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ABSTRACT 

 

This research unpacks the title’s quoted characterization of association football, made by 

an early student of cybernetics who became a legendary soccer manager.  It identifies 

four nested domains of football activity that guide each action during a match and 

specifies the characteristics, abilities, activities and other elements within each domain.  

It provides examples of those domains’ causal interplay.  Methodologically, it explores 

the contributions to understanding competitive match actions and results that systems 

thinking, system dynamics, agent based modeling, spatio-temporal modeling and 

dynamic network analysis offer.  It proposes a model of competitive double loop learning 

to explain individual and team adjustments to match developments.  It concludes that a 

multi-method approach is required to model competition among the two sport 

subsystems, in which system dynamics will play a limited role.     
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“Two Subsystems of Eleven Elements”: System Dynamics and 

Other Approaches in Modeling Association Football  
 

Introduction and Motivation 

The studies of systems thinking and soccer first intersected in the Soviet Union in the 

analysis of Valeriy Lobanovskyi, fabled manager of FC Dynamo Kyiv and several other 

teams from 1970 to 2002.  His engineering training at the Kyivan Polytechnic Institute 

caused him to see soccer  

as a game of twenty-two elements – two subsystems of eleven elements – 

moving within a defined area (the field) and subject to a series of 

restrictions (the laws of the game).  If the two subsystems were equal, the 

outcome would be a draw.  If one was stronger, it would win.  

[Lobanovskyi observed that] the efficiency of the subsystem is greater 

than the sum of the [players’ efficiencies, which] meant that soccer was 

right for the application of cutting-edge cybernetic techniques being taught 

at the institute.  Soccer, he concluded, was less about individuals than 

about coalitions and the connections among them. (Wilson, 2013: 279) 

Association football (known as soccer in the United States) is a ball sport contested on a 

rectangular field of play or “pitch” by two competing teams, generally of eleven active 

players each, according to seventeen “laws” of the sport (FIFA, 2014), officiated by a 

referee and several assistants.  A match is at least ninety minutes long.  During it, each 

team or “side” usually aims to score goals greater than or at least equal in number to the 

goals it concedes to the opposing team.  A goal is scored by propelling the soccer ball 

mostly by players’ feet and heads into a rectangular goal, measuring 8 feet high by 8 

yards wide, that is centered at their opponent’s end of the field.  Soccer is played and 

followed throughout the world more than most any sport, and is known as The Simplest 

Game (Gardner, 1996).  Modeling play throughout a match however is anything but 

simple.  This paper initiates research to frame a computational model for understanding 

the complexity of the simplest game.  

Simulation in soccer 

Simulation of association football matches in any form of computing environment dates 

back to arcade games in the 1970s (Kohler, 2005) and to the annual RoboCup 

international robotics competition founded in 1997. The name RoboCup is a contraction 

of the competition's full name, "Robot Soccer World Cup”. (Wikipedia, 2015) The 

sponsoring RoboCup Federation aims “to promote robotics and [artificial intelligence or 

“AI”] research by offering a publicly appealing but formidable challenge, [namely that] a 

team of fully autonomous humanoid robot soccer players shall [by 2050] win 

a soccer game, complying with the official rules of FIFA, against the winner of the most 

recent World Cup." (RoboCup Federation, 2015)   

http://en.wikipedia.org/wiki/Robotics_competition
http://en.wikipedia.org/wiki/FIFA_World_Cup
http://en.wikipedia.org/wiki/Humanoid
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Soccer
http://en.wikipedia.org/wiki/Soccer
http://en.wikipedia.org/wiki/FIFA
http://en.wikipedia.org/wiki/FIFA_World_Cup
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Weise (2006) lists some of the challenges facing AI/robotics researchers in pursuing their 

objective, giving the complexity of heading the ball successfully into the goal as a prime 

example.  The competition has promoted substantial research effort.  RoboCup 

Symposium papers have appeared for more than a decade as Springer Lecture Notes on 

Artificial Intelligence.   

 

Soccer simulation research extends beyond the RoboCup competition.  Ahmadi, Lamjiri, 

Nevisi, Habibi, and Badie (2003) make two proposals intended to cause simulated player-

agent behaviors to better imitate real-life soccer competition. They propose a two-layered 

case-based reasoning paradigm that estimates optimal formats of case-based modules, 

thereby greatly reducing the number of cases that the simulation must store.  Then, 

through continuous interaction between the data-gathering layer (players) and data 

storage and analysis (manager), leadership prescribes players’ activities and uses the data 

that they collect to enhance future predictions and instructions.  In the process new cases 

are obtained and prior stored cases are revised.   

 

Van der Kamp (2006) tested for effects on successful penalty kick placement in a 

simulation in which groups of individuals received varied instructions on their shot-

taking strategies and varied information regarding goalkeeper movement during their 

shots. Tuong Manh Vu, Siebers, and Wagner (2013) also simulated penalty kick-taking.  

They observed that use of crisp sets (Ladeh, 1965) within a belief-desire-intention 

software model can lead to unwanted “preferred” actions, due to sudden variation among 

ranges of decision variables, while fuzzy set use led to smoother transitions and more 

consistent decisions.  Bazmara (2014) focused on desired characteristics of football 

players based on position played. They offer a fuzzy set based model called “soccer 

player position identification” to identify the most appropriate position for each. 

 

FIFA15 (2014) and its forebears are a popular association football simulation video game 

developed by EA Canada which runs across a variety of gaming and personal computing 

platforms.   In both association and American football, increasingly “realistic” video 

game simulations project match outcomes and function as learning laboratories 

(Sullentrop, 2015). 

 

In articulating relationships and simulating behavior within real-life soccer matches, 

several overlapping or at least complementary perspectives and methodologies come to 

mind. We present these next. 

Modeling approaches: systems, agents, space/time, social networks 

Lobanovskyi’s characterization of soccer, quoted above, speaks of systems, elements and 

area.  This may be read to suggest that three complementary methods, corresponding to 

those components, be used in framing a computational model of association football.  As 

we explain below, we believe that a reasonably comprehensive model will require the use 

of agent-based modeling (“ABM”) and spatio-temporal modeling (“STM”), at the least.  

We believe there will be instances in modeling agent performance in which a systems 

thinking or system dynamics (“SD”) approach will be helpful, too.  Parunak, Savit, and 
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Riolo (1998:1) state that SD and ABM are distinct but complementary methodologies. 

Macal (2010) indicates that many systems can be equivalently modeled in these two 

approaches, even though they “take fundamentally different perspectives when modeling 

a system”.  Because both approaches explain dynamic, nonlinear social behavior, albeit 

from different directions, Rahmandad and Sterman (2004) and others have called for 

cross-study and joint research between them.  

