated-auxiliary statistics

are estimated similar to the empirical-auxiliary statistics for each path. In this case, we

run three regressions parallel to those in equations 5-7, and include the other statistics to

create a S . Then, the average of these H simulated-auxiliary statistics is found as

( S ).

4. Optimization. A good estimate for the initial value of parameters can be found by

running regressions on equations of indicated rumination and indicated MDD. The initial

value for standard deviations of RumNoise and DepNoise are the residuals of these two

regressions. The initial values of other parameters, effect of rumination on time constant

(θ9), and correlation time (θ12), are arbitrarily selected. The initial values are summarized

in the first column of Table 4. The unknown parameters (θ) are estimated by using

fmincon solver in MATLAB. The same set noise matrices are used in each iteration of

the optimization. The estimated parameters are shown in Table 4. All materials for

estimating the parameters of the model are provided in the online appendix.
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Results

Table 4 shows the estimated parameters of the SD model, including estimated parameters

found in the first round of optimization, and estimated parameters after 10 rounds of

optimizations. In the first round of optimization the weighting matrix is W1, defined above. In

the next rounds of optimizations, the weighting matrix is the inverse of the variance-covariance

matrix of the statistics based on parameters estimated in the previous round of optimization. We

run 2000 simulations to estimate the weight matrices. The parameters have fully converged after

7 rounds of optimization.

Table 4: Estimated parameters in the first and 10th rounds of optimization

Unknown Parameters
Initial

Value (θ0)
First Round of
Optimization

10th Round of
Optimization

Rumination Constant (θ1) 0.3320 -0.5064 -1.2504 [-3.1920,0.6911]
Depression Effect Coefficient (θ2) 0.2490 0.1187 0.4236 [-0.1661,1.0132]
Gender Coefficient (θ3) 1.3540 0.7883 2.5152 [0.5518,4.4787]
Perceived Stress Coefficient (θ4) 0.1240 0.0824 0.2518 [0.0227,0.4809]
Rumination Coefficient (θ5) 0.5470 0.6202 0.1639 [-0.8064,1.1342]
Depression Constant (θ6) 2.0010 0.3207 0.3730 [0.2968,0.4491]
Rumination Effect Coefficient (θ7) 0.2520 0.0530 0.0699 [0.0638,0.0759]
Depression Coefficient (θ8) 0.5560 0.9102 0.8894 [0.8822,0.8967]
Effect of Rumination on Time Constant (θ9) 1.0000 2.1865 1.4741 [1.3735,1.5747]
RumNoise Standard Deviation (θ10= ) 5.8000 2.8678 7.8735 [-0.1391,15.8861]
DepNoise Standard Deviation (θ11= ) 6.0500 0.0016 0.0002 [-0.0307,0.0311]
Correlation Time (θ12) 1.0000 0.4266 1.6008 [0.0456,3.1559]

95% confidence interval are presented in parentheses.

Figure 3 compares the results of the first round of optimization and the final optimization.

The blue circles represent the simulated-auxiliary statistics and the red bars depict the 95%

confidence interval of empirical-auxiliary statistics (where such confidence intervals are

available from auxiliary model estimations). The estimated parameters from the first round of

optimization generate a few simulated-auxiliary statistics that are far away from the 95%

confidence interval of the empirical-auxiliary statistics (Figure 3-A). After 10 rounds of

optimization, almost all of the simulated-auxiliary statistics are within the 95% confidence
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intervals of the empirical-auxiliary statistics (Figure 3-B). Table 5 presents the values of the

simulated and empirical auxiliary statistics shown in Figure 3.

Figure 3: Empirical-auxiliary statistics and simulated-auxiliary statistics generated using the
estimated parmeters from the first (A) and the 10th rounds of optimization (B)
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Table 5: The values of empirical-auxiliary statistics and simulated-auxiliary statistics generated using the estimated parameters from
the first and higher rounds of optimization

Regression Statistics
Empirical-Auxiliary

Statistics

Simulated-Auxiliary
Statistics

(First round of
optimization)

Simulated-Auxiliary
Statistics (10th

round of
optimization)

Equation (5)

b0 -0.4663 [-1.4883, 0.5557]* -0.48496 -0.09359
b1 0.2313 [0.1680, 0.2947] 0.196941 0.511783
b2 1.2021 [0.3046, 2.0996] 1.128222 1.609224
b3 0.1316 [0.0064, 0.2569] 0.134688 0.221293
b4 0.4548 [0.3819, 0.5276] 0.38188 0.225195
b5 0.1749 [0.1028, 0.2470] -0.01602 -0.07331

Equation (6)
a0 2.0012 [1.0910, 2.9113] 2.004988 2.234688
a1 0.2526 [0.1894, 0.3157] 0.263558 0.234232
a2 0.5559 [0.4760, 0.6358] 0.538416 0.5394

Equation (7)
c0 -0.0201 [-0.06850, 0.0282] -0.02015 -0.06472
c1 -0.1222 [-0.1588, -0.0857] -0.04511 -0.00205