 

Systems theory and systems thinking  

 

Systems theory, first advanced by Ludwig von Bertalanffy (1945, 1968), plus the early 

cybernetics work of Norbert Wiener (1948, 2013) and Ross Ashby (1956) provide the 

context for Lobanovskyi’s characterization of football. Both systems theory and 

cybernetics explore the structures, constraints, and possibilities of self-regulated systems, 

whether these are animal, mechanical or social.   

 

Peter Senge’s popularizing work (1990, 2006) exposed the general public to the 

possibilities and implications of systems thinking (“ST”).  Senge (2006: 78) describes ST 

as a “framework for seeing interrelationships rather than things, for seeing patterns of 

change rather than static ‘snapshots’”, and for seeing interconnectedness or “feedback” 

among model elements.  From this, Senge infers that “[t]he real leverage in most 

management situations lies in understanding dynamic complexity, not detail complexity”.  

The essence of ST “lies in a shift of mind … seeing processes of change rather than 

snapshots” (81-2).  Its “building blocks” are reinforcing and balancing feedback loops, in 

which effects become causes, and feedback delays, which are “interruptions in the flow 

of influence which make the consequences of actions occur gradually” (87). 

 

System dynamics   

 

Forrester (1961) extended engineering control theory to offer SD as a method to 

mathematically model behavior in systems. While causal loop drawings are a key tool in 

both ST and SD, system dynamics provides a mathematical modeling approach that 

extends ST through identification and specification of stocks and flows.  These are key 

elements that employ calculus to simulate systems’ behaviors.  Stocks are state variables 

that mathematically are integrals, while flows are their rates of change (i.e., first 

derivatives).  Stocks can represent a range of state variables from physical quantities to 

psychological states.  Most commonly, SD models quantify flows as percentage rates of 

change of the stocks they affect and thereby generate nonlinear behavior in those stocks. 

 

SD models generally treat groups of individuals (e.g., teammates) as being fundamentally 

homogeneous or “continuously divisible”, mixed within a stock that includes all of them 

(Sterman, 2000).  Yet players are multi-dimensionally complex and heterogeneously 

distinct, leading to variance within each of a number of dimensions, variance that likely 

will be difficult to trace in SD. Schwaninger and Ríos (2008) observe that SD does not 

provide a framework for pattern-based organizational structures.  

 

http://en.wikipedia.org/wiki/Ludwig_von_Bertalanffy
http://en.wikipedia.org/wiki/William_Ross_Ashby
http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/Jay_Wright_Forrester
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In practice, firm-level consequences can emerge from individual effects in ways that 

evade SD modeling practices.  Salient individual characteristics, and their combinations, 

do not always follow normal distributions across populations.  To try to account for such 

heterogeneity in data sets, SD software permits the tracing of aging chains and 

simultaneous co-flows, as well as the use of data subscripts.  Repeated use of these 

techniques quickly becomes cumbersome, however, as the number of dimensions of 

interest grows, as Cavaleri, Labedz and Stalker (2012) demonstrate.  Macal and North 

(2010) describe ABM as a way to model the dynamics of complex adaptive systems that 

often self-organize themselves and create emergent order, and we turn next to that 

approach.   

 

Agent based models   

In actual play, each team’s players form a dynamically positioned network of eleven 

agents who follow individual and collective decision rules to the best of their personal 

abilities, and in response to opponents’ actions, within their team’s broader tactical 

“game plan”.  They interact with their teammates, opponents, and other elements of the 

environment. Their individual behaviors arise as they and others employ decision rules 

(Holland, 1995). Kirman (1992) argues that reducing characteristics of such agents to one 

of uniform sameness is usually unjustified and causes misleading conclusions.   

Researchers employ agent based modeling (“ABM”) and complex network mapping to 

model complex adaptive systems (Holland 1992, 2006); we focus on the former here.  In 

modeling systems consisting of active agents, Borshchev and Filippov (2004) argue that 

ABM is more efficient than other techniques.  It focuses more, and more efficiently, than 

does SD on individuals’ interactions, modeling and examining the “global consequences 

of [their] individual or local interactions…” (Scholl, 2001).  ABM has been used to 

simulate several personnel issues outside football, including the hiring process and 

cessation of employment (Tesfatsion, 2001), organizational withdrawal behavior by 

employees (Hanisch, 2000), and motivational effects of pay for performance systems 

(Schwab and Olson, 2000).  

Several scholars have combined agent-based and system dynamics models.  Größler, 

Stotz and Schieritz (2004) designed a small Vensim model to provide internal decision-

making schemata to supply chain agents modeled using the RePast agent software.  

Akkermans’ SD model incorporated supplier and customer agents who differed only in 

“the degree in which they emphasize the short-term or the long-term performance of their 

counterparts…” in making contracting decisions (Akkermans, 2001:4).  Geerlings, 

Verbraeck, de Groot and Damen (2001) modeled the manpower planning process in the 

Royal Netherlands Navy.  Labedz and Stalker (2008) described challenges and responses 

in designing and implementing a multi-level SD model for anticipating employee 

retirements that accepted periodic agent-level data overrides.  

 

Spatio-temporal modeling   

 

Gudmundsson and Wolle (2014) note that several firms currently offer the ability to track 

visually the locations of soccer players and the ball with high accuracy and resolution, 
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then offer tools (relating to passing, pass sequencing and player trajectories) to aid the 

task of automated football data analysis.  

Lucey, Oliver, Carr, Roth and Matthews (2013) note the greatly increased volume of ball 

and player tracking information generated within professional sports for analytical 

purposes but its limited utility to date in analyzing a team's tactics and strategy. They 

provide an overview of the types of analysis currently performed mostly with hand-

labeled event data and highlight the problems associated with the influx of spatiotemporal 

data. They test their approach through analysis of nearly 380 matches. In doing so, they 

represented team behavior by chunking the incoming spatiotemporal signal into a series 

of quantized bins, and generate an expectation model based on a codebook of past 

performances.  

Wei, Sha, Lucey, Morgan and Sridharan (2014) also observe teams’ increased and unmet 

interest in using spatiotemporal data for competitive advantage. They identify as 

obstacles a lack of a suitable ordering of players that can be immune to the extremely 

large number of possible permutations, and the high dimensionality of the temporal 

signal.  They use "role-representation" technique as well as a feature reduction strategy to 

form a compact spatiotemporal representation, to determine likely team formation 

patterns.  

Bialkowski, Lucey, Carr, Yue, Sridharan, and Matthews (2015) also note that the 

collection of player and ball tracking data is fast becoming the norm in professional 

sports, [but that] large-scale mining of such spatiotemporal data has yet to surface.  They 

use minimum entropy data partitioning to align multi-player tracking data, allowing for 

the visualization of formations and providing grounded role-based information on 

individual players. They test their approach using data from nearly 380 professional 

matches (approximately 480 million data points, as collected ten times per second) and 

present a method for identifying teams’ formations from role distributions. 

 

Social network modeling 

 

Recalling Lobanovskyi’s depiction of a football contest between subsystems of eleven 

elements, we may see players and their opponents as elements of two interlocking social 

networks that compete for match success.  Much social network research to date depicts 

groupings at discrete points in time.  Published research regarding so-called dynamic 

networks (Carley, 2003) and tools for studying these trails other approaches that we 

review here, but this emergent field may in the future help to understand soccer and other 

organizational success (Jenewein, Kochanek, Heidbrink and Schimmelpfenning. (2014); 

Lee and Lee (2015)). 

Which approach or combination of approaches is most likely effective in modeling the 

behaviors and performance within the football subsystems that Lobanovskyi observed?  

What role should SD modeling play?  To lay a foundation for answering this question, we 

turn now to a framing of relevant characteristics, abilities and spatial considerations that 

footballers face, and behaviors they enact. 
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The domains of football activity 

Each player’s actions throughout a match (what he “Does”) relate to four domains.  First 

and centrally, data on who he “Is” consists of certain physical characteristics (height, 

weight) and capabilities (stamina, jumping and running abilities), personal motivation, 

and current position on the pitch.  Second, the set of all activities he is then able to 

perform comprise the set that he “Can” do at a particular moment tn. Third, because at 

any tn he can only perform those activities of which he is then capable, “Does” must be a 

proper subset of “Can” activities.  Why he chooses at each tn to act as he does, from 

among the set of all activities he is then able to perform, largely is bounded and governed 

by the “Because” of teammates, opponents, team expectations, planned tactics, 

encountered tactics, match conditions, pitch position, the ball’s location, and the like.  

Thus for each player on the field, as well as substitute players poised to enter from the 

sideline, the four domains nest as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

I =Is; D = Does; C = Can; and B = Because. 

 

Figure 1. Diagram of nested IDCB domains 

 

 

The player’s makeup: the “Is” domain.   

 

Data elements of this domain include some that do not vary within a match (the player’s 

height, team affiliation), others that vary somewhat predictably (weight, stamina), and 

some that are more situationally dependent (e.g., position on pitch). Within a player’s 

“Is” domain we also include elements of his background, experience, skills and 

knowledge going into the match at hand.  Labedz and Berry (2011) frame an individual’s 

entire set of work-related characteristics, skills and knowledge, and motivations, and 

environmental factors, within a Right WorkForce
TM

 model.   

 

Each player brings to a match a set of personal characteristics, abilities and motivations: 

the essence of who one “Is” as a player.  These qualities affect his success in translating 

each action choice (“Can”) into a “Does” accomplishment.  In fact, his understanding of 

his “Is” qualities (and other factors) often will influence his “Can” choice.  In short, he 

may select one action (of which he is more capable) over another of which he is less sure.   

 

For example, taller players may be more successful in heading the ball, and quicker 

players may fare especially well in accomplishing a maneuver known as “beating the 

 I D C 

B 
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offside trap”.  A confident player who values individual achievement may choose to take 

on a defender by personally dribbling the ball rather than passing it to a less-defended 

teammate. Knowledgeable defenders may successfully “escort” an opponent who 

strongly favors one foot over the other into less threatening attacking opportunities on the 

opponent’s “weaker” foot.   

 

Table 1 sets forth the individual characteristics, abilities and range of motivations – 

“who” one “Is” as a player included in a club or national team roster – that affect his 

success in translating his action (“Can”) choice into a “Does” accomplishment.   

 

Table 1. Principal elements of the field player’s “Is” domain  

 

Characteristics Abilities Motivation 

1. height 

2. weight 

3. center of gravity 

4. preference for foot 

5. incidence of injury 

6. impediment by injury 

7. physical conditioning 

8. stamina 

9. nationality / ethnicity 

10. gender 

11. pitch location 

12. heading effectiveness, 

13. right- or left-footed: 

a. dribbling, 

b. passing, 

c. shooting power 

d. shooting 

accuracy 

14. tackling ability  

15. ability to “see the 

field” 

16. sprinting ability 

17. quickness 

18. ability to find “open 

space” 

19. ability to advance and 

cross the ball 

 

and others as valued by 

specific clubs. 

Drives:  

20. for individual 

performance 

excellence,  

21. for personal 

recognition, honors, 

22. for team success, 

23. for team harmony, 

24. to improve or 

maintain contract 

status (at a cost to 

team in future 

years), and 

25. to maintain one’s 

roster and lineup 

positions, 

 

 

or corresponding forces 

promoting demotivation.  

 

 

Data elements of the “Can” and “Does” domains 

 

Team possession of the ball changes often in the course of a professional soccer match, as 

in several other sports.  Anderson and Sally (2013: 112) estimate that each team turns the 

ball over to its opponent nearly 200 times per match, and that teams “control” possession 

– retain it for more than a fleeting moment – in only about half of those cases.  Whenever 

one’s team possesses the ball, we call all of its members “attackers”, whether each 

personally is then actively pursuing an attack or not.  At that same instant, all one’s 

opponents are “defenders”.  With almost 400 turnovers on average per game, attackers 

become defenders, and vice versa, every fourteen seconds on average.  Anderson and 
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Sally conclude that [s]occer is not a possession sport.  It is a game of managing constant 

turnovers.” 

 

Against that landscape of oft-changing possession and roles, we enumerate possible and 

actual player activities, the “Can” and “Do” domains, within three player statuses.  We 

focus first on the single player who is currently in possession of the ball, then on his 

teammates, who are all temporarily “on attack”, and then on their opponents, each 

temporarily “on defense”.  (We postpone consideration of goalkeepers, who rarely take 

on an attacking role or even venture more than 24 meters from the goals they defend, to 

later research.)    

 

Possible Actions of the Player in Possession   

 

A player with the ball faces an immediate fundamental choice: to try to retain it 

personally, or not.  This player often must make the choice under time pressure due to an 

immediate or impending challenge from an opponent, an emerging or disappearing 

opportunity to shoot or to pass the ball to a teammate, or (least often) a time limit 

imposed by the sport’s laws.  The player in possession (“PIP”) often does not possess 

perfect information about the likely consequences of each action available to him.  With 

each time he chooses to try to retain possession personally and succeeds, he confronts a 

next multimodal choice within moments.  So do many of his teammates and members of 

the opposing team, all as described in subsequent sections. 

 

Empirically, a PIP’s action in trying to Control the ball personally involves retaining 

possession through one of three tactics.  He may try simply to hold possession of the ball 

at his feet, awaiting a later moment at which to take other action.  (Often he shields the 

ball with his back to his opponent as he tries to “hold” or retain personal possession.)  

Alternately, he may attempt to dribble the ball deftly around or through his opponent’s 

feet while maintaining close contact with it.  Third, he may pass the ball to himself “in 

space”, striking it past his opponent and then retrieving it before anyone else can do so. 