Mean
Mean_MDD at T3 9.7852 [9.2013, 10.3690] 9.169462 9.722089
Mean_Rum at T2 10.8487 [10.2665, 11.4309] 8.563383 10.31732
Mean_Rum at T3 9.9546 [9.3475, 10.5617] 7.8181 10.13648

*95% confidence interval are presented in brackets.
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Model specification and refinement

As it was explained in the fifth step of the method, when q>p, a test can be used to assess

how well a model has been specified. Using equation 4, the found to be 220. The 99% cut-off

value for a Chi-square distribution with 2 degrees of freedom (14-12=2) is 9.2. Although almost

all simulated-auxiliary statistics are within the confidence interval of the empirical-auxiliary

statistics, our is still higher than the cut-off value ( = 220 > = 9.2), hence, the model

can be further refined.

Internal validity of this method can be tested using simulations. We thus check whether

the parameters estimated by applying the indirect inference to a synthetic dataset, generated by

simulating the calibrated model with coefficients reported in Table 4, are similar to true values

(used for creating the synthetic data). The main idea behind this test is that in this case the data

generating process is perfectly modeled and true parameter values are known, so any errors in

parameter estimates can be attributed to the estimation method. The parameters in the third

column of Table 4 are used to simulate the model and generate a synthetic dataset. Then all steps

explained in the description of the model are applied to the synthetic data to find the indirect

inference estimates. As it is shown in Table 6, the true parameters that are used to generate the

synthetic data (first column) are within the 95% confidence interval of the estimated parameters

using the synthetic data (second column). is 7.48 which is lower than the cut off value.



23

Table 6: Estimated parameters using empirical data and synthetic data

Unknown Parameters
Parameters Used

to Generate
Synthetic Data

Estimated Parameters
Using Synthetic Data

Rumination Constant (θ1) -1.2504 -0.0915 [-3.83, 3.65]*
Depression Effect Coefficient (θ2) 0.4236 0.3111 [-0.03, 0.66]
Gender Coefficient (θ3) 2.5152 2.8423 [-1.58, 7.27]
Perceived Stress Coefficient (θ4) 0.2518 0.2411 [-0.19, 0.67]
Rumination Coefficient (θ5) 0.1639 0.1722 [-1.19, 1.54]
Depression Constant (θ6) 0.3730 -0.4226 [-7.00, 6.15]
Rumination Effect Coefficient (θ7) 0.0699 0.0948 [0.05, 0.14]
Depression Coefficient (θ8) 0.8894 0.8923 [0.77, 1.01]
Effect of Rumination on Time Constant (θ9) 1.4741 1.4920 [1.39, 1.60]
RumNoise Standard Deviation (θ10= ) 7.8735 7.1009 [0.90, 13.30]
DepNoise Standard Deviation (θ11= ) 0.0002 17.9914 [-77.01, 113.00]
Correlation Time (θ12) 1.6008 2.7767 [-1.22, 6.77]

*95% confidence interval are presented in brackets.

Conclusion

This article provides a step-by-step introduction to the indirect inference method for

estimating unknown parameters of dynamic models. In this method, the unknown parameters of

the model of interest are estimated by matching the properties of empirical data and simulated

data. In many applications, there are few empirical data points available over time; as a result, it

is not feasible to use the conventional estimation methods such as the least squared error. In

addition, unlike traditional methods, the indirect inference does not require the calculation of

likelihood function, which may well be intractable for complex models. The indirect inference

method extends the MSM by removing the requirement that the matching statistics be a set of

valid moments. They can be parameters of an auxiliary model which is not an accurate

description of the data generating process but it can be estimated easily by conventional

estimation methods. When the dynamic model is too complicated with intractable likelihood

function, when there are very few empirical data points over time, or when the number of

available valid moments are smaller than the number of parameters of the model, indirect
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inference might be one of the few feasible options to estimate the unknown parameters of an SD

model.

Results could make the contribution of SD to other fields more salient. For example,

previous models of MDD have not incorporated the feedback mechanisms we discussed in our

model. Our modeling and estimation results suggest that these feedbacks are indeed important

and may be central to understanding MDD. Without the SD perspective, the previous literature

ignored these feedback mechanisms, or at least did not quantify them. On the other hand, in the

absence of indirect inference, traditional calibration methods in SD literature would not allow for

using the common data structures available in this field (e.g. with 2-3 data points per person) to

estimate a feedback-rich model. Many empirical datasets in psychology, medicine, organization

studies, economics, and sociology share a similar structure. The results thus show the potential

synergies between SD and indirect inference which could be explored well beyond MDD

research.

Many advances in statistics have enabled researchers to estimate increasingly complex

and realistic models with diverse types of data over the past three decades. We believe for SD to

contribute to mainstream disciplinary research across various fields of social and behavioral

sciences, modelers must be able to draw on the best available methods to estimate feedback-rich

mechanism based models using quantitative data. We hope the introduction of indirect inference

extends the toolbox of SD researchers and allows them to combine the benefits of broad model

boundary and feedback richness, which traditional SD brings to understanding various

phenomena, with the quantitative rigor of modern econometrics.
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