 

A PIP who chooses not to try to retain it personally generally tries to Pass it to a 

teammate (or to anywhere else on the pitch that seems safer, at that time, for his team’s 

fortunes) or to Shoot it at the opponent’s goal.  (In extreme circumstances, the PIP Gives 

Up possession by sending the ball into an empty space on the field, or to a distant 

opponent, or even out of bounds.)  Occasionally, he may risk committing a Foul (a 

violation of the laws) to advantage his team. Although he may be said to operate “by 

instinct” at points in time, the PIP presumably makes a simplified optimizing decision 

with each touch of the ball.  He seeks the best (or least bad) estimated Outcome for his 

team among these choices: attempt to Control the ball personally, Pass it, Shoot it at goal, 

Give up possession, or commit a Foul.  His optimizing algorithm is MAX @ tn (OC, OP, 

OS, OG, OF).  Often, multiple teammates present him (e.g., OP7, OP10) passing 

opportunities at tn, sub-options for him within OP. 

 

What is that next Outcome for his team?  Customarily the favorable ones are that his 

team continues in possession or it scores a goal.  An unfavorable Outcome usually means 
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neither continued possession nor goal scored.  Possession here means his continued 

possession of the ball, its possession by a teammate, or possession awarded to his team 

by a law (as in sideline throw-in, a free kick awarded upon an opponent’s infraction of 

the laws, or a corner kick).  Yet some teams have succeeded over the past century without 

high quantity of possession (measured in percentage of minutes per match) or frequency 

of shooting or goal scoring.  Those successes suggest an additional success criterion or 

refinement, Quality of Possession, which we will explore below once we define the 

basics of play while not in possession. 

 

Activities of PIP’s teammates   

 

What activities do a possessing team’s players pursue when they personally are not in 

possession of the ball?  Those activities mostly involve each individual’s positioning on 

the pitch.  He may try to Improve his position to receive a pass, thereby offering a greater 

passing OP to the PIP.  He may instead take little or No action, as when he is 

appropriately positioned at that time to play his defending role if his team loses 

possession.  In Attacker covering, he moves to cover a defensive assignment that an 

attacking teammate will not be able to perform if their team loses possession.  In some 

cases, as in “selling a dummy”, an attacking player’s best option may be temporarily to 

Refrain from touching the ball or being involved in play at all.  Or, like a PIP, he may 

need to risk committing a Foul to advantage his team.   In summary, attackers when not 

personally in possession are making and remaking choices often from among this set of 

possible activities, each striving for optimal consequences for their team: [I, N, A, R, F].   

 

Activities of PIP’s opponents   

 

Each player on the non-possessing team always engages in one of eight activities: 

Challenging, Escorting, Marking, Blocking, Defending, Trapping, Refraining, or Fouling.  

By Challenging (“X”) we mean actively challenging the PIP for possession of the ball.  

In Escorting, a defender instead simply tries to force the PIP to follow a path the attacker 

does not prefer; examples include forcing the PIP to play the ball with his “wrong foot” 

or to play too close to a boundary line. By Marking we mean paying defensive attention 

to an opponent who is not then in possession.  Blocking refers to a defender’s success in 

impeding an opponent’s intended pass or shot, wherever that impairment may occur 

along the ball’s path.  In Defending (“Z”) we mean otherwise positioning oneself 

properly to defend, including moving to cover a defensive assignment that a teammate 

appears not able to perform, as when a teammate has “lost” his defensive assignment.   

 

Trapping refers to a specific maneuver, countenanced by the laws, in which defensive 

players act to gain ball possession – by not actively defending.  Such an “offside trap” is 

orchestrated by defenders who move away from their own goal line in unison so as to 

position a pass-receiving attacking player closer to it than they are, at the moment his 

teammate (passer) strikes the pass.  If the offside trap succeeds, the referee stops the 

attack and the attacking team loses possession of the ball.  If the maneuver is 

unsuccessful, however, an attacker may “spring the offside trap” and possess a 

particularly attractive opportunity to shoot and score a goal. 
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In some circumstances, Refraining as defined previously may be an appropriate choice 

for a defender too.  Most Fouling occurs when a defender challenges or blocks an 

opponent or a shot, but – despite its resulting penalty – a defender’s commission of a foul 

may be an outcome preferred by his team.  Thus, defenders constantly are making and 

remaking optimizing decisions from among this set of eight activities [X, E, M, B, Z, R, 

T, F], a set larger than the one available to attackers.   

 

Table 2 compiles the set of the actions from which players choose at any given match 

moment.  In normal circumstances, there are one PIP, nine other attackers, and ten 

defenders on the pitch, plus each team’s goalkeeper.  What each of the field players 

attempts to do in the moment is his single choice selected from the multiple options then 

available to him.  As in Figure 1, “Does” is thus a proper subset of “Can”.  A player’s 

chosen action also depends for selection and success upon his “Is” and “Because” 

domains. 

 

Table 2. Possible “Can”/”Does” activities of non-goalkeeping players at each tn.   

 

Player in possession Other Attackers Defenders 

C: control the ball 

personally, holding, 

dribbling or self-passing it 

 X: challenge the player in 

possession for the ball 

  E:  “escort” the player in 

possession on a path he does 

not prefer 

P: attempt to pass the ball to 

a teammate 

I: improve one’s position to 

receive a pass, by traveling 

to another location 

M: “mark”, or pay defensive 

attention to an attacker who 

is not in possession 

S: attempt to shoot the ball at 

the opponent’s goal  

N: take no activity, believing 

oneself properly positioned  

B: attempt to block an 

opponent’s pass or shot  

 A: on attack, position oneself 

to “cover” defensively for a 

teammate’s positioning 

Z: on defense, otherwise 

position oneself “properly”, 

including to “cover” for a 

teammate’s positioning  

 R: when to his team’s 

advantage, refrain from 

touching the nearby ball 

R: when to his team’s 

advantage, refrain from 

touching the nearby ball  

G: act to give up possession, 

as in clearing the ball “into 

space” or across a boundary 

line 

 T: attempt to trap an 

opponent in an offside 

position 

F: commit a foul F: commit a foul F: commit a foul 

Optimizing algorithm: MAX 

@ tn (OC, OP, OS, OG, OF) 

Optimizing algorithm: MAX 

@ tn (OI, ON, OA, OR, OF) 

Optimizing algorithm: MAX 

@ tn  (O X, OE, OM, OB, OZ, 

OR, OT, OF) 
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Data elements of the “Because” domain 

 

The “Because” domain includes all relevant environmental factors external to the 

individual player.  Within that domain, we identify teammates, opponents, team 

leadership, team objectives and expectations, team formations, planned tactics, 

encountered tactics, match conditions, match developments, and the like.  It also includes 

player and ball positioning on the pitch throughout the match, a topic covered in a 

separate section below. 

 

Thus, the “Is”, “Can” and “Does” aspects of each teammate and opposing player 

constitute important elements of a player’s environment, and his of theirs.  Each player, 

with his characteristics, attributes and continual choices among individual activities, is 

one of the twenty-two elements that Lobanovskyi discerned in the competing subsystems.   

 

A team’s formal (manager) and on-field (team captain, goalkeeper) leadership will shape 

its pre-match and within-match efforts.  A host of pre-match factors will shape first 

expectations for a match.  Thus, sometimes a team will not actively play to win, because 

of a greater perceived risk of loss.  Instead, it will aim for a drawn result or even for a 

loss in which it keeps its opponent’s goal total low.  Yet an in-match development, for 

example an unexpected goal, injury, or rules application may alter such plans and 

expectations (and resulting team composition, formations and tactics) on the fly. 

 

Initial and emergent team formations and tactics flow from its environmental factors. 

Throughout a match, tactical plans provide general positional guidance to both attacking 

and defending formations and individual roles.  Gardner (1996) and Wilson (2013) well 

describe and depict the evolution of soccer formations worldwide since 1866.  Wilson 

traces the near-inversion of soccer formations over the past century.  In earliest times, 

teams deployed as many as five forwards and as few as two defenders.  By the 2014 

FIFA World Cup tournament in Brazil, managers named only one forward as a starter in 

seventy-nine of 128 matches.   

 

Managers, fans, scholars and other analysts traditionally describe soccer’s tactical 

formations through sets of three to five ordered numerals.  The first value in a triad 

counts a team’s defenders, the middle value its midfielders, and the last value the number 

of forwards it deploys during a given time interval in a match.  When more than three 

values appear, the team has positioned players intermediate between defenders and 

midfielders or between midfielders and forwards.   

 

The ordered arrays of tactical formations, on the part of one’s team and one’s opponent, 

reflect their managers’ thinking with respect to a broad range of “Because” domain 

considerations that we list in Table 3.  We present here two examples, not an exhaustive 

list, of considerations facing managers, drawn from the 2014 FIFA World Cup.  In the 

first, hot and humid climate conditions challenged four teams’ stamina and affected 

player substitutions in matches played at Manaus in the Amazon jungle.  In the second,  

some managers knew, in the third match they played, that a drawn match, or even a one-

goal loss, would advance their teams into the next round of the tournament.  Thus 
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Germany and the United States knew that a draw in their match 45 would send both 

through to the second round of the tournament, and that even a tightly-contested loss 

would be enough, so long as their trailing group-mates (Portugal and Ghana) 

simultaneously played a tight match (FIFA match 45, 2014). 

 

Managers coped throughout the tourney with problems in the “Is” domains of their own 

players and exploited such issues in their opponents.  Thus, Brazil lost the skills of its 

most prolific player to injury after match 57, and Germany and the Netherlands routed 

the host nation in subsequent matches (FIFA Technical Study Group, 2014: 14, 16).  In 

some cases, managers coped or exploited issues through their selection and modification 

of tactical formations.  In the tournament, in half of all cases, teams positioned four 

defenders, two defensive midfielders, three attacking midfielders, and one striker 

(“4231”) in front of their goalkeeper.  Across the other sixty-four lineups, managers 

announced eleven other starting formations. The United States began each of its four 

matches in a different formation, while tournament champion Germany began all seven 

of its matches in 433. As match conditions (e.g., in-match score) warranted, managers 

altered their tactical choices and their on-field players and attacking and “marking” 

responsibilities. (Labedz, Schumaker, Jarmoszko and Freeman, 2015) 

 

Table 3.  “Because” considerations in, and results of, formulating a team’s tactical 

strategy 

 

Considerations Results 

1. match location 

2. match playing 

conditions 

3. perceived strengths 

and weaknesses of 

opponent’s players 

4. perceived strengths 

and weaknesses of 

opponent team 

5. opponents’ historical 

tactical strategies  

6. plausible desired 

outcome of match 

7. minimum acceptable 

outcome of match 

8. emerging patterns of 

match play 

9. emerging score line 

of matches 

10. match availability of 

own players, 

11. “Is” domain elements 

(Table 1) of each of 

own players 

12. comparative 

historical results of 

own players versus 

opponents 

13. other historical 

performances of own 

players 

14. perception of teams’ 

comparative match 

readiness, motivation 

 

and others as identified by 

specific clubs, 

15. opening tactical 

alignment 

16. own defensive 

“marking” 

assignments  

17. own emergent 

tactical alignment 

within match 

18. opponent’s opening 

tactical alignment  

19. opponent’s 

defensive “marking” 

assignments  

20. opponent’s 

emergent tactical 

alignment within 

match 

21. final score line of 

match 

 

 

 

 



 14 

Data Elements of the “Because” Domain: Player Grid Positioning 

 

Throughout a match, the locations of one’s teammates and opponents influence one’s 

own current position and likely one’s next-in-time position.  Relative to each individual, 

others’ positions therefore constitute components of his “Because” domain.   

 

As a match begins, tactical positional plans provide general guidance to both attacking 

and defending formations.  Chapter 8 (“Tactics”) of Gardner’s text well describes and 

depicts the evolution of soccer formations between 1866 and 1994.  Its eighteen figures 

and Gardiner’s explanations of their strategic motivations, resulting player roles, 

characteristics and relationships, set the stage to explain those positional probabilities.  

We take one example from it, the “Swiss bolt” or verrou system employed in Geneva and 

Zurich.  It provides a striking example of the interdependence of players’ characteristics 

and abilities with their manager’s tactical planning (Table 3, result 15): 

 

The aim of the bolt system was to create a team that would outnumber opponents 

in both attack and defense …. On attack, the bolt had a 3-3-4 shape … with all the 

players including the three-man fullback line moving well upfield.  When 

possession of the ball was lost, all ten players retreated.  The function of the four 

forwards was to harass their opponents, to slow down their attack [Table 2, 

techniques X and M], while the other six players raced back deep into their own 

half [Table 2, Z]….  The attacking center half now became the center back, while 

the former center back retreated to an ultradeep position behind everyone else.  

From here he could move laterally across the field, covering the other three backs 

and functioning as the sliding “bolt” to lock out opposing forwards [Z].  The bolt 

system needed disciplined, highly fit players [Table 1, characteristics 7 and 8] 

who could cope with a good deal of high speed running [Table 1, ability 16] , who 

had the skill to operate as both attackers and defenders, and who possessed a well-

developed sense of positional play [Table 1, ability15].  (Gardner: 190-1) 

 

Diagrams 5 and 6 in Gardner’s chapter 8 present players’ positional “homes” on the pitch 

when the Swiss team, using verrou tactics, was in possession and when it was not.  

Combined, they provide a positional probability map (“PPM”) based on pre-match 

tactical planning.  In figure 3, we combine and translate Gardner’s two diagrams.  The 

manager directed each field player to move regularly within his quadrilateral area of 

responsibility drawn on this pitch map.  He would move from his defensive “station” at 

left (lowest x-axis value) to attack at right, and retreat from right (highest x-axis value) to 

left when his Swiss side lost ball possession. 
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Figure 2.  Positional Probability Map of verrou tactics 

 

In each match moment, where does each player actually physically enact his choice 

among possible activities of Table 1, drawing upon his characteristics, abilities and range 

of motivations (Table 2), in service of his team’s tactical strategy (Table 3)?  Researchers 

and analysts have created “heat maps” out of player-by-player positional data feeds that 

are captured throughout each match. (Couceiro, Clemente, Martins, and Tenreiro 

Machado, 2014)  Figure 3 displays the heat maps of the 22 starting players and 

substitutes during the final game of the 2014 World Cup tournament (FIFA 2014). 

 

Even while a set of these maps displays clusters of players’ positioning, they do not 

indicate precisely everyone’s position on the pitch at any point in time.  A player’s heat 

map is an emergent (Bialkowski et al., 2015) rather than planned PPM, suggesting 

through a probability density function that during the match he will be found within a 

certain region of the pitch.   
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Figure 3. Heat map of FIFA World Cup 2014 championship match 

 

 

Such Table 2 choices as trapping, passing “into space”, improving or maintaining one’s 

position, repositioning, challenging and marking imply the concept of positioning of 

attackers, defenders and the ball.  All players, not merely the one then in possession, 

operate continuously in 4-dimensional space (x, y, z, t).  So too does the object they 

possess.  “The fastest player is the ball” said legendary coach Sepp Herberger (Anderson 

and Sally (2013: 107)), because its coordinates on the pitch usually change with greater 

speed and mathematical richness than do any player’s.  We explain next the 4-

dimensional coordinates of the sport. 

 

The laws stipulate a range of lengths and widths of the pitch, in metric and English units 

of measure.  We employ here physical model boundaries of one hundred eight yards in 

length (x-axis) and sixty-eight (y-axis) in width, within those ranges, for convenience.  

While successful shots must fully enter the eight-yards-wide goals at heights less than 

eight feet, the relevant vertical axis for play is limited only by the strength of a player’s 

kick and the laws of flight.  The range of height in which players operate, including the 

maximum height at which they can play the ball while off the ground, is assumed not to 

exceed ten feet.  While earthbound, we assume they occupy one (standing) to 2.5 

(extending) square yards of turf.  Thus, twenty non-goalkeeping field players occupy at 

any time less than one percent of the field’s grassy expanse.  (The regulation “size 5” 

soccer ball is a sphere with roughly a 22-centimeter diameter.) 
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The field players likely do not occupy that same 0.75% of the pitch for long, since the 

play (and player movement) in soccer is more fluid than in other major team sports.  

What then guides their positions throughout a ninety-minute match?  Inputs to their 

decision-making include their teams’ tactical positional plans, their current locations, 

their capabilities and those of their teammates and opponents, emergent match 

circumstances, and the ever-changing position of the ball (which they also affect).  So too 

do their forecasts of changes in those inputs in the next moment and beyond, and their 

memories of some of those inputs, such as opponents’ tactics and positioning to date.   

 

Using some of these inputs, the resulting dynamic optimizing algorithms of each player 

determine his probable position at tn and tn+1.  He cannot simultaneously employ them all.  

A player’s bounded rationality (Simon, 1957) in dealing with all those inputs must cope 

with physical uncertainties as well.  In deciding to try to pass the ball to a teammate, he 

estimates his physical ability to make the pass he intends, as well as the abilities of his 

intended target to receive it successfully and of one or more opponents to block or 

intercept the pass.  For example, the maker of an aerial pass presumably believes that his 

teammate is somewhat likely to outjump their nearby opponent and receive it 

successfully.  In the flow of play the passer may perform this determination 

subconsciously and instantaneously.  Weather and field conditions add to the uncertainty 

of the decision and its results.  The ball’s aerodynamics and a player’s skill in striking it 

permit it to follow a linear or curved path intended to avoid interception by opponents not 

positioned along its path. The PIP’s teammates and their opponents likewise play 

continuously within their own bounded rationality. Using a social network approach, 

researchers have begun analysis of passing networks in football for their effects in 

tournaments including the World Cup (Lee and Lee, 2015). 

 

All this decision-making and activity take shape continuously in 4-dimensional space (x, 

y, z, t).  We deem passes up field toward the opponent-defended end of the pitch to alter 

the soccer ball’s x-coordinate, while “square” passes that travel parallel to the goals 

instead affect its y location.  Most of soccer’s passes and shots, and even some attempts 

at ball retention, lift the ball off ground level, into positive z-space.  There, the height, 

timing and jumping ability of intended recipients and opponents affect the success or 

failure of the attempt.  Each decision or activity occurs at a particular time. The x, y and z 

coordinates for each player – and for the ball – are measured as of each moment in time, 

tn, but generally have changed by time tn+1.  Many passes and shots follow curves, the 

results of the ball’s aerodynamics (Bush, 2013), of crudely calculated forays, practiced 

patterns, or intuitively shaped decisions of the passer, or by accident.  The trajectories of 

a pass may be as simple as a linear vector that the ball traverses along the ground during a 

specific time interval (xtn+1 - xtn, ytn+1 - ytn, 0, tn+1 - tn).  The greater computational 

challenge is provided by bending (Dhami, 2003; RWPP, 2015), swerving and dipping 

passes that follow curve segments defined in space by a trio of third-order polynomials of 

form x(u) = axu
3
+bxu

2
+cxu+dx, where 0≤u≥1, etc. (Mortenson, 2006)   

 

A common defensive tactic offers an example of the importance of coordinating 

“probabilities” of positioning “in the moment”.  Success or failure in “beating the offside 

trap” emphasizes the relative y-coordinates of the passing PiP, his teammate-receiver and 
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last opponent defender, but only at the instant the pass is struck.  Other factors may affect 

the success of that pass too, such as passing and receiving skills, proximity of other 

defenders, and the accuracy of the offside call (laws enforcement) made by the referee’s 

assistant.   

 

Thus, elements of the four nested domains influence one another.  Actions, reactions and 

conditions of the individual player and his environment affect each other throughout a 

match, and beyond. In Figure 4, we superimpose on Figure 1 six bidirectional arrows 

representing those paths of influence.   

 

 

 

 

 

 

 

 

 

 

 

I =Is; D = Does; C = Can; B = Because.  Arrows indicate reciprocal influences. 

 

Figure 4. Diagram of influences among nested IDCB domains 

 

 

Next, Table 4 offers an example of each Figure 4 vector, listed in “from → to” order.  

 

Table 4.  Examples of domains’ influences on one another 

 

Vector Example 

I → B A tall player’s preeminence draws opponents’ attention to him in ball-heading 

situations. 

B → I Over the longer term, competitors’ capabilities and physical attributes 

influence individual training, roster inclusion, and skills emphasis.  

I → C A player with a “weak” left foot cannot control the ball well with that foot. 

C → I A player’s skills may inspire his greater pre-match confidence or motivation. 

I → D A player with a “weak” left foot insists on challenging opponents on the other. 

D → I A player’s in-match successes and failures may affect his in-match motivation 

or confidence. 

B → C Opponents deny an opponent touches of the ball, through close marking, fouls. 

C → B A player’s recent “run of form” forces countermeasures in the opponent’s 

lineup. 

B → D Opponents “force” a weak-footed player to use that one ineffectively. 

D → B A player’s in-match successes force in-match countermeasures, substitutions. 

C → D A player who is not “match fit” performs less effectively. 

D → C A player aggravates an injury during play, and thereby becomes less capable. 

 I D C 

B 
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Application of SD and ST 

 

Research that uses SD modeling in connection with health concentrates on improving 

health care delivery at the facility or system-wide level (e.g., van Olmen, Criel, Bhojani, 

Marchal, van Belle, Chenge, Hoerée, Pirard, Van Damme, Kegels, 2012), and not on 

individuals’ recovery from traumatic or strain injuries.  Nonetheless, medical research 

with respect to recovery from injury, player conditioning and “match fitness” provides 

rates and patterns of improvement over time.  In a study of athletes’ recovery from 

posterior thigh injuries (Malliaropoulos, Papacostas, Kiritsi,   Papalada, Gougoulias 

and Maffulli, 2010), for example, an s-shaped growth structure depicts a pattern of full 

recovery of active range of motion within a 14-day period.  Figure 5 presents the stock 

and flow structure.  The underlying definitions and formulas and a graph of the model’s 

simulated behavior appear in the Appendix. 

 

 
Figure 5. Stocks and flows of player recovery from soft tissue injury 

 

With respect to player stamina levels, stock and flow structures that produce patterns of 

s-shaped decay or exponential decay appear most appropriate.  While rates at which these 

variables change during a match will vary among players, their overall distribution across 

a population of players likely will be a normal one.  Perl (2002, 2004, 2005) developed a 

stocks-and-flows model and tool for the analysis and optimization of athletes’ load-

performance interaction.  Abdel-Hamid (2002) used a system dynamics model to study 

and gain insight into physiology related to weight gain and loss. Based on these, Figure 6 

presents in-match energy level through a generic stocks and flows formulation in which 

capacity (response potential) and exertion (strain potential) affect stamina (performance 

potential) over time through the respective delays in their unequal and variable response 

and strain flows.  It is likely that the Load Input for Response potential is based on player 

conditioning efforts (“I” domain, characteristics 7 and 8), while “loading S” is influenced 

by match conditions and developments (“B” and “D” domains). 

Motion

deficit
Recovered

motionrecovery rate

intrinsic healing

capacity
range of
motion

+ +

healing contribution

from treatment

+

+ +
B R
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Figure 6. Stocks and flows of player stamina / energy 

 

The greatest contribution of the SD and ST approaches likely describes players’ 

adjustments to their opponents’ tactics, successes and failures.  Learning is a feedback 

process, and learning during competition doubly so.  For example, actions taken by 

attacking players lead to successful or unsuccessful outcomes (from their perspectives) as 

defenders take countermeasures.  A pattern of outcomes within the match (or even one 

that extends some patterns from prior matches) may cause players or their manager to 

reconsider their tactics.  Reconsideration may lead to considering and testing revised 

approaches, and these revisions may lead (they hope) to more-favorable outcomes.  

Meanwhile, of course, opposing players and their manager may undertake similar tactical 

reconsideration and pursue their own revised approaches.  These patterns of competitive 

re-thinking pit against one another two cases of double loop learning (Argyris 1985; 

Sterman, 2000) at group and individual levels.  The expected outcomes of each side 

represent the intersections of their opponent’s tactics, into which they enjoy lesser 

visibility, and their own.  Managers, analysts and fans expect that delays in tactical 

reconsideration and adjustment by either side can affect the competitive outcomes.  This 

combination of competing single- and double-loop activity, expectations of intended 

change in tactical outcomes, less-transparent insight into opponent adjustments, and 

effects of responsive delays, lead to a more complicated model of double loop learning.  

Such a competitive version between players A and B appears in Figure 7, although the 

model also could apply if the players instead were teammates who were learning from 

and adapting “on the fly” to one another. 

 

Response

potential
Strain potential

Stamina

loading R loading S

Load Input

+ +

developing Stamina depleting Stamina

+ +

delay in Strain flow

-

delay in Response flow

-
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Figure 7. Causal loop drawings of competitive single- and double-loop learning 

Conclusions 

Individuals are complex organisms.  Bar-Yam (1997) estimates the descriptive 

complexity of human behavior as approximating the magnitude of 10
10

 bits of data, or 

more.  Within the context of a soccer competition, players have many independent multi-

valued properties and influences, whether personal characteristics or environmental 

influences.  Quite a number of these are, or may be treated as, constants.  For example, 

(with the exception of the elements depicted in Figures 5 through 7, and players’ pitch 

locations of course) none of the “Is” Characteristics listed in Table 1 is likely to change 

within the course of a match. We may say the same about a player’s Abilities and most 

factors affecting his Motivation.  While constants play important roles in stocks and 

flows modeling, SD is not uniquely positioned among modeling approaches to employ 

constants in modeling behavior. 

We may say the same with respect to many “Because” Considerations set forth in Table 

3.  Only emerging in-match elements (such as playing conditions, minimum acceptable 

outcome, emerging play patterns, emerging score line, and availability of players) will 

vary during a match.  Conversely, among the Results set forth on that table, only the 

teams’ opening tactical alignments are fixed.  Whether these elements are variable or 

constant, a key concern in judging their inclusion in an SD model will be their units of 

measure.  A second important concern, as to those elements that are variable, will be the 

usefulness of calculus in tracing their values throughout a match.   

We view the foregoing concerns as devaluing or prohibiting any broader use of SD 

technique beyond modeling such elements as are depicted in Figures 5 and 6.  Here are 

some examples leading to our conclusion.  Pitch locations and tactical alignments are 

denominated in three-dimensional space, not in one-dimensional units of measure like a 

player’s remaining ability to run at normal speed, a possible measure of stamina.  

Defensive roles are not only three-dimensional but sometimes also relational, as when a 

player is assigned marking responsibility for a particular opponent.  Even the emerging 

score line in a match, which may be measured in goals scored and comparatively in goals 

difference, traces a step function, changing exactly one goal at a time.  Critically, all of 

the “Can”/”Does” decision-making of Table 2 translates, after taking into account inputs 

Real World (Events

and Positions)

Information Feedback
(Observations and

Experiences) A

Mental Models (Player's

Expectations) A

Rules (Player's

Options) A

Decisions (Player's

Action) A

Information Feedback
(Observations and

Experiences) B

Mental Models (Player's

Expectations) B

Rules (Player's

Options) BDecisions (Player's

Action) B
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from the “In” and “Because” domains, into yes/no choices made by each player in each 

moment. 

Traditional ABM addresses the non-spatial elements of the entire set of Figure 1 

domains.  Yes/no (1,0) values can be stored efficiently in an ABM approach.  However, 

the spatial and relational components of competitive play require that an overall model 

be situated within a spatio-temporal modeling approach that incorporates some social 

network modeling technique, too. 

Overall, the literature suggests that an agent-based approach that employs artificial 

intelligence and operates in a STM environment offers the most promising path.  Such an 

ABM-led approach may employ certain SD routines, as did Größler, et al., and as are 

depicted in Figures 5 and 6.  The SD-led, combined approaches of Akkermans, Geerlings 

et al., and Labedz and Stalker, likely will be less successful than other modeling methods. 

Spatio-temporal modeling appears central to dynamic soccer analysis, because players’ 

decisions and match events are determined not just by competitive actions but by their 

relative positions in space (i.e., on the pitch) from moment to moment.  To model 

geometrically the curvature of a pass through a trio of third-order polynomials is an 

incomplete input without knowing the pitch position from which the pass was launched 

and the moment in time at which it was struck. 

 

Spatio-temporal analysis however may be challenged to go beyond mere depictions of 

teammates’ relative positions and those of opponents, so as to identify patterns of 

interrelationships among individuals.  It may be appropriate to incorporate recent work in 

dynamic social network analysis (Sarkar and Moore, 2005) to bring greater insight to the 

patterns of observed locations of the footballers.  It may not stretch too far to introduce an 

understanding of uncertainty topics into predictions of emergent positioning and, with 

them, emergent score lines.  

 

This paper has not heretofore devoted any attention to the roles that rules enforcement 

(officiating) and chance play in football outcomes, but those roles are not trivial.  For 

example, Lames and co-researchers studied more than 2,500 football goals in Europe and 

determined that luck (which he defined as one of six unintended events) played a role in 

44% of them.  Adequate modeling of football matches likely should incorporate 

stochastic processes.  

 

As Sterman (2000) and Rahmandad and Sterman (2004) assert, the adequacy of any 

system model is contingent on the purpose of the model, the variables of interest, and the 

levels of precision required.  This statement applies equally to an SD-only formulation 

and to a multi-methods simulation.  Models are (and must be) simplifications of reality 

(Eco, 1994; Sterman, 2000), even of soccer reality, and their validation is impossible.  

The overriding goal of modelers should not only be to help their clients make higher 

quality decisions, but to inform those decisions by designing better models. 

 

As stated at the outset of this paper, Valeriy Lobanovskyi trained as an engineer, during 

the early days of general systems theory and cybernetics, before pursuing his football 

careers as player and manager.  He saw a match as a contest between two subsystems of 
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eleven elements, moving within a defined field and subject to the laws of the game.  He 

would contrast the effectiveness of each subsystem to “explain” wins, losses and draws.  

He believed that the efficiency of each subsystem was greater than the sum of the parts, 

so that he could apply to soccer the engineering techniques he had studied.  Soccer, he 

concluded, was less about individuals than about coalitions and the connections among 

them. 

 

In the sixty years since the Ukranian concluded his engineering studies, football has 

seemed at times to be much more about individuals (e.g., Puskás, Pele, Beckenbauer, 

Maradona, Ronaldo, Messi) and at other times (e.g., Netherlands in the 1970s, Barcelona 

and Spain more recently) much more about coalitions and connections.  Whatever the 

managerial or media depictions, various theories and modeling techniques seem 

appropriate in studying football.  Our review suggests that agent-based, spatio-temporal 

and dynamic network modeling approaches are most necessary.   

System dynamics has a role to play in modeling some player characteristics. The 

competing eleven-player subsystems of a football match obviously must be considered 

not merely as individuals operating within a system boundary, but as adaptive multi-

dimensional agents occupying continuously changing their spatio-temporal relationships 

to the playing field and to one another. 

Systems thinking (especially as to complex adaptive systems) has an overall explanatory 

role in player learning, managerial strategizing and adaptation, and in the overall 

conceptualization of the contests.  Other approaches (geometric modeling, fluid 

dynamics, operational reliability, and even quantum mechanics) may play roles as well.  

A beautiful game deserves so much and so varied attention. 

 

Finally, here is an editorial note from the authors.  To simplify our phrasing, and in 

keeping with the historical football accounts we cite, we have employed throughout this 

paper only the masculine gender.  Yet we recognize the substantial contributions to 

football – in performance and support – increasingly made by female athletes, moms and 

fans.  As we prepared this version of our paper on the eve of the FIFA Women’s World 

Cup Canada 2015 tournament, we salute the women (and men) who passionately live and 

enjoy the sport. 

 

We prepared it, too, in the wake of the FIFA World Cup Brazil 2014 tournament for men.  

These quadrennial national team competitions remind us of the major roles that club-

based football competitions, and other intervening national competitions like FIFA’s 

Confederations Cup and the Olympic Games, play in developing the World Cup 

participants.  The set of environmental considerations presented in table 3 above likely 

requires substantial expansion when the organizational interests of for-profit football 

clubs are considered.  
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Appendix of formulas, definitions and simulation results 

 

Figure 4: recovery from soft tissue injury 

 

healing contribution from treatment = 0.015. Units: Dmnl. Healing contribution from 

treatment represents an additional daily recovery percentage, beyond that of the body's 

natural healing processes, provided through physiotherapist activity. 

 

intrinsic healing capacity = 0.015. Units: Dmnl. Intrinsic healing capacity represents a 

daily recovery percentage attributable to the body's natural healing processes. 

 

motion deficit= INTEG (-recovery rate, 20). Units: percentage of motion. Motion deficit 

represents the percentage of motion lost in athletes' acute, first-time, unilateral posterior 

thigh muscle injuries. 

 

range of motion = 20.Units: percentage of motion. Range of motion represents the 

percentage of motion that may be recovered following athletes' posterior thigh muscle 

injuries. 

 

recovered motion = INTEG (recovery rate, 1). Units: percentage of motion. Recovered 

motion Motion deficit represents the percentage of lost motion regained following 

unilateral posterior thigh muscle injuries. 

 

recovery rate = range of motion*(intrinsic healing capacity + healing contribution from 

treatment) * Motion deficit * (Recovered motion/range of motion). Units: 

percentage/day. Recovery rate is the percentage by which normal motion is recovered in 

each time period (day). 
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